Absstract of: CN223463508U
The utility model relates to a wind and fish combined fan foundation assembly and a wind and fish combined culture system. The fan foundation assembly comprises a floating foundation and a culture net cage; the floating foundation is provided with an accommodating space, and the culture net cage is arranged in the accommodating space; the culture net cage comprises a cage body, a floating part and a connecting piece, the cage body is used for culturing marine organisms, the floating part is connected to the cage body and used for controlling the cage body to float or sink, one end of the connecting piece is connected to the floating part and/or the cage body, and the other end of the connecting piece is connected to the floating part and/or the cage body. And the other end of the connecting piece is connected with the floating foundation. According to the fan foundation assembly, floating or sinking of the box body can be achieved through the arranged floating component, the box body and the floating foundation are detached and separated, and maintenance or replacement of the box body is achieved.
Absstract of: CN223467289U
The utility model relates to the technical field of floating type wind power platforms, and discloses a deep sea floating type wind power platform leveling device which comprises a bottom frame, an air bag is fixedly assembled on the inner wall of the bottom frame, an auxiliary frame is arranged on the top of the bottom frame, a rotating frame is rotatably connected to the inner wall of the auxiliary frame, an outer cylinder is fixedly assembled on the top of the rotating frame, and a floating type wind power platform is arranged on the outer cylinder. The inner wall of the outer cylinder is slidably sleeved with a sliding cylinder, and a fixing frame is fixedly assembled on the top of the sliding cylinder. Through cooperative use of a convex rod and a concave cylinder, when the bottom frame and the air bag are influenced by the external environment, the wind power platform body is assisted by the balance weight ball to keep balance when the bottom frame inclines, and the convex rod is driven by the wind power platform body to move towards the inner wall of the concave cylinder; and the bottoms of the convex rods make contact with the tops of the pressure sensors, the pressure sensors are used for controlling the adjacent air pumps to operate, the adjacent air pumps are used for supplying air into the air bags through the connecting pipes, and therefore the device is assisted in leveling.
Absstract of: WO2025220289A1
Provided is a floating offshore wind turbine system having a structure useful for implementing replacement of a large component of a floating offshore wind turbine. The floating offshore wind turbine system includes a floating offshore wind turbine, a main floating body, and a mooring body. The floating offshore wind turbine has: blades that receive wind; a hub to which the blades are fixed; a nacelle that houses a generator that converts rotational energy of the hub into electric power; a tower that supports the nacelle; and a sub-floating body that supports the tower. The main floating body is moored to the sea bottom by the mooring body, and has a sub-floating body insertion space into which the sub-floating body is inserted. The sub-floating body inserted into the sub-floating body insertion space is detachably connected at a connection part with the main floating body.
Absstract of: WO2025219628A1
The present invention relates to a method for controlling the angles of attack of wind turbine blades, based on a linear model of the wind turbine using a parameter indicative of the acceleration of the wind turbine tower, the linear model being constant across the entire wind turbine operating range. The invention further relates to processing means configured to execute the model-based predictive control. The invention further relates to a method for controlling the position of a moving mass coupled to the wind turbine, based on a linear model of the wind turbine using a parameter indicative of the acceleration of the wind turbine tower and a parameter indicative of the position of the moving mass, the linear model being constant across the entire wind turbine operating range.
Absstract of: US2025327673A1
In the sea route plan generating system, a sea route plan generating unit that generates a sea route plan for sailing the power generation floating body that performs wind power generation using a kite while sailing at sea, at a predetermined sailing angle based on the wind conditions and a tidal current determining unit that determines whether or not there is an opposing tidal current opposed to the wind direction based on the wind conditions are provided for the power generation floating body that generates wind power using kite while sailing on the sea. When it is determined that there is an opposite tidal current, the sea route plan generating unit generates the sea route plan such that the power generation floating body proceeds at the sailing angle at which the power generation efficiency increases in the sea area of the opposite tidal current.
Absstract of: US2025327441A1
A floatable, semi-submersible platform for a wind turbine includes a central turbine-tower-hosting column and three or more stabilizing columns. Upper main beams connect the top ends of the stabilizing columns to a top node that is itself connected about the turbine-tower-hosting column. Lower main beams connect the bottom ends of the stabilizing columns to a bottom node that is also connected about the turbine-tower-hosting column. Fixed ballast components may be located within the turbine-tower-hosting column and within the lower main beams. Hull trim compartments for containing ballast may be provided in the three stabilizing columns, and/or lower main beams, with transfer of ballast between the compartments being controlled by a hull trim system (HTS).
Absstract of: WO2025219732A1
A method of preparing a mooring rope for use in a mooring system for a floating offshore structure. The method comprises laying the mooring rope between a buoy and a seabed anchor; and tensioning the mooring rope between a buoyancy force from the buoy and the seabed anchor, thereby elongating the mooring rope towards a worked length condition. In another aspect, there is provided a method of preparing a mooring system for a floating offshore structure. The mooring system has at least one mooring line between a buoy and a seabed anchor, and the mooring line comprises a mooring rope. The method comprises tensioning the at least one mooring line between a buoyancy force from the buoy and the seabed anchor, thereby elongating the mooring rope towards a worked length condition. Preferred embodiments include tensioning the at least one mooring rope or mooring line between a buoyancy force from the buoy and a tensioning device acting against the buoyancy force. The tensioning device may be a part of the mooring system.
Absstract of: EP4636245A2
Disclosed are wind turbines suitable for floating application. The wind turbines include multiple floats and multiple towers connected to the floats, a turbine rotor, including a hub and a plurality of blades, structurally supported by the plurality of towers, the turbine rotor coupled to an electrical generator; and have a very shallow draft even for rated capacities of at least 1 MW. The wind turbines can have a single mooring line for yawing eliminating the need for a nacelle, and can allow for deck-level belt driven electrical generators without the need for gear boxes.
Absstract of: CN223457085U
The utility model discloses a TLP leg type small floating power generation device, and relates to the technical field of offshore power generation devices, the TLP leg type small floating power generation device comprises a semi-submersible type water pressing plate tension supporting platform, the semi-submersible type water pressing plate tension supporting platform is provided with a light energy part, an eddy current energy part and a wind energy part, and the light energy part, the eddy current energy part and the wind energy part are sequentially arranged from bottom to top; natural wind energy, light energy and kinetic energy are converted into electric energy through the semi-submersible type water pressing plate tension platform, the light energy component, the eddy current energy component and the wind energy component, natural resources are fully utilized, and furthermore, the self-combined type wind power generation device can be combined to form various development modes, so that the development efficiency is improved. A plurality of the combined type aquaculture devices can be combined to form a self-sufficiency aquaculture system, and the combined type aquaculture device can be combined with a sea rescue system to form a green and environment-friendly novel sea rescue system.
Absstract of: CN223457090U
The utility model relates to the technical field of offshore wind power engineering, and provides a lifting device for launching a floating type wind power foundation structure, which comprises a transportation platform for bearing and transporting the floating type wind power foundation structure; the lifting platform is arranged close to the transportation platform, is supported in water, bears the floating type wind power foundation structure transported by the transportation platform and drives the floating type wind power foundation structure to descend into the water; the lifting platform comprises a plurality of lifting modules, and the lifting modules are closely arranged in an aligned mode and can independently ascend and descend or be matched with one another to ascend and descend in a linkage mode. The lifting platform starts the corresponding number of lifting modules according to the size of the floating type wind power foundation structure conveyed by the conveying platform to drive the floating type wind power foundation structure to enter the water. According to the floating type offshore wind power foundation structure, the possibility of batch and large-scale launching of the floating type wind power foundation structure is achieved, the difficulty of overall launching of floating type offshore wind power is solved, and the construction efficiency of the floating type offshore wind power is improved.
Absstract of: ES3039359A1
The invention relates to a method for controlling angles of attack of blades of a wind turbine based on a linear model of the wind turbine using a parameter indicative of acceleration of the wind turbine tower; the linear model being invariant throughout the operating range of the wind turbine. The invention also relates to processing means configured to execute the model-based predictive control. The invention also relates to a method for controlling a position of a movable mass coupled to a wind turbine based on a linear model of the wind turbine using a parameter indicative of acceleration of the turbine tower and a parameter indicative of the position of the movable mass; the linear model being invariant throughout the operating range of the wind turbine. (Machine-translation by Google Translate, not legally binding)
Absstract of: US2025319953A1
A shared mooring-anchor system may have one or more variable resource foundations, the one or more variable resource foundations supporting a variable resource. A shared mooring-anchor system may have at least one near-surface buoy and at least one seabed anchor. A shared mooring-anchor system may orient the variable resource near, at, or above a waterline of a source of water. A shared mooring-anchor system may connect the one or more variable resource foundations to the at least one near-surface buoy, the at least one near-surface buoy is connected to the at least one seabed anchor, the at least one seabed anchor is not vertically in alignment underneath the at least one near-surface buoy, an angle between the one or more variable resource foundations, the at least one near-surface buoy, and the at least one seabed anchor is not a right angle.
Absstract of: WO2025214803A1
A mooring line tensioning device is disclosed. The mooring line tensioning device may be coupled to a floating platform, such as a floating wind turbine platform. The mooring line tensioning device may include a housing, a proximal suspension element that can pivotably couple the housing to the floating platform, and a linearly displaceable element of a linear actuator that may extend through the base portion of the housing and may be linearly displaced relative to the housing. The linear actuator may be a jackscrew assembly and the linearly displaceable element may be a lifting screw of the jackscrew assembly. A mooring line may be coupled between a submerged anchor and a coupling element located at a distal end of the linearly displaceable element. Linear displacement of the linearly displaceable element by operation of the linear actuator can be used to adjust the tension of the mooring line.
Absstract of: WO2025215420A1
A floating wind turbine platform is disclosed. The floating wind turbine platform may include a floatable structure having multiple semisubmersible columns. The semisubmersible columns may be interconnected by pontoons, at least some of which may contain a ballast. The floating wind turbine platform may also include a ballast distribution system having a sensor that is usable to detect an inclination of the floatable structure in a body of water. The ballast distribution system can balance the floatable structure in response to a signal from the sensor by operating a pump to distribute the ballast within the pontoons. Distributing the ballast within the pontoons may include selectively adjusting a position of the ballast contained within the internal volume of at least one of the pontoons, or transferring at least some of the ballast between the internal volumes of the pontoons.
Absstract of: WO2025215424A1
A floating wind turbine platform is disclosed. The floating wind turbine platform may include a floatable structure that is deployable to a body of water and includes a plurality of semisubmersible columns. The semisubmersible columns may be interconnected. Each semisubmersible column can define an internal ballast volume. An intake port in each semisubmersible column can place the internal ballast volume of the semisubmersible column into fluid communication with the body of water. A ballast control system may be provided to balance the floatable structure upon a detected inclination thereof. Balancing of the floatable structure may be accomplished by selectively controlling a transfer of water from the body of water to the internal ballast volume of at least one of the semisubmersible columns, and/or by selectively controlling a transfer of water from the internal ballast volume of at least one of the semisubmersible columns to the body of water.
Absstract of: WO2025216897A1
A shared mooring-anchor system may have one or more variable resource foundations, the one or more variable resource foundations supporting a variable resource. A shared mooring-anchor system may have at least one near-surface buoy and at least one seabed anchor. A shared mooring-anchor system may orient the variable resource near, at, or above a waterline of a source of water. A shared mooring-anchor system may connect the one or more variable resource foundations to the at least one near-surface buoy, the at least one near-surface buoy is connected to the at least one seabed anchor, the at least one seabed anchor is not vertically in alignment underneath the at least one near-surface buoy, an angle between the one or more variable resource foundations, the at least one near-surface buoy, and the at least one seabed anchor is not a right angle.
Absstract of: WO2025213767A1
Disclosed in the present application is a blade installation system and method for a wind turbine generator in a floating offshore wind power system. The blade installation system comprises a nacelle gripper, a blade gripper and a lifting installation vessel, wherein the nacelle gripper comprises a gripping housing and a plurality of telescopic tightening block assemblies; the blade gripper comprises a gripping cylinder which is arranged on a front outer side surface of the gripping housing and can slide left and right, the inner circumferential surface of the gripping cylinder being provided with a plurality of telescopic driving wheel assemblies; a crane on the lifting installation vessel is configured to hoist the nacelle gripper to or away from a nacelle, and the plurality of telescopic tightening block assemblies cooperate to grip or release the nacelle; and the crane is further configured to hoist a blade root into the gripping cylinder in an open state, the plurality of telescopic driving wheel assemblies cooperate to grip or release the blade root, and the plurality of telescopic driving wheel assemblies cooperate to horizontally drive the gripped blade root from the front to the rear into a mounting hole of a hub. At a working sea area, the blade root can be conveniently mounted in the mounting hole of the hub; the installation difficulty is low.
Absstract of: EP4631847A1
A floating wind turbine platform is disclosed. The floating wind turbine platform may include a floatable structure having multiple semisubmersible columns: The semisubmersible columns may be interconnected by pontoons, at least some of which may contain a ballast. The floating wind turbine platform may also include a ballast distribution system having a sensor that is usable to detect an inclination of the floatable structure in a body of water. The ballast distribution system can balance the floatable structure in response to a signal from the sensor by operating a pump to distribute the ballast within the pontoons. Distributing the ballast within the pontoons may include selectively adjusting a position of the ballast contained within the internal volume of at least one of the pontoons, or transferring at least some of the ballast between the internal volumes of the pontoons.
Absstract of: WO2024121391A1
The method of manufacturing a floater (2) comprises the steps of obtaining a plurality of wall portions (12), each wall portion (12) corresponding to an angular sector of an axial section (10) of a sidewall (6) of the floater, and assembling the wall portions (12) such as to manufacture axial sections (10) of the sidewall (6) sequentially. The assembly of the wall portions (12) starts with the assembly of a first axial section (10) onto one of the end plates (8) and at least one wall portion (12) is stiffened and/or at least one of the end plates (8) is stiffened.
Absstract of: TW202446669A
The vessel comprises a float (80) and an intervention assembly on the wind turbine, carried by the float (80). The float (80) comprises a buoyant body (86) and a fastening baseplate (88) protruding relative to the buoyant body (86) along a fastening axis (A-A') on a lower surface of the offshore wind turbine platform. The buoyant body (86) defines a ballast-receiving volume, the vessel comprising a ballast controller configured to control the amount of ballast received in the ballast-receiving volume to raise an upper contact surface (94) of the baseplate (88) to place it in contact with a lower surface of the offshore wind turbine platform, the float (80) being monohull.
Absstract of: WO2025178634A1
Tension-leg platforms for supporting wind turbines are augmented with surge plates. The surge plates increase the amount of water that is displaced when a tension-leg platform is accelerated horizontally, which reduces wave induced accelerations. The surge plates are mounted to the deepest parts of the submerged structure of each platform to minimize wave loading.
Absstract of: EP4631843A1
A mooring line tensioning device is disclosed. The mooring line tensioning device may be coupled to a floating platform, such as a floating wind turbine platform. The mooring line tensioning device may include a housing, a proximal suspension element that can pivotably couple the housing to the floating platform, and a linearly displaceable element of a linear actuator that may extend through the base portion of the housing and may be linearly displaced relative to the housing. The linear actuator may be a jackscrew assembly and the linearly displaceable element may be a lifting screw of the jackscrew assembly. A mooring line may be coupled between a submerged anchor and a coupling element located at a distal end of the linearly displaceable element. Linear displacement of the linearly displaceable element by operation of the linear actuator can be used to adjust the tension of the mooring line.
Absstract of: US2025313305A1
An offshore wind farm includes at least four floating structures designed to receive a wind turbine, with each floating structure having at least three mooring lines, and each mooring line is attached to a mooring point arranged around said floating structure. The mooring lines facing inward from the offshore wind farm form the inner mooring lines of the offshore wind farm and the mooring lines facing outward from the offshore wind farm form the peripheral mooring lines of the offshore wind farm, wherein two adjacent floating structures have at least one of their peripheral mooring lines crossing each other, with at least one of these peripheral mooring lines comprising a buoyancy element.
Absstract of: AU2024234263A1
A tendon (224) for a tension leg platform (202), TLP, is provided. The TLP comprises a foundation (206), connectable to a bottom (208) of a body of water, and a buoyant hull (216). The tendon has a length, a proximal end (223), and a distal end (225). The tendon comprises a proximal end fitting at the proximal end and a distal end fitting at the distal end. The tendon is connectable with the proximal end fitting to the hull and with the distal end to the foundation to provide a pulling force on the hull. The length of the tendon is at least 300 meters. The tendon comprises basalt fibres for transferring the pulling force from the proximal end fitting to the distal end fitting.
Nº publicación: WO2025209633A1 09/10/2025
Applicant:
VESTAS WIND SYSTEMS AS [DK]
VESTAS WIND SYSTEMS A/S
Absstract of: WO2025209633A1
The invention provides a method for handling a wind turbine rotor blade (11) of a horizontal axis wind turbine (1), which wind turbine comprises a tower (14) supported by and fixed to a foundation (17), a nacelle (15) on the tower, and a rotor hub (18) rotatably mounted to the nacelle, the method comprising - fixedly mounting a blade supporting device (21a, 21b) to the foundation and/or to the wind turbine, - lifting the blade to the hub, or lowering the blade from the hub, and - positioning the blade on the blade supporting device (21a, 21b) so as to be supported by the blade supporting device, before the blade is lifted to the hub, or upon lowering the blade from the hub.