Absstract of: FR3163031A1
La présente invention concerne un procédé et un dispositif de contrôle d’un système de préchauffage d’une batterie de traction d’un véhicule électrique (10). A cet effet, des données de navigation représentatives d’un trajet déterminé pour le véhicule électrique (10) par une application mobile de navigation exécutée par un dispositif de communication mobile (101) relié en communication au véhicule électrique (10) sont reçues, les données de navigation comprenant des informations représentatives d’un ensemble d’arrêts à une station de recharge. Des paramètres de contrôle du système de préchauffage de la batterie de traction du véhicule électrique (10) sont déterminés en fonction des informations. Les paramètres de contrôle sont transmis à destination du système de préchauffage. Figure pour l’abrégé : Figure 1
Absstract of: US2025372645A1
Embodiments of the present application relate to a high-nickel compound and a preparation method therefor. According to one embodiment of the present application, the high-nickel compound has a chemical general formula of LiaNixCoyMnzMbO2·cα·dβ, where 1≤a≤1.2, 0
Absstract of: WO2025254913A1
Provided herein are systems and methods for managing a temperature of a battery pack. For example, a method may include determining, by one or more processors, a heat load for the battery pack for a first time window based on one or more metrics for a second time window, applying, by the one or more processors, the heat load to a threshold criteria, and transmitting, by the one or more processors, a signal to a thermal management system, to modify a condition of the thermal management system for cooling the battery pack, responsive to the heat load satisfying the threshold criteria.
Absstract of: WO2025254939A1
Provided herein are systems and methods for enhancing thermal management of a battery pack of a heavy vehicle. For example, the heavy vehicle may include a battery pack, a first thermal management system including a plurality of fans, a second thermal management system including a coolant circuit arranged to cool the battery pack, and one or more processors configured to detect a charge event of the battery pack and, responsive to detecting the charge event, modify a fan speed of at least one of the plurality of fans of the first thermal management system to prioritize cooling of the battery pack via the second thermal management system.
Absstract of: WO2025254914A1
Provided herein are systems and methods for managing a temperature of a battery pack. For example, the method may include determining a thermal condition of one or more of a plurality of battery cells of the battery pack, applying the thermal condition to a threshold criteria, and modifying a condition of a thermal management system of the battery pack responsive to the thermal condition satisfying the threshold criteria.
Absstract of: WO2025254904A1
Provided herein are systems and methods for managing a temperature of a battery pack. For example, the method may include detecting, by one or more processors, a charge event for the battery pack, and, responsive to detecting the charge event, determining, by the one or more processors, a heat load for the battery pack, based on a current demand corresponding to the charge event of the battery pack, and transmitting, by the one or more processors, a signal to a thermal management system, to modify a condition of the thermal management system for cooling the battery pack, responsive to determining the heat load.
Absstract of: WO2025252882A1
A semi-dry method of manufacturing an electrode (E) is disclosed comprising: a) providing a conductive metal substrate, preferably a copper or aluminium laminate; b) providing an electrode formulation (EF) in the form of a cohesive solid material, 5 the electrode formulation (EF) comprising: F1) at least the following functional ingredients: an electrode active material for anode or cathode, a binder and a plasticizer, and F2) a solvent in an amount equal to or lower than 25% by weight based on the total weight of the functional ingredients; 0 c) coating at least a first face of the conductive metal substrate with the electrode formulation (EF); and d) compressing the coated conductive metal substrate. An electrode formulation (EF), a method of manufacturing the electrode formulation (EF) in the form of a self-supporting film, an electrode composition 5 and an energy storage device comprising the electrode composition are also disclosed.
Absstract of: WO2025252356A1
The battery comprises a cup-shaped container (8) closed off by a lid comprising an inner conductive portion (1), an insulating portion (2) around the inner portion, and a peripheral conductive portion (3, 4) that is fixed to the upper edge of the container by a conductive and sealing connection. The container houses an electrode assembly (100) comprising alternately stacked electrodes of a first and second polarity. The electrodes are coupled together by interconnected tabs (13, 12). A non-coated side of an electrode (11'') of the second polarity is connected to the base (40) of the container. A top insulating sheet (18) lies on top of a conductive sheet (16, 32) that is connected to the tabs (13) of the first polarity type. The top insulating sheet is provided with an opening (19), thereby exposing a portion of the conductive sheet. This exposed portion is electrically connected to the inner portion (1) of the lid. Said inner portion thereby forms the first polarity contact of the battery, while at least the base of the container forms the second polarity contact.
Absstract of: WO2025252697A1
Described are a solid material suitable for use as a solid electrolyte, a process for preparing said solid material, and its use for preparing a cathode or a separator for an electrochemical cell.
Absstract of: WO2025252683A1
The present invention relates to a battery case of an automotive vehicle that accommodates multiple battery modules or cells and that comprises a frame, with at least two opposite walls and at least one member that extends between two opposite walls, that separates two adjacent battery modules or cells and that is made of a polymer material.
Absstract of: WO2025252359A1
The battery comprises a stack formed of multiple stacked pairs of a first and a second electrode (2, 5) and further formed of separator sheets (8, 9) arranged between adjacent electrodes of the stack, each electrode comprising a coated metal foil portion (3, 6) and a non-coated metal tab (4, 7), wherein the first electrode tabs are superposed and interconnected in a first tab stack and the second electrode tabs are superposed and interconnected in a second tab stack. The battery is characterized in that in at least one of the tab stacks, at least two of the stacked tabs have mutually different in-plane dimensions. The anode tabs (4a-4c) and/or the cathode tabs of the battery may for example be stacked in stepwise fashion starting from a larger tab (4a) at the bottom of the stack to a smaller tab (4c) at the top.
Absstract of: WO2025252579A1
The invention relates to a battery cell carrier (S) comprising a carrier base (B) configured to receive battery cells (BAT) with a specified cell height (BH) in an ordered manner in a receiving volume (AV) and at specified receiving positions (P1-Pn) of the battery cell carrier (S). A circuit carrier (PCB) which occupies the surface of the carrier base is arranged between the carrier base and the battery cells. On a side of the circuit carrier facing the receiving volume, in particular bus-capable digital temperature sensors (TS1-TSn) are arranged at the respective receiving positions in order to directly contact an oppositely received battery cell in a thermally conductive manner in order to detect the housing temperature of the battery cell. The temperature sensors are connected for data transmission to a bus interface (AN; OS, US) arranged on the battery cell carrier in order to output a respective temperature measurement value (T1-Tn) and/or in order to output a respective overtemperature warning (AL). The invention additionally relates to a stack (SP) of a plurality of such battery cell carriers.
Absstract of: WO2025252341A1
One or more markers (15, 16) are produced on at least one of the tabs (4, 7) of the electrodes (2, 5) which form the basic components of the battery. The electrodes include at least one pair of a first electrode (2) and a second electrode (5), each having a coated foil portion (3, 6) and a non-coated tab (4, 7). The markers can be indicative of technical and/or reference information related to the electrode to which the marked tab is attached, or of information regarding required manipulations of the electrode to which the marked tab is attached, wherein the method includes reading a marker on the marked tab and performing a manipulation of the electrode based on information derived from said marker.
Absstract of: WO2025251093A1
The invention relates to a method for operating an electrical energy store for a battery-operated apparatus (1), for example an electrical device, an electric vehicle or the like, wherein the apparatus (1) is supplied with electrical energy by the electrical energy store (3), and to an associated energy management system, wherein the following steps are provided: - providing (S1) a plurality of separate battery modules (4), in particular connected or connectable in parallel, in the electrical energy store (3); supplying (S2) the apparatus with electrical energy from a battery module (Y); checking (S3) the state of charge of the battery module (Y) used for supplying the apparatus; and - switching (S4) to a further battery module, located in the electrical energy store (3), for supplying the apparatus (1) with electrical energy when a predefined supply quantity of the battery module (Y) used for supplying the apparatus is not met.
Absstract of: WO2025252384A1
A method of production of layered composite material packs for use as an electrode by a material bonding process, comprises: stacking multiple material layers to be bonded forming a pack, assembling several packs for forming a stack, with placing inert interface plates between adjacent packs (3) to separate the packs by the inert interface plates, placing inert interface plates on top and bottom of the stack, placing the stack in between a top and a bottom plate and connecting the top and bottom plates with constraining fixtures for forming a rack, whereas the material of the constraining fixtures is so chosen that their thermal expansion coefficient is smaller than a value of thermal expansion for the total of the stack, pressing towards each other the top and bottom plates to apply an initial pressing force, placing the rack into a furnace, heating up the furnace to a bonding temperature with a heating rate between 0.1K/min and 35K/min and applying a connecting pressure due to the difference in thermal expansion coefficients of the stack material and the constraining fixtures, holding the bonding temperature for a predetermined time to form a bond via material diffusion in between the material layers, cooling down the furnace, disassembling the stack and removing the bonded packs.
Absstract of: WO2025254551A1
This disclosure provides an improved universal interchangeable battery for electric vehicles forming part of a battery swapping ecosystem that includes electric vehicles, swappable batteries, a charging/swap station, a battery adaptor for reliable charging and communication, and a mobile application for managing battery swapping within a fleet and a network of charging stations, enabling efficient and user-friendly battery exchanges.
Absstract of: WO2025253147A1
A composite cathode active material includes: a first component, having a first formula of LixNiaCobR1 cR 2 dO2, where R1 is Mn or A1, R2 is selected from a group comprising A1, Ti, Zr, Nb, Ba, La, and Ag, 1≤x≤1.1, 0.5≤a≤0.8, 0
Absstract of: WO2025253146A1
The present disclosure provides an electrolyte, a secondary battery and an electronic device. The electrolyte includes a first additive selected from at least one of silane amides, and a second additive selected from at least one of fluorinated ethylene carbonates.
Absstract of: US2025379455A1
A battery pack comprising a battery stack and a controller electrically connected to the battery stack. The controller is configured to determine a state of health of the battery stack and adjust a state of charge (SOC) limit for the battery stack based on the determined state of health.
Absstract of: US2025379460A1
A power dolly includes a planar platform supported by at least three wheels, a battery mechanically coupled to the planar platform and located between the wheels, a mains input connector configured to receive mains power and to charge the battery, a battery charger electrically coupled to the mains input connector and configured to charge the battery using mains power received at the mains input connector, an inverter configured to receive direct current (DC) power from the battery and to provide alternating current (AC) power at an inverter output connector, and a wireless communication receiver configured to receive a control signal and to output the received control signal via a control output connector.
Absstract of: US2025379461A1
The disclosure relates to an intraoral scanner battery charger that includes two or more battery slots configured to receive an intraoral scanner battery, wherein each of the two or more battery slots includes a charging interface that is configured to an intraoral scanner battery interface of an intraoral scanner. The charging interface is configured to transfer a charging current to the intraoral scanner battery. The charger further includes a processor unit configured to control the charging current based on a prioritized charging algorithm. The prioritized charging algorithm includes transferring a first charging current to a first intraoral scanner battery and a second charging current to a second intraoral scanner battery, and wherein the first charging current is higher than the second charging current during a charging period, and during a subsequent charging period, the first charging current is lower than the second charging current.
Absstract of: US2025379456A1
A cell balancing device and method includes: obtaining a first minimum cell voltage value and a first maximum cell voltage value of a to-be-balanced battery module in a latest full-charging operation; determining a first charge capacity of a first target cell in the battery module in a corresponding first time period in response to a first charging operation by the battery module; and updating a balancing capacity of the first target cell based on the first charge capacity. The first target cell has a voltage value greater than or equal to the first minimum cell voltage value. The first time period corresponding to the first target cell is a period of time that begins when the voltage value of the first target cell reaches the first minimum cell voltage value for a first time and that ends when the first charging operation of the battery module is ended.
Absstract of: US2025379217A1
A negative electrode active material, a method for preparing the same, a negative electrode composition and a negative electrode including the same, and a lithium secondary battery including the negative electrode are provided. The negative electrode active material comprises a silicon-based active material comprising a (220) crystal plane and a (111) crystal plane, the silicon-based active material comprising Si and optionally SiOx (0
Absstract of: US2025379287A1
A battery thermal management module for a work machine includes a housing. The housing includes a first side wall, a second side wall disposed opposite the first side wall along a first axis, a top wall extending along the first axis and connecting the first side wall with the second side wall, and a bottom wall disposed opposite the top wall and connecting the first side wall with the second side wall. The battery thermal management module is adapted to be removably coupled with the work machine, proximal to a front end of the work machine, via at least one of the first side wall, the second side wall, the top wall, and the bottom wall of the housing. The battery thermal management module also includes a cooling assembly disposed within the housing and adapted to supply a coolant to a battery system associated with the work machine.
Nº publicación: US2025379280A1 11/12/2025
Applicant:
OUR NEXT ENERGY INC [US]
Our Next Energy, Inc
Absstract of: US2025379280A1
A cell includes a cell housing, at least one end cap, at least three terminals, the at least three terminals including at least one positive terminal and at least one negative terminal. The cell further includes a coupling device for each of the at least three terminals, the coupling device including a busbar and a thermal interface material, the busbar being in contact with and disposed between the terminal and the thermal interface material, the busbar and the thermal interface material thermally coupling the terminal to a top or bottom cold plate. The thermal interface material further electrically insulates the top or bottom cold plate from the terminal.