Absstract of: CN120400864A
本发明涉及光伏冷却制氢技术领域,具体提出一种多源协同喷雾冷却的聚光分频光伏制氢系统及调控方法。通过夹套管分频及反应管实现太阳光谱的精准分离,其中可见光波段经由光伏组件转化为电能,而红外波段则通过催化反应管进行光热转换,将富余热能直接用于电解水制氢的活化过程,实现太阳能的梯级利用。还实现精准控温,结合闭环温控策略将光伏板温度稳定在最佳区间。风光互补供电与废热梯级回收装置协同提升能源利用率,多功能集成电控系统通过动态博弈优化算法与数字孪生仿真平台实现氢‑电‑热多目标调度。不仅使太阳能电池工作温度稳定在最佳效率区间,同时将传统系统的热能损耗转化为制氢有效能源,构建了高效稳定的太阳能‑氢能转换系统。
Absstract of: CN120402884A
本发明提供了一种耦合太阳能储热的压火热备热力系统及运行方法,属于循环流化床机组设备领域。所述系统设置太阳能集热器、高/低温熔盐罐、熔盐‑水换热器及熔盐‑蒸汽换热器,太阳能集热器的熔盐出口、高温熔盐罐、高温熔盐泵、第八三通阀、熔盐‑水换热器、第七三通阀、低温熔盐罐、低温熔盐泵、太阳能集热器的熔盐入口依次连通;第八三通阀的第二出口与熔盐‑蒸汽换热器的熔盐侧入口连通,熔盐‑蒸汽换热器的熔盐侧出口与第七三通阀的第二入口连通。运行时,常规状态下将太阳能储存在高温熔盐罐的熔盐中;开启压火热备时,将熔盐中的能量通过换热器,加热给水/蒸汽产生满足汽轮机安全运行的蒸汽。本发明延长了压火周期,提升了深度调峰能力。
Absstract of: CN120403094A
一种竖向安装透镜聚光加热高沸点流体的储能装置,包括一竖向安装的导热密封外管2,导热密封外管2中套有轴向的循环内管4,循环内管4的上端开放,下端穿过导热密封外管2的底部密封层连通保温密封容器10,导热密封外管2底部有高沸点流体入口6,高沸点流体入口6通过管道连接储能循环泵8,储能循环泵8的另一端通过管道连通保温密封容器10并形成一个闭环回路,在整个循环回路的空腔和保温密封容器10内有高沸点流体12,围绕导热密封外管2的外面设置有可旋转支架14,可旋转支架14上固定有线性聚光透镜组件16,线性聚光透镜组件16将光线聚焦于导热密封外管2的表面。
Absstract of: CN120393886A
本发明公开了一种用于碳酸盐加氢还原的光热‑绿电协同供热系统及方法,包括用于进行氢气还原碳酸盐原料反应的反应器本体装置、分离反应产物的气固分离装置、聚光太阳能集热装置、绿电加热装置和预热装置,反应器本体装置设置透明窗口,聚光太阳能集热装置将太阳光转化为高能流并通过透明窗口进入反应器本体装置,绿电加热装置用于为反应器本体装置辅助供热,预热装置接收反应尾气,将其余热用于加热进料中的氢气和碳酸盐原料。以太阳能和绿电协同供热代替传统化石燃料燃烧,并回收利用反应后的余热,显著降低系统热负荷,提高热效率,通过燃料替代和反应过程碳转化协同作用,实现CO2的净零排放,助力水泥、石灰、冶金等工业的低碳转型。
Absstract of: CN120403095A
本发明公开了一种定日镜吊装加长卡具装置及其使用方法,涉及太阳能光热发电技术领域。本发明包括定日镜部件,包括安装支架,设置于所述安装支架顶部的定日镜本体;固定部件,包括设置于所述安装支架两侧的固定组件,设置于所述固定组件内部的侵入组件,设置于所述侵入组件内部的内涨组件。本发明通过对双向螺杆转动使螺纹连接在其两侧的螺纹套筒转动,间接的通过剪叉杆使扩张板扩张,从而完成卡具的安装,然后,通过固定盒的移动间接的控制钩板的端部发生转动,从而对固定座进行钩住,不需要工作人员频繁的吊装工具固定在吊机上,解决了现有的卡具固定不牢固,且需要人为频繁固定的问题。
Absstract of: CN120415275A
本发明涉及太阳能发电技术领域,尤其是涉及一种可调节式光伏光热耦合系统。包括光热反射镜,所述光热反射镜上设有光伏电池阵列,所述光伏电池阵列包括多个半透明光伏电池,每个所述半透明光伏电池分别通过角度调节机构与所述光热反射镜连接。本发明提供的系统中光伏电池阵列包括多块小面积的半透明光伏电池,每个半透明光伏电池分别与光热反射镜通过角度调节机构连接,每个半透明光伏电池都可以根据太阳光照的角度和强度独立调节与光热反射镜之间的夹角,调节光热反射镜的接收光量和整个系统的透光率,动态调整光谱利用效率,从而提高系统的光电转化效率和光热发电效率。
Absstract of: CN120403093A
本公开涉及一种碟式光热装置和发电系统,碟式光热装置包括:碟式聚光模块,储热模块,第一气体流路,可通断地连通碟式聚光模块的热端与储热模块,蒸汽发生及过热模块,第二气体流路,与第一气体流路并联,并可通断地连通碟式聚光模块的热端与蒸汽发生及过热模块,第三气体流路,可通断地连通第一气体流路和第二气体流路,第四气体流路,连通蒸汽发生及过热模块与碟式聚光模块的冷端,第五气体流路,连通储热模块与第四气体流路,以及水罐,通过第一液体流路可通断地与蒸汽发生及过热模块流体连通。通过上述技术方案,本公开提供的碟式光热装置和发电系统能够解决碟式聚光器与发电机解耦后无法持续且稳定地热电联产的技术问题。
Absstract of: CN120403096A
本发明公开了一种中大型定日镜主梁,涉及定日镜主梁技术领域,包括支撑机构,所述支撑机构包括安装座,所述安装座的两端均固定连接有空心梁,两个所述空心梁的外部均设置有两个桁架,每个所述桁架的外表面均固定连接有连接架,两个所述空心梁的内部共同设置有调节机构,此中大型定日镜主梁,可以通过蜗杆微调桁架在空心梁上的仰角,使得多个桁架之间仰角更加趋于一致,并且利用空心螺杆和转动螺杆,可以微调桁架之间的距离,增加后续定日镜镜片在桁架上固定时的精准度,使得空心梁可以根据定日镜镜片的现场安装需要对桁架位置和仰角进行微调,减小并消除桁架与空心梁装配时的微小误差,提高空心梁、桁架和定日镜镜片之间的装配精度。
Absstract of: CN120402317A
本发明提供一种带熔盐储热的光煤耦合发电系统及方法,涉及发电技术领域。系统包括:主蒸汽输送模块,用于向汽轮机输送主蒸汽做功以驱动发电机发电,其中,主蒸汽通过热熔盐加热凝结水生成或通过燃煤燃烧加热凝结水生成;过热蒸汽输送模块,用于向汽轮机输送过热蒸汽做功以驱动发电机发电,其中,过热蒸汽通过热熔盐加热给水生成;冷凝换热器,用于接收并冷却自汽轮机排出的乏汽,冷却后的乏汽成为凝结水被送入主蒸汽输送模块,以通过热熔盐加热或通过燃煤燃烧加热成为主蒸汽。该光煤耦合发电系统及方法,解决了现有技术中光煤耦合发电系统因太阳能的不稳定性或间歇性等原因,致使光煤耦合发电系统调节频繁,导致光煤耦合发电系统寿命较低的问题。
Absstract of: CN120415245A
本发明提供了一种光伏光热耦合系统及其使用方法,包括半透明钙钛矿太阳电池、光热反射镜、反射镜、高效钙钛矿太阳电池和双轴跟踪系统,半透明钙钛矿太阳电池位于上层,光热反射镜位于半透明钙钛矿太阳电池下方,反射镜安装在所述光热反射镜的背面,高效钙钛矿太阳电池安装在反射镜上,双轴跟踪系统与所述半透明钙钛矿太阳电池、光热反射镜、反射镜和高效钙钛矿太阳电池连接,双轴跟踪系统根据太阳的位置实时调整系统角度。本发明通过双轴跟踪系统和光热反射镜设计,提高了光伏光热耦合系统的太阳能转化效率,能够根据不同的光照条件选择适合的工作模式,优化了光伏与光热发电的协调性。通过双面光伏发电模式,有效提高系统的光电转换效率。
Absstract of: CN120398169A
本发明提出一种浸没式热管驱动蒸发的太阳能海水淡化装置,属于太阳能苦咸水淡化技术领域。该装置包括:海水淡化单元以及热管单元;海水淡化单元具有同轴嵌套的蒸发筒和冷凝筒,冷凝筒套装在蒸发筒外部,在两者之间形成封闭的蒸发冷凝腔;热管单元包括若干个热管,热管的热管冷凝段位于蒸发筒内部的水体中,热管蒸发段伸出蒸发筒;进料海水在蒸发筒外表面形成海水液膜;热管冷凝段释放的凝结潜热通过水体传递至海水液膜,海水液膜受热温升,生成的水蒸气在冷凝筒内壁面凝结生成淡水。该装置通过热管蒸发段吸收太阳辐射实现光热转化为装置供能,通过热管冷凝段内置的方式实现了装置集热、传热、供热环节的高度集成,有效减小了装置的热量损失。
Absstract of: US2025244053A1
The invention relates to enclosed solar parabolic trough reflector systems for thermal heat generation that can ultimately be used in various applications. The system includes a modular dual arch building design with a transparent building envelope and a reflector assembly connected within the building through a bearing assembly. The system is particularly suited for solar heat collection in harsh environment.
Absstract of: AU2024278637A1
MOUNTING BRACKET FOR AN OFFSHORE PHOTOVOLTAIC MODULE A mounting bracket (2) for an offshore photovoltaic module includes a buoyancy body (21) extending along a lengthwise direction (A), a first pole (22) and a second pole (23) disposed on and extending from the buoyancy body (21) along a height direction (B) 5 and spaced apart from each other in the lengthwise direction (A), and a reinforcing beam (24) and a carrying beam (25) connected with the first and second poles (22, 23). Each of the first and second poles (22, 23) has a U-shaped cross-section for increasing the second moment of area, thereby improving the resistance to flexure of the first and second poles (22, 23). The reinforcing beam (24) extending in an inclined manner to 10 further improve the resistance to flexure in the lengthwise direction (A) so as to enhance the rigidity and durability of the entire offshore photovoltaic module assembly. (FIG. 2) MOUNTING BRACKET FOR AN OFFSHORE PHOTOVOLTAIC MODULE A mounting bracket (2) for an offshore photovoltaic module includes a buoyancy body (21) extending along a lengthwise direction (A), a first pole (22) and a second pole 5 (23) disposed on and extending from the buoyancy body (21) along a height direction (B) and spaced apart from each other in the lengthwise direction (A), and a reinforcing beam (24) and a carrying beam (25) connected with the first and second poles (22, 23). Each of the first and second poles (22, 23) has a U-shaped cross-section for increasing th
Absstract of: DE102024102614A1
Die Erfindung betrifft ein Verfahren zur Herstellung eines nachhaltigen Energieträgers, wobei das Verfahren die folgenden Schritte umfasst:- Herstellen eines Methan (3) und Kohlendioxid (4) umfassenden Gases (2) aus organischem Müll (1) in einer Fermentationseinheit (10),- Abtrennen des Methans (3) und des Kohlendioxids (4) aus dem Gas (2) in einer Trenneinheit (20),- Umwandeln des Methans (3) in Wasserstoff (5) und Kohlenstoff (6) in einer Umwandlungseinheit (30), insbesondere einer Pyrolyseeinheit,- Umwandeln des Kohlendioxids (4) und des Wasserstoffs (5) in Methanol (7) in einer Methanolsyntheseeinheit (40), wobei die Trenneinheit (20), die Umwandlungseinheit (30) und die Methanolsyntheseeinheit (40), vorzugsweise ausschließlich, durch in einer Solarenergieeinheit (50) erzeugten Strom und/oder Wärme, betrieben werden.
Absstract of: WO2025156014A1
A solar energy collection assembly comprising: a first spherical mirror assembly having a first reflective mirror surface with a centre located above the first spherical mirror, a radius of curvature R1 and a focus located on a first movable axis which passes through the centre of the first reflective mirror surface and through the sun with a first sunlight absorbing receiver adapted to be movably positioned to substantially align with the first movable axis in a plurality of positions for receiving and absorbing reflected light when sunlight is reflected by the first reflective mirror surface; a second spherical mirror assembly arranged above the reflective surface of the first spherical mirror assembly in a non-concentric configuration relative to the first spherical mirror assembly, the second spherical mirror having a second reflective mirror surface with a centre located away from the second spherical mirror, a radius of curvature R2 and a focus located on a second movable axis which passes through the centre of the second spherical mirror and through the sun with a second sunlight absorbing receiver adapted to be movably positioned to substantially align with the second movable axis in a plurality of positions for receiving and absorbing reflected light when sunlight is reflected by the second spherical mirror; and a rotation mechanism for rotating the combination of the first and second spherical mirror assemblies about a common axis to allow the reflective surface of
Absstract of: US2025247043A1
The invention relates to a photoelectric building block comprising a rigid support (1), made of a single extruded piece of non-metal material, provided with a front with a first coupling configuration (10) formed by a sunken channel (11) between two opposing parallel grooved guides (12) that define a narrowing of the opening of the sunken channel (11), at least one photoelectric panel (2) with a second coupling configuration (20) inserted into the sunken channel (11) and having opposite coupling ends (21) inserted into the two grooved guides (12); wherein the photoelectric building block further comprises a retainer device (30) which exerts a thrust on the opposite coupling ends (21) of the second coupling configuration (20), moving them away from the bottom of said sunken channel (11) and thrusting them against the lower surface (13) of the two grooved guides (12), retaining the photoelectric panel (2).
Absstract of: AU2025200182A1
WIND AND WAVE REDUCTION DEVICE FOR AN OFFSHORE SOLAR PHOTOVOLTAIC MODULE AND WIND AND WAVE REDUCTION SYSTEM INCLUDING THE SAME A wind and wave reduction device includes base seats (11) and base pipes (12). Each base seat (11) has two lateral ends and through holes (110) disposed between the lateral ends. Each base pipe (12) extends through a respective one of the through holes (110) of each of the base seats (11). Step plates (16) are disposed on support frames (15), and each of the support frames (15) is positioned between two adjacent ones of the base pipes (12). A lateral frame (21) is connected transversely to one of the lateral ends of each of the base seats (11). A blocking plate (22) is fixed to the lateral frame (21) and has air disturbing holes (220). (Fig. 1) WIND AND WAVE REDUCTION DEVICE FOR AN OFFSHORE SOLAR PHOTOVOLTAIC MODULE AND WIND AND WAVE REDUCTION SYSTEM INCLUDING THE SAME A wind and wave reduction device includes base seats (11) and base pipes (12). Each base seat (11) has two lateral ends and through holes (110) disposed between the lateral ends. Each base pipe (12) extends through a respective one of the through holes (110) of each of the base seats (11). Step plates (16) are 10 disposed on support frames (15), and each of the support frames (15) is positioned between two adjacent ones of the base pipes (12). A lateral frame (21) is connected transversely to one of the lateral ends of each of the base seats (11). A blocking plate (22) is fixed to the l
Absstract of: US2025247041A1
A building integrated thermal and photovoltaic cladding system includes: an exterior layer including photovoltaic elements, an interior layer including heat exchange modules; a load-bearing structure including one or more spacers configured to maintain the exterior layer in spaced apart relation to the interior layer, and providing an air flow conduit therebetween for receiving air from the exterior, the air flow generally passing over the interior layer by natural circulation.
Absstract of: US2025243850A1
An elevated or ground level vertical cylinder houses one or more propellers and/or turbines that are rotated by heated air convection within or around or above the cylinder. The rotating shafts of the propellers generate electricity in an area at the bottom of or below the cylinder. For added, improved air flow directions and volumes; and, for stabilization of the rotating shaft or shafts, a cone structure is disposed below the cylinder. Heat is directed to the cylinder by a plurality of sun tracking concave mirrors that are positioned in concentric circles at various heights. The cylinder may be composed of concrete, ceramics, metal compounds or other materials and operate with a surface temperature that may range from 70 to 1,300 degrees Fahrenheit. Disclosed embodiments include the use of heat sinks, internal blades disposed upon pyramid structures and flexible vanes and flaps,
Absstract of: AU2025200186A1
SUPPORT SYSTEM FOR OFFSHORE SOLAR PHOTOVOLTAICS EQUIPMENT A support system for offshore solar photovoltaics equipment includes a float platform (1), float bodies (2), a ballast member (4), and a carrier frame (6) disposed on the float platform (1) and defining an accommodating space (61). The float platform (1) defines a plurality of limiting grooves (111) each of which extends in the longitudinal direction (A) and that are spaced apart from each other in a transverse direction (B) transverse to the longitudinal direction (A). The float bodies (2) are disposed in the limiting grooves (111) and protrude out of a bottom surface of the float platform (1). Each float body (2) surrounds and defines an inner space (21) adapted for a liquid or a gas to be filled therein. The ballast member (4) is connected to the float platform (1) and extends downwardly from the float platform (1) across bottom sides of the float bodies (2). (Figure 3) SUPPORT SYSTEM FOR OFFSHORE SOLAR PHOTOVOLTAICS EQUIPMENT A support system for offshore solar photovoltaics equipment includes a float platform (1), float bodies (2), a ballast member (4), and a carrier frame (6) disposed 5 on the float platform (1) and defining an accommodating space (61). The float platform (1) defines a plurality of limiting grooves (111) each of which extends in the longitudinal direction (A) and that are spaced apart from each other in a transverse direction (B) transverse to the longitudinal direction (A). The float bodies (2)
Absstract of: AU2025200186A1
SUPPORT SYSTEM FOR OFFSHORE SOLAR PHOTOVOLTAICS EQUIPMENT A support system for offshore solar photovoltaics equipment includes a float platform (1), float bodies (2), a ballast member (4), and a carrier frame (6) disposed on the float platform (1) and defining an accommodating space (61). The float platform (1) defines a plurality of limiting grooves (111) each of which extends in the longitudinal direction (A) and that are spaced apart from each other in a transverse direction (B) transverse to the longitudinal direction (A). The float bodies (2) are disposed in the limiting grooves (111) and protrude out of a bottom surface of the float platform (1). Each float body (2) surrounds and defines an inner space (21) adapted for a liquid or a gas to be filled therein. The ballast member (4) is connected to the float platform (1) and extends downwardly from the float platform (1) across bottom sides of the float bodies (2). (Figure 3) SUPPORT SYSTEM FOR OFFSHORE SOLAR PHOTOVOLTAICS EQUIPMENT A support system for offshore solar photovoltaics equipment includes a float platform (1), float bodies (2), a ballast member (4), and a carrier frame (6) disposed 5 on the float platform (1) and defining an accommodating space (61). The float platform (1) defines a plurality of limiting grooves (111) each of which extends in the longitudinal direction (A) and that are spaced apart from each other in a transverse direction (B) transverse to the longitudinal direction (A). The float bodies (2)
Absstract of: AU2024278637A1
MOUNTING BRACKET FOR AN OFFSHORE PHOTOVOLTAIC MODULE A mounting bracket (2) for an offshore photovoltaic module includes a buoyancy body (21) extending along a lengthwise direction (A), a first pole (22) and a second pole (23) disposed on and extending from the buoyancy body (21) along a height direction (B) 5 and spaced apart from each other in the lengthwise direction (A), and a reinforcing beam (24) and a carrying beam (25) connected with the first and second poles (22, 23). Each of the first and second poles (22, 23) has a U-shaped cross-section for increasing the second moment of area, thereby improving the resistance to flexure of the first and second poles (22, 23). The reinforcing beam (24) extending in an inclined manner to 10 further improve the resistance to flexure in the lengthwise direction (A) so as to enhance the rigidity and durability of the entire offshore photovoltaic module assembly. (FIG. 2) MOUNTING BRACKET FOR AN OFFSHORE PHOTOVOLTAIC MODULE A mounting bracket (2) for an offshore photovoltaic module includes a buoyancy body (21) extending along a lengthwise direction (A), a first pole (22) and a second pole 5 (23) disposed on and extending from the buoyancy body (21) along a height direction (B) and spaced apart from each other in the lengthwise direction (A), and a reinforcing beam (24) and a carrying beam (25) connected with the first and second poles (22, 23). Each of the first and second poles (22, 23) has a U-shaped cross-section for increasing th
Absstract of: AU2025200182A1
WIND AND WAVE REDUCTION DEVICE FOR AN OFFSHORE SOLAR PHOTOVOLTAIC MODULE AND WIND AND WAVE REDUCTION SYSTEM INCLUDING THE SAME A wind and wave reduction device includes base seats (11) and base pipes (12). Each base seat (11) has two lateral ends and through holes (110) disposed between the lateral ends. Each base pipe (12) extends through a respective one of the through holes (110) of each of the base seats (11). Step plates (16) are disposed on support frames (15), and each of the support frames (15) is positioned between two adjacent ones of the base pipes (12). A lateral frame (21) is connected transversely to one of the lateral ends of each of the base seats (11). A blocking plate (22) is fixed to the lateral frame (21) and has air disturbing holes (220). (Fig. 1) WIND AND WAVE REDUCTION DEVICE FOR AN OFFSHORE SOLAR PHOTOVOLTAIC MODULE AND WIND AND WAVE REDUCTION SYSTEM INCLUDING THE SAME A wind and wave reduction device includes base seats (11) and base pipes (12). Each base seat (11) has two lateral ends and through holes (110) disposed between the lateral ends. Each base pipe (12) extends through a respective one of the through holes (110) of each of the base seats (11). Step plates (16) are 10 disposed on support frames (15), and each of the support frames (15) is positioned between two adjacent ones of the base pipes (12). A lateral frame (21) is connected transversely to one of the lateral ends of each of the base seats (11). A blocking plate (22) is fixed to the l
Absstract of: CN120385065A
本发明涉及农业灌溉技术领域,尤其涉及一种基于生物质能、太阳能、风能的灌溉水泵的可再生能源供能系统。其结构如下:生物能燃烧装置通过加热口与水箱连接,水箱通过第一集热管与灌溉水泵连接,第一集热管上设置有盘式太阳能聚热装置、槽式太阳能聚热装置和增强加热管,灌溉水泵与水箱之间还设置有第二集热管,第二集热管上设置有循环水泵,灌溉水泵与灌溉用水管连接。本发明利用多种可再生能源作为灌溉水泵的可持续能量来源,具有清洁低碳的特点,它改善了当下灌溉季节电能驱动水泵对电网的影响,降低了灌溉成本。
Nº publicación: CN120385160A 29/07/2025
Applicant:
成都金信创太阳能科技有限公司
Absstract of: CN120385160A
本申请公开了一种太阳能集热洗物系统,包括太阳能热水集热器,太阳能热水集热器与水洗设备连通,太阳能热风集热器与烘干设备连通,太阳能蒸汽集热器、太阳能热油集热器连通的热油蒸汽发生器和热水蒸汽发生器中的至少一个与熨烫设备连通。本申请的有益效果:太阳能技术通过直接利用太阳辐射能,将太阳能转化为洗物系统所需的热水、热风、热油或蒸汽,为洗物系统提供绿色环保的热源供给,显著降低洗物能耗,并兼具环保与经济优势。