Absstract of: CN120403311A
本发明提供一种基于双相变材料协同的矿井跨季储能系统和控制方法,该储能系统包括:换热器群组,集液器,分液器,表冷器群组,具备相变填充体的相变材料填充体组,相变填充体内可以分层填充低温相变的第一相变材料、高温相变的第二相变材料,可以根据需要控制由第一相变材料和/或第二相变材料参与热量交换,通过高/低温相变材料的协同搭配,从而实现开采工作面差异化温控优化及井口防冻功能的高效集成,通过梯度温度控制逻辑,有效确保了系统在冷/热量收集、储存及利用的智能控制和有效调节,最终实现采空区治理与清洁供能的深度耦合。
Absstract of: FR3158781A1
Le présent exposé concerne un procédé de gestion d’une installation géothermique, l’installation géothermique étant configurée pour répondre aux demandes de calories ou frigories d’au moins un bâtiment ou procédé industriel ou agricole, le procédé comprenant : une mesure, à une certaine fréquence d’échantillonnage, de paramètres de fonctionnement hydrauliques, thermiques et/ou chimiques de l’installation, par des dispositif de mesure ;une estimation datée d’un indicateur fonction d’au moins un paramètre de fonctionnement mesuré ; etune mise en évidence d’une éventuelle anomalie de fonctionnement de l’installation par une comparaison de l’estimation de l’indicateur à une pluralité de conditions limites, lesdites conditions limites étant fonction de différentes hypothèses se rapportant à des paramètres extrinsèques à l’installation géothermique, et une sélection, en fonction du résultat de cette comparaison, d’au moins l’une de ces hypothèses, afin de caractériser la cause externe à l’origine de l’anomalie. Figure pour l’abrégé : Fig. 1
Absstract of: CN120402963A
本发明公开了一种废弃矿井风‑光‑热‑储综合利用系统,包括发电模块、调度模块、蓄电模块、加热模块、供水模块、储热模块和热网模块;发电模块通过输电线连接调度模块,调度模块通过第一输电线连接电网,调度模块通过第二输电线连接蓄电模块,蓄电模块通过第一供电线为加热模块供电,蓄电模块通过第二供电线为生活区等用电负荷供电,加热模块通过回灌管道连接储热模块,储热模块通过热水管道连接热网模块,热网模块通过供暖管道形成供暖循环为矿区及周边供暖,供水模块通过供水管道连接加热模块。本发明实现了废弃矿井风能、光能、地热能、矿井水、废弃空间的综合利用,既解决了废弃矿井伴生资源浪费的问题,又合理利用资源为矿井带来更多收益。
Absstract of: CN120403100A
本发明公开了一种热电联产耦合地热能跨季节能源利用系统及方法,属于能源综合利用技术领域,包括用于在非采暖季发电并产生余热的热电联产发电厂,热电联产发电厂通过地热换热站与第一地热井和第二地热井相连接,同时第一地热井和第二地热井通过地热换热站与城镇换热站相连接,城镇换热站为城镇用户供热。本发明中,发电机组在非供暖季发电上网,获取发电收益,背压机组全年运行时间从≤6个月提升至10‑12个月,年发电量增加40%;同时,可以耦合热电联产机组实现热能梯级利用或者参与调峰,有效利用闲置背压机资源,降低煤耗,实现清洁供热,促进节能减排和区域清洁低碳发展。
Absstract of: CN120401292A
本发明公开了一种适应严寒气候的铁路路基冻胀病害防控系统及方法,属于季节冻土工程技术领域,防控系统包括若干组由制热机组、供热管、集热管和检测组件组成的地源热泵装置,若干个制热机组沿铁路长度方向布置在路基坡脚位置,供热管铺在路基的冻胀发育层,集热管设在路基两侧地基的稳定层,载热剂在供热管、制热机组与集热管组成的管路中循环流动;利用温度传感器、压力传感器和位移传感器分别监测路基冻结温度及载热剂温度、压缩机的吸排气压力、轨道的变形量;通过控制组件接收检测组件的信号并控制制热机组的运行模式。本发明能够保证严寒环境中启动阶段压缩机过热度的快速建立,正常运行阶段压缩机排气温度范围与运行模式的合理控制。
Absstract of: CN120403106A
本申请涉及新能源与热泵技术领域,尤其是涉及分体框架式太阳能吸收式热泵耦合系统及多模式协同控制方法,其包括分体式热源模块、热泵主机单元和智能控制箱。分体式热源模块由太阳能集热阵列、地埋管换热器和相变储热罐组成,支持快速组装与拆卸;热泵主机单元包括吸收式制冷循环和压缩式热泵辅助单元;智能控制箱集成嵌入式控制器和物联网通信模块,实现多传感器联动和AI能效优化。本系统通过多能源互补耦合机制和智能模式切换,显著提高了能源利用效率和系统稳定性,适用于建筑供暖、制冷及工业余热回收利用等多种场景。
Absstract of: CN120403101A
本申请公开一种分支水平井的循环采热方法及循环采热系统,分支水平井的循环采热方法包括:钻取分支水平井;在垂直井段内下入注入管,以使得注入管与垂直井段的壁面之间形成采出通道;在注入管的下端安装封隔器,以将采出通道与水平井段封隔;对封隔器以上的垂直井段的壁面进行水力裂缝造缝,以及对水平井段上侧的壁面进行体积缝网造缝,以使得体积缝网与水力裂缝相连通;在向注入管内注入采热流体之后,将换热驱动装置的第一换热通道的两端分别与采出通道的上端和注入管连通;以使得可将干热岩储层的热量交换给流经换热驱动装置的第二换热通道的储热介质,以增大采热面积,并提高采热效率。
Absstract of: CN120403099A
本申请涉及地热尾水处理与资源化利用技术领域,尤其是涉及一种防堵塞的地热尾水回灌装置其包括地热生产井、回灌井口及回灌主管道,并集成了热能回收机构、压裂射孔机构和暴雨应急机构。其中,热能回收机构通过热交换器与相变材料储热罐协同作用实现余热高效回收并转化为可用能源;压裂射孔机构可在岩土面开设小孔以增强渗透性;暴雨应急机构可有效应对突发降雨情况,避免水资源浪费。本申请达到了提高地热尾水热量利用率、优化储层特性以及提升整体系统稳定性的效果,同时实现了环境友好型的水资源管理目标。
Absstract of: WO2025158042A1
The present disclosure relates to a method for managing a geothermal installation, the geothermal installation being configured to respond to the heat or cold demands of at least one industrial or agricultural process or building, the method comprising: - measurement, at a certain sampling frequency, of hydraulic, thermal and/or chemical operating parameters of the installation, by at least one measuring device; - date-stamped estimation of an indicator as a function of at least one measured operating parameter; and - comparison between the indicator and at least one threshold relating to an extrinsic parameter to the geothermal installation, each threshold making it possible to differentiate between several hypotheses, of which at least one is a function of at least one cause external to the geothermal installation; and - selection, as a function of the result of the comparison, of at least one of these hypotheses, in order to characterize the origin of the anomaly.
Absstract of: WO2024062451A1
The invention concerns a hybrid solar power generation system (100) comprising: - a set of photovoltaic panels (12), - a first loop circuit (20) containing a heat-carrying fluid (20a) able to circulate along the first loop circuit (20), said first loop circuit (20) defining a first portion (201) for circulation of the fluid in a first temperature range, a second portion (202) adjacent to said photovoltaic panels (12) for thermal exchange between the fluid (20a) and said photovoltaic panels (12) and a third portion (203) for circulation of the fluid in a second temperature range, wherein the temperatures of the second temperature range are greater than the temperatures of the first temperature range, - a heat pump (13) with a second loop circuit (30) containing a heat¬ carrying fluid (30a), said second loop circuit (30) passing successively through an evaporator (13a), a compressor (13b), a condenser (13c) and a metering device (13d), where the heat source of said evaporator (13a) is the heat-carrying fluid (20a) present in said third portion (203) of the first loop circuit (20), and - a Stirling engine (15), where the Stirling engine's heat source derives from heated fluid refrigerant (30a) present in a portion of the second loop circuit (30) placed between the compressor (13b), and the metering device (13d).
Absstract of: WO2024062158A1
A solar panel system (1) comprising solar panels (2a, 2b, 2c) arranged in the ground (5) on the ground surface, and thermal insulation materials (4a, 4b, 4c) arranged to at least some of the interspaces between the solar panels (2a, 2b, 2c) in the ground (5) on the ground surface, so that solar panels and thermal insulation materials alternate in the solar panels system. Furthermore, the solar panel system comprises a cooling pipework arranged so that the cooling pipework comprises pipes (3a) arranged close to the ground surface at the point of location of the solar panels or mounted to the surface of the solar panel facing the ground surface, and at the point of location of the thermal insulation material the pipes (3a) are arranged substantially deeper in the ground.
Absstract of: CN120384220A
一种适用于地热资源开采的钛合金管及制造方法,其成分重量百分比为:Al:3.0~5.0%,V:1.5~3.5%,Mo:0.5~2.0%,Fe:1.0~2.0%,Nb:0.1~0.3%,Ru:0.05~0.15%,O:0.08~0.15%,C≤0.015%,H≤0.015%,N≤0.02%,其余包括Ti和其它不可避免的夹杂;且上述元素含量必须同时满足如下关系:2≤Nb/Ru≤5。获得钛合金管的室温屈服强度≥760MPa,450℃屈服强度较室温屈服强度降低幅度<25%,‑10℃横向夏比冲击功≥40J,且具有良好的耐氧气腐蚀和硫化氢及二氧化碳腐蚀特征,450℃高温且富含O2、H2S、CO2和水蒸气(所谓富含,指以上气体体积分数均不低于1%)的环境腐蚀试验条件下腐蚀速率<0.25mm/a。
Absstract of: CN120367198A
本发明涉及土木建筑工程技术领域,尤其是涉及地热资源的有效利用和能源交换系统的改进;该能源桩通过主动热管理技术实现地层热平衡的动态调控,有效防止热量堆积对地热资源可持续利用的影响;采用复合热提取结构,显著提升地热资源的吸热效率;一种高导热能源桩,包括固定基体,其内部埋设有水循环组件;所述水循环组件包括相连通的抽水组件、循环管路和输水组件;所述固定基体外侧设有热吸装置,所述热吸装置包括垂直分布的多个吸热柱;所述吸热柱上设有嵌入固定基体内的导热头。
Absstract of: CN120367736A
本发明提供了集成地热能和抽水蓄能电站的综合能源系统,包括抽水蓄能电站系统、中深层地热能系统,抽水蓄能电站系统包括输水系统阀门、上水库、下水库,上水库和下水库之间设有地下厂房,上水库与地下厂房之间连接有第一输水系统,下水库和地下厂房之间连接有第二输水系统,中深层地热能系统和地下厂房之间连接有集成连接开关系统,集成连接开关系统包括水连接阀门,中深层地热能系统包括若干同轴换热器,抽水蓄能电站系统中的上水库和下水库具有一定水头高差,用于电能和势能的转换,可结合中深层地热能系统,借助水头高差驱动同轴换热器中的水循环,利用势能转化热能,节省水循环所需电力,实现有效的能源互补与协同利用。
Absstract of: CN120368770A
本发明提供一种地热储热压力平衡换热装置,主要涉及地热换储热设备领域。一种地热储热压力平衡换热装置,包括装置外壳、转动环机构、换热储热机构、动力装置、定位装置。本发明的有益效果在于:通过换热储热板结构与供热结构以及地热换热结构进行连接形成液体循环与地热进行换热,进一步通过于装置外壳内部设置相变换热材料,使换热储热板结构可与相变换热材料进行接触配合进行相变材料储热,换热储热板结构可改变转动位置对装置外壳内部周围各部分相变储热材料进行均匀换热储热操作以及暂停储热,进一步使进液换热板与储热换热板可进行靠近插接配合,使二者进行相互热交换操作进而平衡当地热热量过高时导致的温度压力过高造成的设备运行不稳定。
Absstract of: CN120367239A
本发明提供一种地下冻结止水与浅部地热收集系统施工方法,包括以下步骤:步骤S1,在基坑周围均匀设置多个支护桩形成排桩;步骤S2,设置冻结孔;步骤S3,设置冻结管;步骤S4,冻结管道,形成冻土帷幕;步骤S5,验证止水效果;步骤S6,基坑开挖;步骤S7,割断冻结管;步骤S8,冻结管改造;步骤S9,地热能源采集。解决了目前冻结能源桩冻结温度偏低后期无法重复使用、成本较高、不够绿色经济以及浅部地层热资源浪费等问题。
Absstract of: CN120368569A
本发明涉及能源利用技术领域,本发明提供了一种双循环式地热能采集装置,其包括集热管路和换热管路,集热管路为封闭管路,内部流通有换热介质,集热管路铺设于地下岩层或土壤中,用于采集地底热能;换热管路与集热管路并行设置并形成热传导接触,换热管路具有通过输水管路与地表水源连通的进水口和通过输水管路与地表储水罐连通的出水口。上述技术方案通过集热管路与换热管路并行设置并形成热传导接触,使二者的接触面积最大化,为热量传递提供了充足的作用空间。二者内流体循环方向相反的设计,形成了逆流换热模式,相较于顺流换热,逆流换热能够在整个接触长度上保持较大的温差梯度,从而显著提高热量传递效率。
Absstract of: CN120367643A
本发明公开了一种基于抛矸与灌浆联合充填的煤、热、瓦斯共采方法,首先在下组煤进行逐巷充填开采,充填前在巷道顶板铺设玻璃纤维毡布并安装灌浆管路,通过分段抛矸、安装连接采热管路、抛矸接顶以及灌浆的方式实现煤层开采与采热系统安装。采热系统以矿井水为储热介质,当矿井水被加热后,通过送流管路输送至上组煤瓦斯抽采钻场并进入钻机,钻机通过热水打钻以提高瓦斯预抽效率,打钻产生的煤渣和污水通过渣水分离及净化处理后回流至下组煤采热系统进行加热以循环利用。当钻场内各钻孔形成后选择若干孔作为注热孔,通过蒸汽发生器将加热后的矿井水变为热蒸汽输送至注热孔以加热煤体,煤体加热后通过瓦斯抽采孔进行瓦斯抽放。
Absstract of: US2025237412A1
A system and method of using a subterranean energy storage system includes a geothermal reservoir with at least one fracture configured to hold a working fluid for a period of time. At least one wellbore is positioned within the geothermal reservoir fluidly coupled to the at least one fracture. At least one pump is configured to at least one of a) inject the working fluid into the at least one fracture and b) withdraw the working fluid from the at least one fracture. A power system is fluidly coupled to the wellbore, the power system configured to convert at least one of a) a thermal energy of the working fluid and b) a fluid dynamic energy of the working fluid into an electrical current. A downhole pressure of the working fluid held in the at least fracture for the period of time increases during the period time.
Absstract of: WO2025152714A1
The present application discloses an oil-geothermal energy co-production system, comprising an oil-geothermal energy production and transportation mechanism and an injection and transportation mechanism. The oil-geothermal energy production and transportation mechanism comprises a negative pressure pipeline, an oil extraction portion is formed on the negative pressure pipeline, and the negative pressure pipeline is used to form negative pressure internally so as to extract oil from the oil extraction portion; and the injection and transportation mechanism comprises a plurality of flow-delivering pipelines, and the plurality of flow-delivering pipelines are evenly arranged around the peripheral side of the negative pressure pipeline and are spaced apart from the negative pressure pipeline, wherein each of the flow-delivering pipelines is provided with jetting portions, which are used for injecting supercritical carbon dioxide into petroleum. In the technical solution of the present application, by providing the jetting portions on each of the flow-delivering pipelines and evenly arranging the plurality of flow-delivering pipelines around the peripheral side of the negative pressure pipeline, supercritical carbon dioxide around the negative pressure pipeline can be distributed in a concentrated mode, thereby enhancing the fluidity of petroleum around the negative pressure pipeline, and thus accelerating the efficiency of petroleum extraction by the negative pressure pipeline.
Absstract of: WO2025153495A1
Disclosed herein is an in-situ leaching system comprising: a lixiviant source; and an injection well arranged to receive a leaching solution at ground level and to inject the received leaching solution into underground glassy volcanic rock; wherein: the leaching solution comprises lixiviant from the lixiviant source; and the leaching solution is for leaching the underground glassy volcanic rock.
Absstract of: US2025237198A1
The present disclosure describes a system and a method for generating energy from geothermal sources. The system includes an insulated injection pipe and a common well segment, an injection well and a production well, a first lateral section connected to the injection well and a second lateral section connected to the production well, a multilateral connector joining the first and second lateral sections, the insulated injection pipe coinciding with the common well segment, defining a pressure-tested loop within the rock formation and in a heat transfer arrangement therewith. The loop cased in steel and cemented in place. The loop to receive working fluid capable of undergoing phase change within the downhole well loop as a result of heat transferred from the rock formation. The system also includes a pump to circulate working fluid, a turbine system to convert the flow of working fluid into electricity, and a cooler.
Absstract of: GB2637310A
An in-situ metal-leaching system comprising an injection well 109 arranged to receive at ground level a leaching solution comprising a lixivant and inject it into underground glassy volcanic rock 102, and a production well 108 and metal extraction plant 105 arranged to receive and process metal leached from the rock 102. Heat can be extracted by means of a heat exchanger 106 from the leaching solution or output fluid from the metal extraction plant 105 and output fluid from the metal extraction plant 105 can be returned to the injection well 109. The metal can be a rare earth, zirconium, niobium, tantalum, hafnium or zinc and the rock 102 can comprise peralkaline rhyolite volcanic tuff. The leaching solution can have a pH of less than 4 (e.g. comprising sulfuric acid) or greater than 10.
Absstract of: WO2024055113A1
A heat exchange process includes the steps of: providing a heating fluid to a heat exchange device; providing a cooling fluid to the heat exchange device; cooling the heating fluid in the heat exchange device to produce cooled fluid; heating the cooling fluid in the heat exchange device to produce heated fluid, the heated fluid having a temperature; exhausting the cooled fluid into the atmosphere; transferring the heated fluid into a cooling medium wherein the cooling medium is one of land and water, the cooling medium having a temperature; and wherein the temperature of the cooling medium may be at least 0.1 ̊C less than the temperature of heated fluid. An energy storage system includes a storage tank, a gas expander and a gas compressor. The energy storage system is configured such that during expansion a cooled fluid is produced that is exhausted into the atmosphere.
Nº publicación: CN120351653A 22/07/2025
Applicant:
北京华清荣昊新能源开发有限责任公司
Absstract of: CN120351653A
本发明公开了一种地热能热量交换装置,其技术方案要点是:包括交换架,所述交换架的一侧固定安装有若干个安装架,所述交换架的一侧开设有若干个连接孔;预热组件,设置在所述交换架的一侧,用于对传热流体进行预热,所述预热组件包括换热管,所述换热管设置在所述交换架的一侧,所述换热管的外部固定安装有若干个导热助力片,所述导热助力片的一侧开设有若干个换热孔,通过设置的交换架、安装架、换热管、导热助力片、冷水管、引导管、预热壳、预热孔、导热板和加热壳相互配合使用,使地下热水在换热管的内部流动,进而热水会在换热管的内部流动会将换热管加热,而后通过冷水管可以对传热流体进行加热,从而可以实现地热能量的交换。