Absstract of: CN119956322A
本发明公开一种氮掺杂石墨烯胶囊原位包覆铝箔及其制备方法与应用,制备方法包括步骤:借助射频离子源将氮气电离为氮离子束流并通过离子注入方式实现氮元素在铝箔表面和内部的掺杂;将经过氮掺杂反应的铝箔放入CVD炉中,通入氨气和乙炔混合气体,按照5‑10℃/min的升温速率将温度升温至180‑400℃,在升温过程中持续通入氨气和乙炔混合气体,进行氮掺杂CVD反应2‑20min,实现石墨烯胶囊原位生长,获得所述氮掺杂石墨烯胶囊包覆铝箔。本发明制备的氮掺杂石墨烯胶囊原位包覆铝箔的电导率相对于商业高比表集流体铝箔提升了20%左右,同时抗折弯性能提升了2‑3倍,这有效防止了铝箔断裂或变形,延长了储能器件寿命。
Absstract of: CN119955518A
本发明公开了用于光限幅的手性碳量子点制备方法,具体包括如下步骤:步骤1,制备含N,S的手性碳量子点的制备;步骤2,通过透析膜进行纯化,去除步骤1制备的含N,S的手性碳量子点中未反应的物质,即得。本发明还公开了用于光限幅的手性碳量子点,本发明利用原子掺杂以及手性调控减小带隙,增强了光限幅性能。
Absstract of: CN119954141A
本发明公开一种放电等离子烧结技术对多壁碳纳米管纯化的方法,步骤为:对CVD法制备的多壁碳纳米管粗品进行预处理;取适量处理后的多壁碳纳米管放入石墨坩埚内;真空中,将坩埚放入放电等离子烧结炉中开始无压烧结,至设定温度并保温相应时间后,将样品取出后立即真空密封,得到纯化后的多壁碳纳米管。本发明的纯化方法采用放电等离子烧结技术纯化多壁碳纳米管只需要在较低温度和较短时间即可去除多壁碳纳米管在制备过程中产生的缺陷、游离态碳颗粒和金属催化剂颗粒等杂质,能使多壁碳纳米管更好地石墨化,达到纯化的目的。该纯化方法对石墨烯及其他碳材料同样适用。
Absstract of: CO2023015148A1
En la presente invención se describe un método único para la producción de óxido de grafeno reducido (rGO) de alta calidad gran escala. El propósito es resolver la baja conductividad eléctrica que presentan los rGO obtenidos por otros métodos, el método se proporciona para resolver el rGO a gran escala y aplicarlo ampliamente, y el rango de aplicación del grafeno se amplía considerablemente a baterias, supercondensadores, y materiales compuestos. En general, el método consta de dos pasos: oxidación del grafito en óxido de grafito; y exfoliación y reducción a rGO en un solo paso. El rGO se forma sin agentes químicos ni reductores adicionales. El óxido de grafeno reducido sintetizado mediante el método descrito tiene una alta calidad estructural debido a la proporción de anillos y dominios aromáticos. El grafeno tiene un gran potencial para una amplia gama de aplicaciones, entre las que se incluyen: dispositivos electrónicos, como transistores, diodos y circuitos integrados, fabricación de nuevos materiales, como composites y biomateriales, celdas solares, baterías y dispositivos de almacenamiento de energía y dispositivos médicos, como sensores e implantes.
Absstract of: US2025145458A1
In various aspects, the present disclosure is directed to methods and compositions for the simultaneous production of carbon nanotubes and hydrogen gas from lower hydrocarbon comprises methane, ethane, propane, butane, or a combination thereof utilizing the disclosed catalysts. In various aspects, the disclosure relates to methods for COx-free production of hydrogen with concomitant production of carbon nanotubes. Also disclosed are methods and compostions for selective base grown carbon nanotubes over a disclosed catalyst composition. In a further aspect, the disclosure relates to mono, bimetallic, and trimetallic catalysts comprising a 3d transition metal (e.g., Ni, Fe, Co, Mn, Cr, Mo, and combinations thereof) over a support material selected from a silica, an alumina, a zeolite, titanium dioxide, and combinations thereof. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
Absstract of: WO2025096319A1
Polymer composites containing carbon nanotubes may be produced without de-agglomerating the carbon nanotubes prior to blending the carbon nanotubes with a polymer matrix. The polymer composites may comprise a polymer matrix comprising at least one polymer, and a plurality of carbon nanotubes dispersed in the polymer matrix, in which the carbon nanotubes comprise a plurality of carbon nanotube bundles that have not been de-agglomerated prior to dispersal in the polymer matrix. The carbon nanotubes may be produced by a floating catalyst chemical vapor deposition process. The polymer matrix may be a polyolefin matrix comprising at least one polyolefin.
Absstract of: US2025144912A1
Method of manufacturing a vertically aligned laminated graphene based thermally conductive film. The method comprising: attaching first and second graphene film using a layer of nanoparticles and an adhesive; forming a layered film comprising a predetermined number of graphene film layers by repeating the steps of arranging a layer of nanoparticles, arranging an adhesive and attaching a graphene film; and laminating the layered film by applying pressure and heat to cure the adhesive, thereby forming a laminate film; cutting the laminate film at an angle in relation to a surface plane of the film to form the vertically aligned laminated graphene based thermally conductive film.
Absstract of: US2025145886A1
Aspects of the present disclosure are directed to a method for synthesizing carbon quantum dots. The method includes reacting a mixture of a fruit waste material and deionized water hydrothermally in an autoclave at a reaction temperature in a range of 150° C. to 250° C. to form a carbon quantum dot containing suspension, centrifuging the carbon quantum dot containing suspension to separate the carbon quantum dots from a hydrochar, and filtering the carbon quantum dot containing suspension to obtain the carbon quantum dots. The carbon quantum dots have a size ranging from 2 to 10 nm. The carbon quantum dots have a Stokes shift of at least 150 nm at an excitation wavelength of 360 nm or lower.
Nº publicación: US2025145470A1 08/05/2025
Applicant:
UNIV OF TENNESSEE RESEARCH FOUNDATION [US]
UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
Absstract of: US2025145470A1
This application relates to the development and use of lignin-based carbon materials which can be used for energy storage and environmental applications. Included are methods of preparing microporous activated carbon having a controlled, often high surface area and a controlled often high mesopore ratio, and a method of preparing carbon dots, for example carbon quantum dots.