Absstract of: US2025181587A1
A user preference hierarchy is determined from user response to images. Images may be tagged using machine learning models trained to determine values for images. Products are clustered according to product vectors. Images of products within a cluster are clustered according to composition and groups of images are selected from image clusters for soliciting feedback regarding user preference for products of a cluster. Feedback is used to train a user preference model to estimate affinity for a product vector. A user may provide feedback regarding a price point and products are weighted according to a distribution about the price point. The distribution may be asymmetrical according to direction of movement of the price point. Filters may be dynamically defined and presented to a user based on popularity and frequency of occurrence of attribute-value pairs of search results and based on feedback regarding the search results.
Absstract of: US2025183392A1
A method of managing battery performance may include obtaining, via a measurement device, measurements of one or more parameters relating to one or more cells; generating or updating, based on the measurements, a machine learning model; and generating, using the machine learning model, cell performance prediction data for use in managing at least one cell. Each cell includes a cathode, a separator, and a silicon-dominant anode. The measurements of the one or more parameters correspond to a plurality of different types of data. The measurements include one or more of: measurements of cells or cell components before formation or cycling, measurements from formation cycles for one or more cells, measurements from a number of cycles after formation for one or more cells, and measurements of characteristics of cell components prior to cell assembly.
Absstract of: US2025181676A1
A computer system is provided that is designed to handle multi-label classification. The computer system includes multiple processing instances that are arranged in a hierarchal manner and execute differently trained classification models. The classification task of one processing instance and the executed model therein may rely on the results of classification performed by another processing instance. Each of the models may be associated with a different threshold value that is used to binarize the probability output from the classification model.
Absstract of: US2025182156A1
A device may receive, from a client device of a customer, item data identifying a price of an item and customer data identifying the customer, where the item data may be received by a transaction card from a price tag of the item. The device may receive price data identifying prices associated with multiple items and other data identifying locations, availabilities, and terms of the multiple items, and may process the item data, the price data, and the other data, with a machine learning model, to identify an optimal price for the item. The device may provide, to the client device, data identifying the optimal price and data identifying a merchant associated with the optimal price, and may receive transaction data identifying the item, the optimal price, and the merchant when the customer purchases the item. The device may perform actions based on the transaction data.
Absstract of: US2025184345A1
Aspects of the subject disclosure may include, for example, obtaining a first group of Internet Protocol (IP) addresses from a group of network devices, and determining a second group of IP addresses from the first group of IP addresses includes possible malicious IP addresses utilizing a machine learning application. Further embodiments can include obtaining a first group of attributes of malicious IP addresses from a first repository, and determining a third group of IP addresses from the second group of IP addresses includes possible malicious IP addresses based on the first group of attributes. Additional embodiments can include receiving user-generated input indicating a fourth group of IP addresses from the third group of IP addresses includes possible malicious IP addresses, and transmitting a notification to a group of communication devices indicating that the fourth group of IP address includes possible malicious IP addresses. Other embodiments are disclosed.
Absstract of: WO2024025710A1
A system is configured to retrieve a set of customer raw transaction data, wherein the transactions are devoid of any target transactions of interest. An impact neural network model is applied to the transaction data using a "notTargef ' variable. The "notTargef ' variable indicates that the target transaction of interest is not included in the transaction data. The model predicts a first result based on the "notTargef' variable. The model is applied to the transaction data using an "isTargef ' variable. The "isTargef ' variable indicates that the target transaction of interest is included in the set of customer raw transaction data. The model predicts a second result based on the "isTargef ' variable. The system determines a difference between the second and first results. The difference is a predicted incremental impact on cardholder behavior. The system presents the predicted incremental impact on cardholder behavior to an issuer associated with the transaction data.
Absstract of: WO2025108940A1
Conventional forecast models assume that the underlying data are stationary. In the case of non-stationary data, the conventional forecast model must be increased in complexity, or otherwise, must be frequently retrained. Embodiments are disclosed of a forecast model that accounts for non-stationary data, without increased complexity and without an increase in the frequency of retraining, by recasting the forecasting problem as a matter of tracking differentials in the data. In particular, variables (e.g., covariates) are input into differential determinations and/or intermediate machine-learning models to determine differences in past and forecasted values of a plurality of features. These differences are then input into a machine- learning model to predict a change in the value of the target, which is aggregated with a past value of the target to produce a forecasted value of the target.
Absstract of: US2025173607A1
A plurality of resolved incident tickets of a technology landscape may be received from an incident handling system. A plurality of events may be received from a metric monitoring system monitoring the technology landscape. An incident cluster having related incidents may be generated from the plurality of resolved incident tickets, and a correlated event of the plurality of events may be identified for the incident cluster. The correlated event may be stored with an incident resolution obtained from the incident cluster, to obtain labeled training data. A machine learning (ML) model may be trained with the labeled training data to obtain an incident prediction model. A new event may be processed with the incident prediction model to provide a predicted incident and a predicted resolution.
Absstract of: US2025173563A1
A deep learning model implements continuous, lifelong machine learning (LML) based on a Bayesian neural network using a framework including wide, deep, and prior components that use available real-world healthcare data differently to improve prediction performance. The outputs from each component of the framework are combined to produce a final output that may be utilized as a prior structure when the deep learning model is refreshed with new data in a deep learning process. Lifelong learning is implemented by dynamically integrating present learning from the wide and deep learning components with past learning from models in the prior component into future predictions. The Bayesian deep neural network-based LML model increases accuracy in identifying patient profiles by continuously learning, as new data becomes available, without forgetting prior knowledge.
Absstract of: US2025173592A1
The present invention relates to an integrated platform to drive climate change mitigation through advanced data analytics and prediction-based policy activation. The system consolidates siloed emissions data from diverse sources into a unified structure for in-depth analysis using artificial intelligence and machine learning techniques. Sophisticated modeling predicts expected temperature changes, extreme weather events, and evolving emissions patterns. Interactive dashboards clearly visualize these predictions to activate targeted sustainability policies and outcomes. Built-in workflow tools enable administrators to instantly translate predictive insights into optimized climate response plans. Designed for flexibility, the cloud-agnostic architecture readily integrates with existing technology stacks for easy adoption. By breaking down data silos to generate actionable intelligence, this invention provides a comprehensive solution to understand complex climate threats and respond with evidence-based actions to create a sustainable future. The platform ultimately enables data-driven climate governance through unprecedented integration of real-time emissions data sources, predictive analytics, and policy activation.
Absstract of: US2025173617A1
A computer-implemented method for compensating for an uneven distribution in training data during the training of a machine learning algorithm. The training data include a plurality of data sets. The machine learning algorithm solves a regression task. The training data have an uneven distribution with regard to their labels. The method includes: defining auxiliary classes for the training data; creating a classification task; ascertaining a classification probability for each auxiliary class; ascertaining a classification loss function for the classification task; weighting the classification loss function; ascertaining an overall loss function; training the machine learning algorithm’ and providing the trained machine learning algorithm.
Absstract of: US2025174362A1
A system receives feature parameters, each identifying possible values for one of a set of features. The system receives outcomes corresponding to the feature parameters. The system generates a simulated patient population dataset with multiple simulated patient datasets, each simulated patient dataset associated with the outcomes and including feature values falling within the possible values identified by the feature parameters. The system may train a machine learning engine based on the simulated patient population dataset and optionally additional simulated patient population datasets. The machine learning engine generates predicted outcomes based on the training in response to queries identifying feature values.
Absstract of: US2025174314A1
There is provided a method for a machine learning based method of analysing drug-like molecules by representing the molecular quantum states of each drug-like molecule as a quantum graph, and then feeding that quantum graph as an input to a machine learning system.
Absstract of: US2025174364A1
A machine learning prediction system can analyze a dataset of users with self-reported symptoms and associated data from a wearable device to impact measure the impact of an acute health condition (such as the flu) at the population level. The machine learning prediction system can train a machine learning model to recognize individual acute health condition patterns based on differences in user activity with respect to the characteristics of determined baseline periods. For example, per-individual normalized change with respect to baseline aggregated at the population level can be used to determine individual acute health condition patterns and predict the onset of certain acute health conditions using a trained machine learning model. In response to predictions, the machine learning prediction system can take interventions to manage the impact of a predicted acute health condition on an individual.
Absstract of: US2025173627A1
Multiple distinct control descriptors, each specifying an algorithm and values of one or more parameters of the algorithm, are created. A plurality of tuples, each indicating a respective record of a data set and a respective descriptor, are generated. The tuples are distributed among a plurality of compute resources such that the number of distinct descriptors indicated in the tuples received at a given resource is below a threshold. The algorithm is executed in accordance with the descriptors' parameters at individual compute resources.
Absstract of: US2025173585A1
A computer-implemented method for monitoring machine learning models in a distributed setup includes obtaining model activity data relating to activity of the machine learning models in the distributed setup; analyzing the obtained model activity data; and, based on the analysis of the model activity data, outputting model management data for managing the activity of the machine learning models in the distributed setup.
Absstract of: US2025173660A1
Embodiments determine a final occupancy prediction for a check-in date for a plurality of hotel rooms. Embodiments receive historical reservation data including a plurality of booking curves for the hotel rooms corresponding to a plurality of reservation windows, the historical reservation data including a plurality of features. Based on the historical reservation data, embodiments generate a first occupancy prediction for the check-in date using a first model and generate a second occupancy prediction for the check-in date using a second model. Embodiments determine a best performing model from at least the first model and the second model uses a corresponding occupancy prediction corresponding to the best performing model as the final occupancy prediction for the check-in date.
Absstract of: US2025173661A1
A method of modifying a food item to contain plant-based ingredients includes identifying plant-based substances to replace an ingredient of the food item. The plant-based substances are clustered, via a machine learning model, into a plurality of clusters according to an objective based on properties of the plant-based substances. The plant-based substances of a selected cluster are classified into a plurality of classes, via a machine learning classifier, based on the objective and the properties of the plant-based substances of the selected cluster. A score is determined for each plant-based substance of a selected class based on metrics. A plant-based substance is determined based on the score to produce a modified food item with the determined plant-based substance replacing the ingredient.
Absstract of: US2025173380A1
A document management system can include an artificial intelligence-based document manager that can perform one or more predictive operations based on characteristics of a user, a document, a user account, or historical document activity. For instance, the document management system can apply a machine-learning model to determine how long an expiring agreement document is likely to take to renegotiate and can prompt a user to begin the renegotiation process in advance. The document management system can detect a change to language in a particular clause type and can prompt a user to update other documents that include the clause type to include the change. The document management system can determine a type of a document being worked on and can identify one or more actions that a corresponding user may want to take using a machine-learning model trained on similar documents and similar users.
Absstract of: US2025175456A1
A system and method for an AI-controlled sensor network for threat mapping and characterization. The system deploys a network of honeypots and sensors across various geographic locations and network segments, collecting and aggregating data on network traffic and potential threats. An AI orchestrator analyzes this data using advanced machine learning models, generating dynamic honeypot profiles and a comprehensive threat landscape. The system can adapt in real-time to emerging threats, optimize resource allocation, and provide actionable intelligence. By correlating data across multiple points, the system offers enhanced threat detection capabilities and proactive cybersecurity measures, surpassing traditional security information and event management (SIEM) tools.
Absstract of: US2025172540A1
Small molecule therapeutics can concentrate in distinct intracellular environments, some bounded by membranes, and others that may be formed by membrane-less biomolecular condensates. The chemical environments within biomolecular condensates have been proposed to differ from those outside these bodies, but the internal chemical environments of diverse condensates have yet to be explored. Here we use small molecule probes to demonstrate that condensates formed in vitro with the scaffold proteins of different biomolecular condensates harbor distinct chemical solvating properties. The chemical rules that govern selective partitioning in condensates, which we term condensate chemical grammar, can be ascertained by deep learning, allowing efficient prediction of the partitioning behavior of small molecules. The rules learned from in vitro condensates were adequate to predict the partitioning of small molecules into nucleolar condensates in living cells. Different biomolecular condensates harbor distinct chemical environments, that the chemical grammar of condensates can be ascertained by machine learning.
Absstract of: EP4560561A1
Conventional forecast models assume that the underlying data are stationary. In the case of non-stationary data, the conventional forecast model must be increased in complexity, or otherwise, must be frequently retrained. Embodiments are disclosed of a forecast model that accounts for non-stationary data, without increased complexity and without an increase in the frequency of retraining, by recasting the forecasting problem as a matter of tracking differentials in the data. In particular, variables (e.g., covariates) are input into differential determinations and/or intermediate machine-learning models to determine differences in past and forecasted values of a plurality of features. These differences are then input into a machine-learning model to predict a change in the value of the target, which is aggregated with a past value of the target to produce a forecasted value of the target.
Absstract of: US2025168179A1
The technology relates to machine responses to anomalies detected using machine learning based anomaly detection. In particular, to receiving evaluations of production events, prepared using activity models constructed on per-tenant and per-user basis using an online streaming machine learner that transforms an unsupervised learning problem into a supervised learning problem by fixing a target label and learning a regressor without a constant or intercept. Further, to responding to detected anomalies in near real-time streams of security-related events of tenants, the anomalies detected by transforming the events in categorized features and requiring a loss function analyzer to correlate, essentially through an origin, the categorized features with a target feature artificially labeled as a constant. An anomaly score received for a production event is determined based on calculated likelihood coefficients of categorized feature-value pairs and a prevalencist probability value of the production event comprising the coded features-value pairs.
Absstract of: US2025165439A1
Methods, computer systems, and computer-storage medium are provided for providing closed-loop intelligence. A selection of data is received, at a cloud service, from a database comprising data from a plurality of sources in a Fast Healthcare Interoperability Resources (FHIR) format to build a data model. After a feature vector corresponding to the data model is extracted, a selection of an algorithm for a machine learning model to apply to the data model is received. A portion of the selection of data is utilized for training data and test data and the machine learning model is applied to the training data. Once the model is trained, the trained machine learning model can be saved at the cloud service, where it may be accessed by others.
Nº publicación: US2025165438A1 22/05/2025
Applicant:
CERNER INNOVATION INC [US]
Cerner Innovation, Inc
Absstract of: US2025165438A1
Methods, computer systems, and computer-storage medium are provided for providing closed-loop intelligence. A selection of data is received, at a cloud service, from a database comprising data from a plurality of sources in a Fast Healthcare Interoperability Resources (FHIR) format to build a data model. After a feature vector corresponding to the data model is extracted, a selection of an algorithm for a machine learning model to apply to the data model is received. A portion of the selection of data is utilized for training data and test data and the machine learning model is applied to the training data. Once the model is trained, the trained machine learning model can be saved at the cloud service, where it may be accessed by others.