Absstract of: DE102024116286A1
Kopplungsanordnung (280) für ein Brennstoffzellensystem (205) für ein Fahrzeug (200a), insbesondere Nutzfahrzeug (200b), wobei das Brennstoffzellensystem (205) eine mit einer ersten Welle (217a) antreibbare erste BOP-Komponente (215a) aufweist und das Fahrzeug (200a), insbesondere Nutzfahrzeug (200b), eine mit einer von der ersten Welle (217a) verschiedenen zweiten Welle (222a) antreibbare zweite Komponente (220a) aufweist; wobei die Kopplungsanordnung (280) dazu eingerichtet ist, bei einer ersten Rotationsbewegung (R1) von der ersten Wellen (217a) der BOP-Komponente (215a) eine zweite Rotationsbewegung (R2) von der zweiten Welle (222a) der zweiten Komponente (220a) zu bewirken.
Absstract of: DE102024115833A1
Um eine Vorrichtung zum Herstellen einer Bipolarplatte aus zwei Bipolarplattenlagen derart zu verbessern, dass die Herstellung der Bipolarplatte mit optimaler Ausrichtung der ersten Bipolarplattenlage zur zweiten Bipolarplattenlage erfolgen kann, wird vorgeschlagen, dass für jede herzustellende Verbindungsnaht (62, 112, 114, 116, 118, 122, 124) der entsprechende Nahtbereich (61, 111, 113, 115, 117, 121, 123) von einer dem Basis (134) abgewandten Seite des mindestens einen Niederhalteelements (142, 152, 252, 352) oder bei mehreren Niederhalteelementen der Gesamtheit der Niederhalteelemente (142, 152, 252, 352) vollständig über dessen gesamte Längsausdehnung zugänglich ist.
Absstract of: DE102024115774A1
Die Erfindung betrifft ein Brennstoffzellensystem für ein Fahrzeug, mit mehreren in einem Gehäuse (1) in einem Brennstoffzellenstapel (2) angeordneten Brennstoffzellen (3), dadurch gekennzeichnet, dass zur Vermeidung von Kondensation von Luftfeuchte im Brennstoffzellenstapel (2) aus einem zum Spülen des Gehäuses (1) eingeleiteten Spülluftstrom (5) Trennmittel (8) im Gehäuse (1) vorgesehen sind, durch die der Spülluftstrom (5) im Gehäuse (1) vom Brennstoffzellenstapel (2) getrennt geführt ist und die für aufgrund von Leckagen aus dem Brennstoffzellenstapel (2) austretendes Brennstoffgas (7) durchlässig sind, wobei Letzteres mit dem Spülluftstrom (5) aus dem Gehäuse (1) ausleitbar ist.
Absstract of: DE102024115820A1
Ein plattenförmiges Gebilde, z. B. eine Bipolarplatte, für eine Brennstoffzelle, weist auf:ein Strömungsfeld;Eingangsöffnungen und Ausgangsöffnungen für ein Anodengas und/oder ein Kathodengasund / oder ein Kühlmittel; undeine Mehrzahl von Ausnehmungen in wenigstens einer ersten Hauptfläche des plattenförmigen Gebildes, die dazu eingerichtet sind,- einem Verrutschen des plattenförmigen Gebildes relativ zu einem weiteren plattenförmigen Gebilde entgegenzuwirken, wenn das plattenförmige Gebilde und das weitere plattenförmige Gebilde aufeinandergestapelt sind, und / oder- ein Füllmaterial aufzunehmen, um einem Verrutschen des plattenförmigen Gebildes relativ zu einem weiteren plattenförmigen Gebilde entgegenzuwirken und / oder um das plattenförmige Gebilde und das weitere plattenförmige Gebilde auf Abstand zu halten, wenn das plattenförmige Gebilde und das weitere plattenförmige Gebilde aufeinandergestapelt sind.
Absstract of: DE102024133156A1
Metall-Kohlenstoffdioxid-Batterie mit Elektrolyt-Regeneration-System, in welcher eine Batterieleistung und Haltbarkeit verbessert werden kann, indem das Elektrolyt-Regeneration-System an einer Anodenseite der Metall-Kohlenstoffdioxid-Batterie bereitgestellt wird.
Absstract of: DE102024116016A1
Die vorliegende Erfindung betrifft eine feuchtigkeitsdurchlässige Membran (1, 2) mit einer Schicht (3), die ein schweißbares Kunststoffmaterial aufweist oder daraus besteht sowie ein Befeuchtermodul (16) für einen Befeuchter für ein Brennstoffzellensystem aufweisend zumindest zwei solche feuchtigkeitsdurchlässigen Membranen (1, 2). Die vorliegende Erfindung betrifft insbesondere ein Verfahren (29) zur Herstellung eines Befeuchtermoduls (16) und einen Befeuchter für ein Brennstoffzellensystem.
Absstract of: US2025376560A1
A sulfonated poly(phenylene ether) comprises phenylene ether repeating units and has a degree of sulfonation of 20 to 50% and a sulfonyl chloride (—SO2Cl):sulfonic acid (—SO3H) molar ratio of less than or equal to 0.06. The sulfonated poly(phenylene ether) can be used in a membrane such as for gas and ion exchange-based separations. Methods for the manufacture of the sulfonated poly(phenylene ether) are also described.
Absstract of: US2025376082A1
A computer implemented method controls an electric power system of a fuel cell electric vehicle (FCEV). The electric power system has a fuel cell and an energy storage system electrically connected to each other. An upcoming position at which the electric power system will assume a low load operation mode is determined, and the electric power system is controlled based on a power distribution scheme to arrive at the upcoming position with a state of charge level of the energy storage system below a predetermined threshold level, whereafter the electric power system is controlled to feed electric power at least to the energy consumer when the electric power system assumes the low load operation mode at the upcoming position.
Absstract of: US2025375927A1
There is provided a molding method capable of reducing damage or deformation of a base material when a seal member is molded in a direction intersecting an uneven portion of the base material. A molding method includes: a preforming step of injecting a rubber material into a groove 462 at a temperature where the rubber material is not crosslinked, in a cavity plate 410 including the groove 462 into which the rubber material is injected; and a vulcanization molding step of sandwiching a base material 300 between the cavity plate 410 in which the rubber material is injected into the groove 462 and a mold 420, and molding the rubber material onto the base material 300 as a seal member 172 at a temperature where the rubber material is crosslinked. At least a surface 422 of the mold 420 facing a recess 334 and a protrusion 332 of the base material 300 is a flat surface when viewed in a cross-section at a position separated by a predetermined distance from a molding position of the seal member 172 in an X direction substantially orthogonal to a Y direction in which the seal member 172 extends.
Absstract of: US2025377245A1
Hermetic thermocouple harnesses for solid oxide electrochemical systems include a harness having a feedthrough washer including two metal disks with holes circumferentially disposed about the disks and a braze alloy layer between the disks. Thermocouples are fed through the feedthrough washer, and induction brazing is used to seal and bind the disks and the thermocouples together. The feedthrough washer is welded to the base of the hotbox, forming a hermetic seal while allowing the thermocouples to extend between the interior and exterior of the hotbox. A second harness includes a main body, a top tube, and a sealant end having holes. Thermocouples extend from the interior of the hotbox, through the top tube, main body, and through the holes of the sealant to the exterior of the hotbox. Clearance between the thermocouples and their respective holes are closed with glass seals, and the top tube is filled with putty.
Absstract of: US2025377331A1
A method for manufacturing an electrical component includes providing a substrate, printing a first layer of an ink onto the substrate, the ink including a flowable binder and a plurality of particles of a metallic, metal oxide and/or ceramic material embedded in the binder, sintering the substrate including the first layer of ink at a temperature above 300° C., for a time in a range of 1 min to 1 h, printing a further layer of an ink onto the substrate, the ink having a flowable binder and a plurality of particles of a metallic and/or ceramic material embedded in the binder, sintering the substrate including the further layer of ink at a temperature above 300° C. for a time in a range from 1 min to 1 h. The steps are repeated as necessary.
Absstract of: US2025376777A1
The present invention relates to a method of manufacturing a dense composite polymeric-ceramic membrane, compromising the steps of casting a porous ceramic support layer comprising YSZ and TiO2 flakes, followed by thermal curing and sintering steps, coating the prepared porous ceramic support structure with a thin layer of TiO2 to vary the pore size distribution of the support structure and further densification by using ion selective polymers to reduce gas crossover while maintaining a high enough conductivity.
Absstract of: US2025376553A1
The present invention relates to the field of cationic polymers, and in particular, to highly alkali-stable poly(arylene alkylene piperidinium) cationic polymers and preparation methods and applications. The preparation method for the highly alkali-stable poly(arylene alkylene piperidinium) cationic polymers includes the following steps: performing catalytic polycondensation on 1-R6-piperidine-3-carboxaldehyde or a salt or hydrate thereof and an aromatic compound to obtain a polymer having a piperidine moiety; and then further subjecting the polymer to a quaternization reaction to obtain the poly(arylene alkylene piperidinium) cationic polymer. The anion exchange membranes prepared from the piperidinium-based cationic polymers have ultra-high alkaline stability and excellent mechanical properties and ionic conductivities, and can be applied to the fields of electrochemical energy conversion such as fuel cells, hydrogen production by water electrolysis, electrochemical reduction of carbon dioxide, flow batteries, and fields of separation such as electrodialysis and water treatment.
Absstract of: US2025379237A1
An electrochemical cell includes an anode support, an anode electrode disposed on the anode support, an electrolyte layer disposed on the anode electrode, and a cathode electrode disposed on the electrolyte layer. The anode support includes a mat of ceramic support fibers and a cermet matrix including a nickel phase and a ceramic phase embedded in the mat.
Absstract of: US2025379243A1
A membrane stack for a fuel cell humidifier includes water vapor-permeable, airtight membranes spaced apart in a stack with alternating first and second spacers. The stack enables cross-flow of humid exhaust and dry supply air. Each first spacer is separated from the adjacent membrane by a protective layer, with both connected in a direct, material-locking manner.
Absstract of: US2025379244A1
A thermal management control apparatus for a fuel cell electric vehicle includes: a stack cooling line configured to cool a fuel cell stack of the fuel cell electric vehicle; a battery cooling line configured to cool a battery of the fuel cell electric vehicle; a valve configured to control an inflow of the stack coolant; and a control apparatus configured to diagnose whether a component of the valve or the battery cooling line has failed based on the battery having overheated, and configured to cool the battery based on a failure of the valve or a component failure of the battery cooling line having occurred.
Absstract of: US2025379247A1
The present disclosure pertains to a multilayered membrane, such as an anion exchange membrane (AEM), optimized for use in various electrochemical devices. The AEM features a unique multilayered structure comprising a core layer and one or more surface layers, each designed to enhance the interface with the catalyst layer. The surface layers are distinguished by their different water uptake capacity, and increased adhesiveness, and better chemical stability compared to the core layer, attributes that are critical for improving ion transport and membrane performance. The surface layers also exhibit a lower degree of cross-linking and a higher ion exchange capacity (IEC) than the core layer. The versatile construction of the AEM allows for configurations tailored to specific applications, including electrolyzers, fuel cells, and reversible fuel cells. This disclosure promises significant advancements in electrochemical device technology, contributing to the development of efficient and sustainable energy solutions.
Absstract of: US2025379242A1
An ion exchanger includes containers arranged next to one another, ion exchange resin portions contained in the containers, respectively, and an inlet pipe extending in an arrangement direction of the containers. Each of the containers has a bottom wall. The inlet pipe includes connection passages arranged in correspondence with the containers, a first tapered portion, and a second tapered portion. The inlet pipe has a cross-sectional flow area having a decrease degree that is greater in the second tapered portion than in the first tapered portion. The second tapered portion is in communication with a container of the containers that is located at the most downstream side in the flow direction via a corresponding one of the connection passages.
Absstract of: US2025379239A1
A method of forming ruthenium nanoparticles over cobalt oxide encapsulated nitrogen rich carbon nanotubes (Ru@CoOx/N-CNTs) from ZIF-12. The method includes mixing 510 a first solution of cobalt nitrate hexahydrate, a benzimidazole solution, and N, N-dimethyl formamide. The first solution is transferred 520 to a Teflon lined autoclave and heated at 150° C. The first solution is allowed to cool 530. The first solution is filtered 540 and dried 550 in an oven to produce a first composition. The method includes calcinating 560 the first composition at 850° C. to obtain the cobalt oxide encapsulated nitrogen rich carbon nanotubes (CoOx/N-CNTs). The method includes coating 570 the CoOx/N-CNTs with ruthenium to obtain Ru@CoOx/N-CNTs and dispersing 580 the Ru@CoOx/N-CNTs in a Nafion+ isopropanol mixture. The electrochemical activity of Ru@CoOx/N-CNTs towards oxygen reduction reaction is measured.
Absstract of: WO2025253057A1
The present invention relates to a fuel cell system for a vehicle, which fuel cell system comprises a temperature control system comprising at least a first and a second heat-transfer fluid loops (5, 6, 7) intended for controlling the temperature of systems of the vehicle, and fluid control means (801, 802, 803), the system comprising a third fluid loop (8) fluidly connected to condensers (131, 221), and wherein the fluid control means (801, 802, 803) are capable of regulating the flow rate and the temperature of the heat-transfer fluid of the third fluid loop (8) according to the flow rate and temperature of the heat-transfer fluid of the first and second fluid loops (5, 6, 7) and according to a condensation requirement of each condenser (131, 221).
Absstract of: WO2025253125A1
An electrochemical cell comprising a first electrolyte layer comprising a material having a composition Ce(1-x) LnxO(2-0.5x-δ). Ln is selected from at least one rare earth metal excluding Ce, 0.22 ≤ x ≤ 0.45, and δ is the degree of oxygen deficiency.
Absstract of: WO2025253109A1
A method of warm up of an electrolyser system comprising one or more stacks of electrolyser cells, each of the one or more stacks with fuel and oxygen volumes. The method comprising heating the one or more stacks to raise the one or more stacks to a first threshold temperature T1. A heat transfer fluid is provided to the fuel volume of each of the one or more stacks when the temperature is above first threshold temperature T1. The temperature of the heat transfer fluid is incrementally increased to further heat the one or more stacks above the first threshold temperature T1. When a second threshold temperature, T2, is reached, fuel is provided to the fuel volume of each of the one or more stacks and electrical current to each of the one or more stacks to generate product via electrolysis.
Absstract of: AU2024250115A1
The present application relates to an electrolyser cell unit having a cell layer (1314) comprising an electrochemically active cell area (1350), the cell layer (1314) having a first side (1315a) and a second side (1315b). The cell unit defines a first fluid flow region (1360) for delivery of fuel to the first side (1315a) of the cell layer (1314) and a second fluid flow region (1365) for exhaust of a fluid from said second side (1315b) of the cell layer (1314). The cross-sectional area of the second fluid flow region (1365) is smaller than the cross-sectional area of the first fluid flow region (1360).
Absstract of: WO2024161241A1
The invention relates to a system for solid-state electricity storage and solid-state electricity generation that allows electricity to be stored when the renewable energy sources produce excess electricity and electricity to be generated when the electricity demand on the market exceeds the electricity production from renewable energy sources. The system comprises a solid-state electricity storage device (1) having a first electrolysis device (6) for producing chlorine from a melt of zinc chloride and solid zinc, a second electrolysis device (8) for producing hydrogen from water, a first reactor (10) for producing hydrogen chloride, and a vessel (13) with a water sprayer (14) for producing hydrochloric acid. The system further comprises a solid-state electricity generation device having a second reactor for reacting zinc and hydrochloric acid to produce hydrogen and a fuel cell for generating electricity.
Nº publicación: KR20250172992A 10/12/2025
Applicant:
현대자동차주식회사기아주식회사
Absstract of: US2025372671A1
Provided is a fuel cell system that includes an electrochemical hydrogen pump (EHP) and a polymer electrolyte membrane fuel cell (PEMFC). The EHP comprises a first membrane-electrode assembly with a first electrolyte membrane, anode, cathode, and bipolar plate, while the PEMFC includes a second membrane-electrode assembly with similar components. Hydrogen generated by the EHP is supplied to the PEMFC's anode for power generation. The system features high-temperature operation, efficient hydrogen transfer via a silica adhesive, and optimized bipolar plates made from graphitic carbon with low resistance and thermosetting resin content. The system ensures efficient power generation with minimal hydrogen loss and operates without the need for additional mechanical or electrical balance of plant components.