Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 671 results.
LastUpdate Updated on 27/04/2025 [06:58:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Results 650 to 671 of 671  

Methods of Operating a Water Electrolyzer

Publication No.:  US2025066934A1 27/02/2025
Applicant: 
ALCHEMR INC [US]
ALCHEMR, INC

Absstract of: US2025066934A1

A method of running a water electrolyzer that can operate on seawater without a significant voltage rise. In some embodiments, the method includes the use of specific ionomers in the catalyst layer. In some embodiments, the method involves using a Break-In Procedure. In some embodiments, the method can include periodic interruption of the voltage to the AEM electrolyzer.

POROUS TRANSPORT LAYER FOR WATER ELECTROLYSIS, AND METHOD FOR MANUFACTURING THE SAME

Publication No.:  US2025066938A1 27/02/2025
Applicant: 
HYUNDAI MOTOR CO LTD [KR]
KIA CORP [KR]
Hyundai Motor Company,
Kia Corporation
US_2025066938_PA

Absstract of: US2025066938A1

Provided are a porous transport layer for water electrolysis including a first layer containing first particles of a titanium group element, and a second layer containing second particles of a titanium group element. An average diameter of the first particles is larger than an average diameter of the second particles, and a surface of the first layer abutting the second layer is planarized. A method for manufacturing the same is also provided.

ELECTROLYSIS SYSTEM WITH A GEOTHERMALLY HEATED FEED STREAM

Publication No.:  US2025066927A1 27/02/2025
Applicant: 
ENHANCEDGEO HOLDINGS LLC [US]
EnhancedGEO Holdings, LLC

Absstract of: US2025066927A1

A geothermally powered hydrogen production system includes a wellbore that heats a heat transfer fluid, thereby forming heated heat transfer fluid. A heat exchanger heats a feed stream using the heated heat transfer fluid, thereby forming a heated feed stream. An electrolyzer receives the heated feed stream and generates hydrogen from the heated feed stream.

MODULAR ELECTROCHEMICAL SYSTEM

Publication No.:  US2025066933A1 27/02/2025
Applicant: 
ENAPTER S R L [IT]
Enapter S.r.l
JP_2025500210_PA

Absstract of: US2025066933A1

A modular electrochemical system, said system comprising: one or more electrochemical blades, wherein each electrochemical blade comprises at least one electrochemical stack, and one or more balance of plant (BOP) blades, wherein each BOP blade comprises at least one BOP facility for at least one electrochemical stack, wherein the or each electrochemical blade(s) corresponds to any one or more of the BOP blades, and vice versa, and each electrochemical and/or BOP blade is provided with a framework, said framework comprising at least one port adapted to enable connection with one or more corresponding blades.

System and Method for Delivery of Thermal Energy for Hydrogen (H2) Gas Production

Publication No.:  US2025066939A1 27/02/2025
Applicant: 
FUTURE ENERGY LLC [US]
Future Energy LLC

Absstract of: US2025066939A1

A system and method for thermal energy delivery for hydrogen (H2) gas production is disclosed. The method involves generating electricity via a solar plant and providing it to a hydrogen electrolyzer. Thermal energy from the solar plant is used to heat a primary working fluid, which transfers heat to a secondary working fluid in an evaporator, converting it into vapor. This vaporized secondary working fluid drives a turbine, generating electricity through a Rankine cycle system where the secondary working fluid circulates continuously, transmitting the secondary working fluid and a portion of the generated electricity to the hydrogen electrolyzer, which splits the secondary working fluid into H2 gas and oxygen, storing the H2 gas in a hydrogen gas storage tank. When solar power is unavailable, the stored electricity in the battery energy storage is supplied to the electrolyzer.

TRANSITION METAL-DOPED NICKEL PHOSPHIDE NANOSTRUCTURE, METHOD FOR PREPARING SAME, AND CATALYST FOR ELECTROCHEMICAL WATER DECOMPOSITION INCLUDING TRANSITION METAL-DOPED NICKEL PHOSPHIDE NANOSTRUCTURE

Publication No.:  US2025066936A1 27/02/2025
Applicant: 
S OIL CORP [KR]
POSTECH RES AND BUSINESS DEVELOPMENT FOUNDATION [KR]
S-Oil Corporation,
POSTECH Research and Business Development Foundation
KR_20230006128_PA

Absstract of: US2025066936A1

The present disclosure relates to a transition metal-doped nickel phosphide nanostructure, a method for preparing the same, and a catalyst for electrochemical water decomposition including the transition metal-doped nickel phosphide nanostructure. More specifically, a transition metal-doped nickel phosphide nanostructure can be prepared by converting a zinc oxide nanostructure grown on a substrate vertically by hydrothermal synthesis to a transition metal-doped nickel oxide nanostructure by cation exchange and then phosphorizing the nickel oxide. The transition metal-doped nickel phosphide nanostructure of the present disclosure is advantageous in that it has superior catalytic activity and conductivity due to large surface area. In addition, when used as a catalyst for water decomposition under an alkaline condition, it has a low overvoltage and can have excellent catalytic activity for hydrogen evolution reaction or oxygen evolution reaction.

METHOD FOR PRODUCING HYDROGEN BY DISSOCIATING WATER THROUGH THERMOCHEMICAL REACTIONS AND DEVICE FOR CARRYING OUT SAME

Publication No.:  AU2023313378A1 27/02/2025
Applicant: 
UNIV POLITECNICA DE MADRID
UNIVERSIDAD POLIT\u00C9CNICA DE MADRID
AU_2023313378_PA

Absstract of: AU2023313378A1

The present invention relates to a method and device for producing hydrogen by dissociating water molecules through thermochemical reactions, using a small amount of active material. The thermochemical reactions are induced by solar power with a moderate concentration of up to 50 suns, which can be achieved through linear or parabolic concentrators.

A PROCESS FOR PRODUCING SYNGAS USING EXOGENOUS CO2 IN THE ABSENCE OF CARBON FUELS

Publication No.:  EP4511453A1 26/02/2025
Applicant: 
MILANO POLITECNICO [IT]
Politecnico di Milano
CN_119234030_PA

Absstract of: CN119234030A

A process for producing a synthesis gas having an H2/CO ratio of 0.5 to 3.5 comprising: a) combusting hydrogen and oxygen in an H2 burner in the presence of steam to produce steam, b) quenching the effluent of step a); c) electrolyzing the steam of step b) in a solid oxide electrolysis cell (SOEC), thereby obtaining hydrogen and oxygen, d) cooling the wet hydrogen of step c) and removing moisture by condensation; e) performing a reverse water-gas shift reaction on the hydrogen in the step d) and CO2 from an external source to obtain synthesis gas; f) cooling the wet synthesis gas of step e) and removing moisture by condensation, thereby obtaining a dry synthesis gas.

HYDROGEN PRODUCTION SYSTEM AND HYDROGEN PRODUCTION METHOD

Publication No.:  EP4512932A1 26/02/2025
Applicant: 
MITSUBISHI HEAVY IND LTD [JP]
Mitsubishi Heavy Industries, Ltd
EP_4512932_PA

Absstract of: EP4512932A1

A hydrogen production system and a hydrogen production method includes: a heat exchanger that heats steam by using a heating medium heated by thermal energy at 600°C or higher; a high-temperature steam electrolysis device that electrolyzes steam at 600°C or higher to produce hydrogen by applying, to a high-temperature steam electrolysis cell, a voltage lower than an electric potential at a thermal neutral point at which Joule heating caused by application of a current and heat absorption caused by electrolysis reaction are balanced; and a heating device that heats the high-temperature steam electrolysis device by the steam.

전해질막, 촉매층 구비 전해질막 및 그의 제작에 사용되는 전사 시트, 막전극 접합체, 수전해 장치 그리고 촉매층 구비 전해질막의 제조 방법

Publication No.:  KR20250027503A 26/02/2025
Applicant: 
TORAY IND INC [JP]
\uB3C4\uB808\uC774 \uCE74\uBD80\uC2DC\uD0A4\uAC00\uC774\uC0E4
KR_20250027503_PA

Absstract of: AU2023300508A1

The main objective of the present invention is to provide an electrolyte membrane having good bondability with a catalyst layer, said electrolyte membrane comprising a polymer electrolyte-containing layer (A) and a layer (B) disposed on at least one surface of the layer (A), wherein the layer (B) has a higher porosity (X1) in an interface region thereof with the layer (A) than the porosity (X2) of the layer (B) in an interface region on the opposite side from the layer (A).

Publication No.:  KR20250027508A 26/02/2025
Applicant: 
JOHNSON MATTHEY HYDROGEN TECH LIMITED [GB]
\uC874\uC2A8 \uB9DB\uC384\uC774 \uD558\uC774\uB4DC\uB85C\uC820 \uD14C\uD06C\uB180\uB85C\uC9C0\uC2A4 \uB9AC\uBBF8\uD2F0\uB4DC
KR_20250027508_PA

Absstract of: AU2023297106A1

An electrolyte membrane is provided comprising a recombination catalyst layer. The membrane has a thickness of less than or equal to 100 µm and is a single coherent polymer film comprising a plurality of ion conducting polymer layers. The recombination catalyst layer comprises particles of an unsupported recombination catalyst dispersed in an ion conducting polymer and the layer has a thickness in the range of and including 5 to 30 μm. Catalyst coated membranes (CCMs) incorporating the electrolyte membranes are also provided, together with methods of manufacturing the electrolyte membranes.

生体物質のガス化方法および装置

Publication No.:  JP2025505458A 26/02/2025
Applicant: 
ワイルドハイドロジェンリミテッド
JP_2025505458_PA

Absstract of: AU2023218595A1

There is provided a method and apparatus for producing hydrogen gas from biogenic material (210) within a pressure vessel (10). The method comprises heating a granular material (15) to greater than 500°C, adding a batch of biogenic material (210) into the pressure vessel with the heated granular material (15) at atmospheric pressure, closing the pressure vessel, and mixing the heated granular material (15) with the biogenic material (210) inside the closed pressure vessel (10) to raise the temperature of the biogenic material (210) and commence gasification, the gasification producing gas that increases the pressure inside the pressure vessel (10), the produced gas comprising hydrogen gas.

수소 공급 장치

Publication No.:  KR20250027511A 26/02/2025
Applicant: 
HOERBIGER WIEN GMBH [AT]
\uD68C\uB974\uBE44\uAC70 \uBE44\uC5D4 \uAC8C\uC5E0\uBCA0\uD558
KR_20250027511_PA

Absstract of: WO2023217683A2

In order to provide a device (1) for providing hydrogen (H2) by means of an electrolysis unit (2) which allows the longest possible service life of the electrolysis unit (2) even in case of fluctuating energy supplies to the electrolysis unit (2), a reciprocating piston compressor (3) is provided to compress the hydrogen (H2) generated by the electrolysis unit (2), the reciprocating piston compressor (3) having at least one automatic intake valve (5). A retraction gripper (6) is provided in order to hold the intake valve (5) selectively in an open position, an electrically actuatable actuator (7) is provided to activate the retraction gripper (6), and a control unit (4) is provided to control the actuator (7), the control unit (4) being designed to actuate the actuator (7) in such a way that an outlet pressure (p1) of the hydrogen (H2) at the outlet of the electrolysis unit (2), or a differential pressure (Δp) between an anode and a cathode of the electrolysis unit (2), is adjustable to a predefined target value (p1_soll, Δp_soll).

MICROBIAL ELECTROLYSIS CELL SUPPRESSING METHANE GENERATION AND METHOD OF PRODUCING HYDROGEN USING SAME

Publication No.:  EP4512930A1 26/02/2025
Applicant: 
EN CORP [KR]
EN Corporation
EP_4512930_PA

Absstract of: EP4512930A1

Disclosed are a microbial electrolysis cell suppressing methane generation and a method of producing hydrogen using the same, and more particularly microbial electrolysis cell technology, which prevents the growth of methanogens inside a reactor during operation of a microbial electrolysis cell by aerating a substrate for use in a microbial electrolysis cell with acetylene gas before supply of the substrate, thereby suppressing consumption of the hydrogen and substrate by methanogens, ultimately increasing the hydrogen yield and lifespan of the microbial electrolysis cell.

PROCESOS DE RECUPERACIÓN DE Li Y PRODUCCIÓN QUÍMICA EN EL SITIO PARA PROCESOS DE RECUPERACIÓN DE Li

Publication No.:  AR131251A2 26/02/2025
Applicant: 
MANGROVE WATER TECH LTD [CA]
MANGROVE WATER TECHNOLOGIES LTD

Absstract of: AR131251A2

En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.

PROCESOS DE RECUPERACIÓN DE Li Y PRODUCCIÓN QUÍMICA EN EL SITIO PARA PROCESOS DE RECUPERACIÓN DE Li

Publication No.:  AR131252A2 26/02/2025
Applicant: 
MANGROVE WATER TECH LTD [CA]
MANGROVE WATER TECHNOLOGIES LTD

Absstract of: AR131252A2

En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.

VOLTAGE AND FREQUENCY RESPONSE AND REGULATION IN A HYDROGEN GENERATION SYSTEM

Publication No.:  EP4511530A1 26/02/2025
Applicant: 
OHMIUM INT INC [US]
Ohmium International, Inc
WO_2023205126_PA

Absstract of: WO2023205126A1

The systems and methods described herein provide for control of hydrogen generation based on one or more characteristics of an input power signals, including a voltage of the input power signal and/or a frequency of the input power signal. The hydrogen generation system may be controlled in response to a reactive power consumption of the hydrogen generation system and/or a reactive power component of a power grid providing energy to the hydrogen generation system. In one embodiment, the hydrogen generation system may be controlled to generate reactive power in circumstances in which a voltage an input power signal is less than or more than a voltage range. In another embodiment, the hydrogen generation system may control hydrogen production based on a frequency of the input power signal.

FREQUENCY DROOP TO COORDINATE HYDROGEN PRODUCTION

Publication No.:  EP4511893A1 26/02/2025
Applicant: 
OHMIUM INT INC [US]
Ohmium International, Inc
WO_2023205154_PA

Absstract of: WO2023205154A1

A system and method of power management for a power generation system is disclosed. A method of power management for a hydrogen generation system including one or more electrochemical stacks, the one or more electrochemical stacks receiving power from an electrical grid including at least one power source, includes: receiving a frequency or voltage reference value for the hydrogen generation system; continually monitoring a frequency or voltage of the electrical grid; and varying a load of the hydrogen generation system in response to the frequency or voltage of the electrical grid differing from the frequency or voltage reference value to restore the frequency or voltage of the electrical grid to the frequency or voltage reference value.

SYSTEM COMBINATION COMPRISING AT LEAST TWO ELECTROLYSIS SYSTEMS AND A POWER SUPPLY SOURCE

Publication No.:  EP4511936A1 26/02/2025
Applicant: 
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
Siemens Energy Global GmbH & Co. KG
CN_119452539_PA

Absstract of: WO2024002797A1

The invention relates to a system combination (100), comprising: at least two electrolysis systems (1A, 1B); a power supply source (3) having a direct voltage output (7); and a central supply line (5); wherein the central supply line (5) is connected to the direct voltage output (7) of the power supply source (3), so that a direct current can be fed into the central supply line (5) and a central DC network designed for a high voltage is provided, to which DC network the electrolysis systems (1A, 1B) are connected by means of the central supply line (5). The power supply source (3) has, as a power generator, a wind turbine (19), to which a rectifier (13A) having a direct voltage output (7) is connected, the direct voltage output (7) being designed for the high voltage. At least one of the electrolysis systems (1A, 1B) is disposed at the base of the tower of the wind turbine (19) and is connected there directly to the central supply line (5). The invention also relates to a of a DC network in a system combination of this type, wherein a number of electrolysis systems (1A, 1B) is connected to a central supply line (5) for direct current, and wherein a direct current is fed, at a specified high voltage, into the central supply line (5) by means of a direct voltage output (7).

METHOD AND SYSTEM FOR PRODUCING HYDROGEN COMPRISING A PYROLYSIS OF A HYDROCARBON

Publication No.:  EP4512931A1 26/02/2025
Applicant: 
LINDE GMBH [DE]
TECHNISCHE UNIV MUENCHEN TUM FORTE FORSCHUNGSFOERDERUNG UND TECHNOLOGIETRANSFER [DE]
Linde GmbH,
Technische Universit\u00E4t M\u00FCnchen TUM ForTe Forschungsf\u00F6rderung und Technologietransfer
EP_4512931_PA

Absstract of: EP4512931A1

Es wird ein Verfahren (100, 200, 300, 400, 500) zur Herstellung von Wasserstoff (H) vorgeschlagen, bei dem ein kohlenwasserstoffhaltiger Einsatz (G) unter Erhalt eines ersten Anteils des Wasserstoffs (H) und Erhalt von Kohlenstoff (C) einer Pyrolyse (10) unterworfen wird. Hierbei ist vorgesehen, dass Dampf (S) unter Erhalt eines zweiten Anteils des Wasserstoffs (H) und unter Erhalt von Sauerstoff (O) einer Hochtemperaturelektrolyse (20, 40) unterworfen wird, wobei zumindest ein Teil des Dampfs (S) durch Abwärme der Pyrolyse (10) erzeugt wird. Eine entsprechende Anlage ist ebenfalls Gegenstand der vorliegenden Erfindung.

分注可能物質の送達のための電気機械的摂取可能装置

Nº publicación: JP2025026993A 26/02/2025

Applicant:

ビオラ・セラピューティクス・インコーポレイテッド

JP_2025026993_PA

Absstract of: EP4467182A2

Ingestible devices capable of delivering a dispensable substance, such as, for example, a therapeutic agent, as well as related components, systems and methods, are disclosed. A removably attachable storage reservoir configured to be used with an ingestible device and capable of storing dispensable substance, such as, for example, a therapeutic agent, as well as related components, systems and methods, are also disclosed.

traducir