Absstract of: MX2025009259A
A hydrogen generation system includes: a direct current (DC) power supply providing a driver signal, a reactive circuit coupled to the power supply and configured to generate a pulse drive signal from the driver signal, at least one reaction chamber coupled to the reactive circuit and receiving the pulse drive signal wherein the chamber is configured to generate hydrogen from feedstock material utilizing the pulse drive signal, a gas analyzer coupled to the at least one reaction chamber and configured to detect the generated hydrogen, and a control unit coupled to the reactive circuit and to the gas analyzer and configured to control the reactive circuit based on the detected hydrogen. The reaction chamber includes a plurality of positively charged elements and a plurality of negatively charged elements. The elements are composed of non-dis similar metallic material.
Absstract of: CN119998970A
According to the present invention there is provided an enhanced ion conducting membrane, the enhanced ion conducting membrane comprising: an ion conducting polymer; and a porous mat of nanofibers. The porous mat of nanofibers is impregnated with an ionically conductive polymer. The nanofibers comprise a cross-linked polymer, wherein the cross-linked polymer is ionically non-conductive. The cross-linked polymer comprises a heterocycle-based polymer backbone comprising a basic functional group, and a linking chain linking at least two heterocycle-based polymer backbones via a linking group. The porous mat of nanofibers has a tear index of at least 15 mN m2/g.
Absstract of: US2020190680A1
A composite metal porous body according to an aspect of the present invention has a framework of a three-dimensional network structure. The framework includes a porous base material and a metal film coated on the surface of the porous base material. The metal film contains titanium metal or titanium alloy as the main component.
Absstract of: US2024154496A1
A system includes a flow-through electric generator and an electrolytic cell. The flow-through electric generator includes a turbine wheel, a rotor, and a stator. The turbine wheel is configured to receive natural gas from a natural gas pipeline and rotate in response to expansion of the natural gas flowing into an inlet of the turbine wheel and out of an outlet of the turbine wheel. The rotor is coupled to the turbine wheel and configured to rotate with the turbine wheel. The flow-through electric generator is configured to generate electrical power upon rotation of the rotor within the stator. The electrolytic cell is configured to receive a water stream and the electrical power from the flow-through electric generator. The electrolytic cell is configured to perform electrolysis on the water stream using the received electrical power to produce a hydrogen stream and an oxygen stream.
Absstract of: TW202507083A
Gas composition reaching a flammability limit can be prevented by a method of stopping a gas production apparatus in a method of electrolyzing an alkaline electrolyte solution under pressurized conditions, the electrolyzing method including: circulating electrolyte solutions having flown out of anode and cathode chambers, respectively, to the anode and cathode chambers back again, the stopping method comprising: stopping operation of the gas production apparatus according to the procedure including predetermined steps.
Absstract of: KR20250174265A
본 발명의 일 측면에 따르면, (a)니켈 폼 기판 준비단계; (b) 상기 니켈 폼 기판 및 Fe, B 및 P의 전구체를 포함하는 수용액을 밀폐된 반응용기 내에 넣어서 수열반응법(hydrothermal approach)에 의해 상기 Ni 폼 기판에 FeBP 구조체를 제조하는 단계; 및 (c) 상기 FeBP 구조체를 바나듐(V) 수용액이 담긴 수용액 용기에 넣어서 침지법(soaking approach)에 의해 바나듐 도핑된 FeBP 마이크로스피어 크루아상 형상 구조체를 제조하는 단계를 포함하여 산소 및 수소 발생반응의 이중 기능이 향상된 바나듐 도핑된 FeBP 마이크로스피어 크루아상 형상 구조의 전기 촉매 구조체를 제조하는 방법이 제공된다.
Absstract of: KR20250174380A
본 발명은 이산화탄소를 활용한 수소 생산 장치에 대한 것으로, 전기를 공급받아 물을 전기분해하는 전극부; 상기 전극부를 수용하는 반응챔버; 및 상기 전극부의 적어도 일부에 접촉되어 상기 전극부로부터 수소이온 및 전자를 전달받아 수소를 생산하는 미생물을 포함하고, 상기 전극부는, 물이 전기분해되어 상기 수소이온 및 상기 전자를 방출하는 애노드부; 및 상기 애노드부로부터 상기 수소이온 및 상기 전자를 전달받아 상기 미생물에 전달하는 캐소드부를 포함하며, 상기 반응챔버는 이산화탄소를 수용하고, 상기 미생물은, 상기 이산화탄소, 상기 수소이온 및 상기 전자로 다당류를 생산하는 제1 생산상태 또는 상기 제1 생산상태에서 생산된 상기 다당류를 에너지원으로 이용하여 수소를 생산하는 제2 생산상태에 놓이는, 이산화탄소를 활용한 수소 생산 장치가 제공될 수 있다.
Absstract of: FR3163080A1
Système d’électrolyse comprenant un dispositif de détection rapide de gaz L’invention concerne un système d'électrolyse de l'eau (2) comprenant un électrolyseur à membranes électrolytiques (21) et un séparateur (22) destiné à réaliser une séparation liquide/gaz d’un fluide fourni par l’électrolyseur (21) , le séparateur (22) comprenant une portion d’entrée (221) raccordée à l'électrolyseur (21) , un volume de séparation liquide/gaz (223) et une portion de sortie (22) par laquelle sort un mélange gazeux, caractérisé en ce que le système d’électrolyse de l’eau (2) comprend un dispositif de détection (25) d’un gaz contenu dans le mélange gazeux, ledit dispositif de détection (25) étant raccordé à la portion d’entrée (221) du séparateur (22). (Figure 2)
Absstract of: WO2025254008A1
The objective of the present invention is to provide: an electrode in which an increase in overvoltage hardly occurs even when repeatedly turning on and off a power source and starting and stopping the generation of hydrogen; a method for producing the electrode; an electrolysis cell including the electrode; an electrolysis tank for alkaline water electrolysis including the electrolysis cell; and a method for producing hydrogen by means of alkaline water electrolysis using the electrolysis tank for alkaline water electrolysis. To achieve the above objective, an electrode according to the present invention has a nickel-containing conductive substrate and a platinum-containing catalyst layer, and is characterized by including a PtNi alloy and having a Ni atom concentration on the electrode surface of 20% or less.
Absstract of: WO2025249562A1
A water electrolysis device (5) is provided with gaskets (10). The gaskets (10) are configured to be used in a state where, with respect to one of the gaskets (10), another one of the gaskets (10) is reversed and overlayed. The gaskets (10) seal, in a cell (100), a space (S1) between a separator (101) and an electrolyte membrane (104) of a membrane assembly (103), and a space (S2) between a separator (102) and the electrolyte membrane (104). The gaskets (10) each have: a seal lateral surface (11) and a contact lateral surface (12) which form a pair; a first seal part (3) for sealing the space (S1) or the space (S2); and a second seal part (4) for sealing, on the outer peripheral side of the electrolyte membrane (104), a plurality of flow paths (2) between the separators (101, 102). The first seal part (3) is formed on the seal lateral surface (11) and the contact lateral surface (12), and the second seal part (4) is formed on the seal lateral surface (11) and the contact lateral surface (12).
Absstract of: WO2025251905A1
The present application relates to an anode electrode for a PEM electrolyzer, and a method for producing hydrogen. An anode electrode for a PEM electrolyzer uses an aqueous solution containing perchlorate, a substrate of the anode electrode comprising, in terms of mass percentage, 22%≤Ni<80%, 95%≤Ni+Fe, and unavoidable impurities, and the aqueous solution containing perchlorate at a concentration of 0.01 mol/L to 1 mol/L; the anode electrode is configured such that, during use of the PEM electrolyzer, at least one surface of the substrate is exposed to the aqueous solution, so that when an anodic polarization potential of 1.4-2.5 VSHE is applied to the anode electrode, a corrosion-resistant passive film can be formed on at least one surface, the passive film comprising nickel oxide and iron oxide, which together account for at least 90% of the passive film in terms of mass percentage. The present application also discloses a PEM electrolyzer, and a steel plate capable of being used to manufacture an anode electrode for a PEM electrolyzer, as well as a use thereof.
Absstract of: WO2025254597A1
The present disclosure relates to a membrane electrode assembly for hydrogen production and a method of producing hydrogen using the membrane electrode assembly
Absstract of: WO2025251148A1
Electrocatalysts for anion exchange membrane water electrolysis include nickel and cobalt. In some examples, electrocatalysts can include manganese, can have partial substitution of oxygen by phosphorus, and/or can include molybdenum, cerium and/or yttrium. In some examples, electrocatalysts can have a composition of Ni0.35Co0.65Ox, Ni0.31Co0.69Ox, Ni0.38Co0.62Ox, Ni0.47Co0.53Ox, Ni0.25Co0.57Mn0.17Ox, Ni0.35Co0.65P1.3Ox, Ni0.25Co0.57Mn0.17P1.1Ox, or Ni0.38Co0.36Mo0.09Ce0.1Y0.07Ox. In some examples, electrocatalysts can take the form of a powder or an ink. In some examples, electrocatalysts can be prepared by an oxalic acid precipitation method, a methyl imidazole precipitation method, or a citric acid sol-gel method.
Absstract of: US2025376399A1
The present invention regards an improved water treatment system and a water treatment process for producing an oxygen depleted, dried process steam suitable for use in high-temperature solid oxide electrolysis. The system and the process has been simplified compared to prior art systems and processes.
Absstract of: US2025376422A1
Sulfur-incorporated bismuth ferrite nanoparticles (SBFNPs) contain Bi2Fe4O9 nanoparticles doped with Fe(0) and Bi(0) and sulfur in an amount of 0.5 to 5 percent by weight. At least a portion of bismuth is bonded to at least a portion of the sulfur and at least a portion of iron is bonded to at least a portion of the sulfur. The bismuth ferrite nanoparticles have a longest dimension of 1 to 50 nm. A method of photocatalytic degradation of dyes and a method of hydrogen generation and storage using the nanoparticles.
Absstract of: US2025376776A1
Embodiments of the present disclosure relate to a core-shell structure, a preparing method of the same, and an electrode including the same, and the core-shell structure may include a core comprising a perovskite nanocrystal; and a shell surrounding the core, thereby exhibiting improved optical, electrical, and catalytic properties and ensuring stable operating stability, thereby exhibiting excellent photoelectrochemical activity, compared to commercial catalysts such as conventional transition metal oxides.
Absstract of: US2025376771A1
Systems and methods for producing hydrogen (H2) from a desalination plant are described. The method can include desalinating saline water using energy produced by a gas turbine. Producing by splitting the desalinated water with an electrolyzer. The electrolyzer uses energy produced from the gas turbine to split the desalinated water. CO2 can be captured from the gas turbine exhaust. Produced H2 and captured CO2 can be supplied to a reactor. In the reactor, a first product stream that includes H2 and optionally methane (CH4) can be obtained.
Absstract of: US2025376627A1
Systems and methods for de-watering of hydrocarbon production wells which uses electrolysis of a water fraction in downhole fluids and a reaction chamber at a distal end of a hydrocarbon production well to generate hydrogen and oxygen gases, to improve hydrocarbon inflow into the production well. The produced hydrogen and/or oxygen gases may be used in combination with hydrocarbons produced by the production well to fuel a gas turbine at surface to generate electrical power for the electrolysis, or such gases may be recombined at surface to provide purified water. A first gas collection means surrounds a region above or proximate an anode for collecting the oxygen gas, and a first production tubing extends therefrom to surface. Means are further provided for collecting and producing hydrogen gas at a cathode, either in combination with produced hydrocarbons from the production well, or separately therefrom.
Absstract of: US2025376772A1
A proton-conducting solid oxide electrolyzer includes a first electrode configured to produce oxygen gas from steam, a second electrode configured to produce hydrogen gas from the steam, and a proton-conducting solid oxide electrolyte between the first electrode and the second electrode. The first electrode includes barium zirconate of formula BaZrO3−δ doped with at least one transition metal and substantially free of a rare earth element, wherein δ is an oxygen deficit, and wherein the at least one transition metal comprises cobalt. Also disclosed are an electrode for the proton-conducting solid oxide electrolyzer, and a method of producing hydrogen gas.
Absstract of: US2025376778A1
A control system for a hydrogen production facility is a control system for controlling operation of a hydrogen production facility including at least one water electrolyzer. The control system includes: a required hydrogen flow rate acquisition part configured to acquire a required hydrogen flow rate that is a hydrogen generation amount required for the water electrolyzer; a conversion part configured to convert the required hydrogen flow rate into a current required to generate hydrogen at the required hydrogen flow rate at the water electrolyzer and acquire a provisional required current; and a first correction part configured to acquire a current set value to be provided to the water electrolyzer by correcting the provisional required current using a first correction factor based on a difference between the required hydrogen flow rate and an actual hydrogen flow rate that is a hydrogen generation amount generated actually at the water electrolyzer.
Absstract of: DE102024205219A1
Die Erfindung betrifft einen Elektrolyseur für die Erzeugung von Wasserstoff mittels Elektrolyse, umfassend eine Vielzahl von Elektrolysezellen (1), die in Elektrolysestapel aufgeteilt sind, wobei jede Elektrolysezelle (1) eine ionenselektive Membran mit einem Rekombinationskatalysator (3) aufweist, auf der beidseitig Elektroden (4, 5) angeordnet sind, an welche im Betrieb eine äußere Spannung angelegt wird, wobei anodenseitig eine erste Wasser-Zuleitung (6) zum Zuführen von Wasser zu einem Anodenraum (8) vorgesehen ist und eine Sauerstoff-Produktleitung (10) zum Abführen des erzeugten Sauerstoffs (O2) aus dem Anodenraum (8) angeschlossen ist und kathodenseitig eine Wasserstoff-Produktleitung (11) zum Abführen des erzeugten Wasserstoffs (H2) aus einem Kathodenraum (9) vorgesehen ist, umfassend weiterhin ein Kontrollsystem (12) zum Steuern des Betriebs der Elektrolysestapel, wobei das Kontrollsystem (12) dafür eingerichtet ist, einen im Wesentlichen gleichbleibenden Druck (pK) im Kathodenraum (9) einzustellen und einen Druck (pA) im Anodenraum (8) als Funktion einer Wasserstoffkonzentration (CH2) im Sauerstoff zu regeln. Die Erfindung betrifft ferner ein Verfahren zum Betrieb eines Elektrolyseurs.
Absstract of: WO2025253109A1
A method of warm up of an electrolyser system comprising one or more stacks of electrolyser cells, each of the one or more stacks with fuel and oxygen volumes. The method comprising heating the one or more stacks to raise the one or more stacks to a first threshold temperature T1. A heat transfer fluid is provided to the fuel volume of each of the one or more stacks when the temperature is above first threshold temperature T1. The temperature of the heat transfer fluid is incrementally increased to further heat the one or more stacks above the first threshold temperature T1. When a second threshold temperature, T2, is reached, fuel is provided to the fuel volume of each of the one or more stacks and electrical current to each of the one or more stacks to generate product via electrolysis.
Absstract of: WO2025253062A1
The invention relates to a water electrolysis system (2) comprising an electrolyser with electrolytic membranes (21) and a separator (22) intended to carry out a liquid/gas separation of a fluid supplied by the electrolyser (21), the separator (22) comprising an inlet portion (221) connected to the electrolyser (21), a liquid/gas separation space (223) and an outlet portion (22) through which a gas mixture exits, characterised in that the water electrolysis system (2) comprises a device (25) for detecting a gas contained in the gas mixture, said detection device (25) being connected to the inlet portion (221) of the separator (22).
Absstract of: WO2025254547A1
The subject of the invention is a hydrogen burner using water thermolysis, incorporating a hydrogen combustion chamber (1) containing heating nozzles (3) connected to a fuel transport duct (4), with at least one magneto (6) installed in its vicinity. This burner is characterised in that the chamber (1) contains water (2) in which a duct (6) with heat exchange medium is immersed, and the heating nozzles (3) are dir3ected towards the table of that water (2). The chamber (1) is made of heat-resistant steel and coated with a thermal insulation layer (5) on the outside. Water (2) in the chamber (1) contains transition metals acting as catalysts for water thermolysis, particularly such as cerium, nickel, molybdenum, or chromium.
Nº publicación: WO2025252730A1 11/12/2025
Applicant:
TOPSOE AS [DK]
TOPSOE A/S
Absstract of: WO2025252730A1
The present invention relates to a method for supplying a compressed combined gas stream comprising hydrogen and carbon dioxide for at least one downstream process, preferably for production of alcohols (e.g. methanol) or carbon fuels. More specifically, disclosed is a method wherein the hydrogen gas stream is dosed with a carbon dioxide gas stream and the combined gas stream is compressed in a multistage compression system.