Resumen de: GB2634787A
A method and associated apparatus 50 for the production of gas via electrolysis of water. The method comprises: performing electrolysis of water within one or more electrolysis cells (figure 1,2), to produce a mixture comprising a liquid and at least one of hydrogen and oxygen. The gas(es) and liquid are separated, where the separator 53 operates at a higher pressure than the pressure at which the one or more electrolysis cells operate. An additional pressurising step 55 can be performed on the gaseous mixture before separation. The gas output from the separator may be supplied to a compressor. A energy harvesting device may be provided as a part of a depressuring system 56.
Resumen de: EP4541944A1
A proton exchange membrane (10) for water electrolysis comprising a proton exchange substrate (12) coated on one side with a titanium oxide film (14), the titanium oxide film having a thickness (t<sub>14</sub>) equal to or smaller than 100 nm. A method for making a proton exchange membrane for water electrolysis.
Resumen de: GB2634846A
A hydrogen production facility 10 is described. The hydrogen production facility includes one or more electrolyser stacks 12 to electrolyze water. A hydrogen-aqueous solution mixture 12a and an oxygen-aqueous solution mixture 12b are generated, where the one or more electrolyser stacks comprise a plurality of membranes. The facility also includes a hydrogen separator to produce a flow of hydrogen from the hydrogen-aqueous solution mixture and an oxygen separator to produce a flow of oxygen from the oxygen-aqueous solution mixture. The hydrogen separator 2 comprises a hydrogen gas-liquid separation device and a hydrogen coalescing device 16. The oxygen separator 4 comprises an oxygen gas-liquid separation device and an oxygen coalescing device 18. The hydrogen separator 2 and the oxygen separator 4 can be coupled using a pressure balancing line 24 to prevent or reduce a pressure differential across the plurality of membranes.
Resumen de: GB2634845A
A hydrogen production facility 10 and associated method of use is disclosed, comprising a plurality of electrolyser stacks 12. The stacks 12 are for electrolyzing water, generating a hydrogen-aqueous solution mixture. A hydrogen separator 2 arrangement is described for producing a flow of hydrogen from the hydrogen-aqueous solution mixture. The hydrogen separator 2 arrangement comprises a plurality of first stage hydrogen collector separators 20,22, where the first stage hydrogen collector separators are fluidly coupled to a respective sub-set of the plurality of electrolyser stacks. The plurality of first stage hydrogen collector separators 20,22 are also fluidly coupled to a downstream hydrogen buffer vessel 28. The hydrogen separator 2 arrangement may comprise one or more hydrogen coalescing devices 16. A pressure balancing line 24 can also be provided between oxygen 22 and hydrogen separators 20 - it may also extend between hydrogen 28 and oxygen buffer 30 vessels.
Resumen de: EP4541941A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane (41), a gas diffusion layer (43), and a catalyst layer (45). The gas diffusion layer (43) is positioned on one side of the electrolyte membrane (41). The gas diffusion layer (43) is a porous layer. The catalyst layer (45) is positioned between the electrolyte membrane (41) and the gas diffusion layer (43). The catalyst layer (45) is formed from a catalyst material. A penetration part (433) formed in the gas diffusion layer (43) by the penetration the catalyst material having a thickness of 1 µm or less.
Resumen de: EP4541945A1
The invention relates to Device for electrochemical reversible dihydrogen storage (1), said device comprising: a sealed chamber (2) intended to receive an electrolytic media (3) and gaseous dihydrogen (4), connection means (5) suitable for connecting the seal chamber to a gas circuit (6) and at least one first electrode (7), and at least one second electrode (8), arranged within the sealed chamber. The at least one second electrode is suitable to oxidize dissolved gaseous dihydrogen, in the electrolytic media, and form protons and to reduce protons and form gaseous dihydrogen according to formula 1: H2 ↔ 2H<+> + 2e<->, formula 1. The at least one first electrode comprises at least one redox couple M
Resumen de: WO2023242385A1
The invention relates to a method for producing hydrogen with adjustment of the power of a compressor according to the rate of production of an electrolyser, said method comprising the following steps: - a) electrolysing using an electrolyser producing hydrogen at a flow rate of between 0.5 and 5 standard m3/h at an outlet pressure of between 1 and 50 bar; - b) compressing the hydrogen using an electrochemical compressor. The method also comprises a step of correcting the power supply current of the electrochemical compressor with respect to a target pressure value.
Resumen de: AU2023293861A1
The invention relates to an electrolysis system (21) comprising: at least one electrolysis cell (01); and a cathode-side water circuit (07) having a hydrogen separator (05); and an anode-side water circuit (06) having an oxygen separator (04); and an equalisation connection (22) which leads, coming from a cathode-side water connection (15), to the anode-side water circuit (06) via a pump (13) and an ion exchanger (12) via a node point (23) and an operating line (24); and an idle line (25) which (25) branches off upstream of the control line (24) and leads to the cathode-side gas connection (17).
Resumen de: CN119233941A
A process for cracking ammonia to form hydrogen is described, the process comprising the steps of: (i) passing the ammonia through one or more catalyst-containing tubes in a furnace to crack the ammonia and form hydrogen wherein the one or more tubes are heated by combustion of a fuel gas mixture to form a flue gas containing nitrogen oxides, the invention relates to a method for producing ammonium nitrate from flue gas, comprising the steps of (i) cooling the flue gas to a temperature below 170 DEG C, where yH2O is mole% of steam in the flue gas, P * H2O is the equilibrium vapor pressure of water in an aqueous ammonium nitrate solution, and p is the minimum operating pressure of the flue gas, and (ii) cooling the flue gas to a temperature below 170 DEG C. # imgabs0 #
Resumen de: EP4541451A1
This dehumidification apparatus is for dehumidifying a hydrogen gas that is produced by a hydrogen production device, the dehumidification apparatus comprising: a dehumidifier that includes an adsorption tower, inside of which there is provided an adsorbent that is capable of adsorbing moisture contained in the hydrogen gas; an inlet line for introducing the hydrogen gas from the hydrogen production device into the dehumidifier; an inlet valve that is provided to the inlet line; an outlet line for discharging the hydrogen gas that is dehumidified by the dehumidifier out from the dehumidifier; an outlet valve that is provided to the outlet line; and a control device that is configured to adjust the opening degree of the inlet valve and the opening degree of the outlet valve on the basis of the pressure within the adsorption tower during activation of the dehumidification apparatus.
Resumen de: EP4541943A1
An electrode for electrolysis, including:a conductive substrate; anda catalyst layer disposed on a surface of the conductive substrate,in which at least one of the following conditions (I) and (II) is satisfied:(I) the catalyst layer contains a ruthenium element and an iridium element, and a crystallite size is 50 Å or more and 100 Å or less, the crystallite size being calculated from a peak observed in a 2θ range of 27° or more and 28.5° or less in an XRD spectrum, the XRD spectrum being obtained by subjecting the catalyst layer to X-ray diffraction measurement and(II) the catalyst layer contains (i) a ruthenium element, (ii) an iridium element, and (iii) at least one kind of metal element M selected from the group consisting of W, Zn, Mn, Cu, Co, V, Ga, Ta, Ni, Fe, Mo, Nb and Zr, in the catalyst layer, a molar ratio of the ruthenium element to the iridium element, in terms of ruthenium element/iridium element, is 1.4 or more, and a molar ratio of the metal element M to the ruthenium element, in terms of metal element M/ruthenium element, is 0.06 or more and 3.5 or less.
Resumen de: WO2023245201A2
A process of dissociating ammonia into a dissociated hydrogen/nitrogen stream in catalyst tubes within a radiant tube furnace and an adiabatic or isothermal unit containing catalyst, along with downstream purification process units to purify the dissociated hydrogen/nitrogen stream into high purity hydrogen product.
Resumen de: EP4542815A2
An HVDC system comprising an AC/DC converter sub-system electrically connected to a renewable energy equipment and a VSC sub-system is provided. A method comprises operating the renewable energy equipment to function as a voltage source to energize an HVDC link between the AC/DC converter sub-system and the VSC sub-system; operating the VSC sub-system as a voltage source to energize at least one electrical load electrically connected thereto; if it is determined that the power production rate of the renewable energy equipment is not within a designated parameter, operating the equipment to follow the VSC sub-system such that controlling the AC electric power output influences the power production rate. If it is within the designated parameter, operating the VSC sub-system to follow the renewable energy equipment such that the VSC sub-system adjusts the properties of its AC electric output to match the properties of the electric power generated by the renewable energy equipment.
Resumen de: WO2024047362A2
A membrane electrode assembly (MEA) for producing hydrogen in a water electrolyser is provided. The MEA comprises a polymer electrolyte membrane (REM), a cathode comprising a cathode catalyst on a first side of the REM, an anode comprising an anode catalyst on a second side of the REM, and a platinum-ruthenium (Pt-Ru) catalyst located on the second side of the REM for electrochemically converting hydrogen gas into hydrogen cations in use. The Pt-Ru catalyst is in electrical contact with the anode and ionic contact with the REM.
Resumen de: TW202428343A
The invention relates to the electrochemical production of hydrogen and lithium hydroxide from Li+-containing water with the aid of an LiSICon membrane. It addresses the problem of specifying a process that can be operated economically on an industrial scale too. In particular, the process should have good energy efficiency and achieve a high membrane lifetime even when the employed feed contains impurities that are harmful to LiSICon materials. A particular aspect of the process is that the selective separation of lithium by the membrane and an electrolysis of water take place simultaneously in the cell. A key aspect of the process is that the electrochemical process is carried out in basic media, more precisely at pH 9 to 13. The pH is adjusted by adding a basic compound to the feed.
Resumen de: EP4541941A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane (41), a gas diffusion layer (43), and a catalyst layer (45). The gas diffusion layer (43) is positioned on one side of the electrolyte membrane (41). The gas diffusion layer (43) is a porous layer. The catalyst layer (45) is positioned between the electrolyte membrane (41) and the gas diffusion layer (43). The catalyst layer (45) is formed from a catalyst material. A penetration part (433) formed in the gas diffusion layer (43) by the penetration the catalyst material having a thickness of 1 µm or less.
Resumen de: US2025122630A1
The invention relates to a method for removing nitrogen compounds which includes electrolysing a urea derivative of general formula I: (R1,R2)N—C(═X)—N(R3,R4), wherein: X means NH, NR5 or S, R1, R2, R3, R4 and R5 can be the same or different, and have the meanings indicated in claim 1, or a polymer of the compound of formula I, in an aqueous medium, in at least one electrolytic cell comprising an anode that comprises a metal, wherein “metal” means one or more metals, one or more compounds of a metal or a mixture of metal compounds or combinations thereof, and comprising a metal cathode. Nitrogen is obtained as a result of the oxidation of the nitrogen compounds at the anode and hydrogen as a result of the reduction of the water at the cathode, with the condition that if the anode is made of platinum, the cathode is not made of platinum.
Resumen de: US2025122628A1
Embodiments are disclosed comprising an electromechanical device that generates hydrogen from mechanical energy without requiring an external source of electrical energy. In one embodiment, for example, the only external energy required is rotational energy and the necessary electrical energy for electrolytic dissociation of water is generated internally to the device. Various aspects of embodiments of the invention provide enhanced efficiency for generating hydrogen. Details of various embodiments are further described herein.
Resumen de: US2025122627A1
A method of generating hydrogen including applying a potential of greater than 0 to 2.0 V to an electrochemical cell that is partially submerged in an aqueous solution. On applying the potential, water in the aqueous solution is reduced, and thereby forms hydrogen. The electrochemical cell includes an electrocatalyst and a counter electrode. The electrocatalyst includes a substrate, WO3−x nanosheets, and CdS1−y nanospheres, in which, x is from greater than 0 to less than 3 and y is from greater than 0 to less than 1. The CdS1−y nanospheres are dispersed on the WO3−x nanosheets to form a nanocomposite, which is dispersed on a surface of the substrate. The WO3−x nanosheets have an average length of 600-800 nanometers (nm) and an average width of 300-500 nm, and the CdS1−y nanospheres have an average diameter of 10-50 nm.
Resumen de: US2025122629A1
A mission configurable system for fuel generation is provided. The mission configurable system includes a mobility unit configured to support multiple fuel generation components customized to a specific mission. The fuel generation components can include at least one renewable energy generation system such as a hydrogen electrolyzer, a methane reformer, a solar panel, and/or a wind turbine.
Resumen de: US2025121344A1
A process for carrying out an endothermic reaction of a feed gas in a reactor system including a pressure shell housing a structured catalyst arranged for catalyzing the endothermic reaction of a feed gas, the structured catalyst including a macroscopic structure of electrically conductive material, the macroscopic structure supporting a ceramic coating, the ceramic coating supporting a catalytically active material.
Resumen de: US2025123002A1
In one aspect, an appliance for heating food, in particular a grill, and/or for emitting heat to the surroundings, in particular a heating appliance, includes at least one provision unit for providing hydrogen and at least one reaction unit for generating heat from the hydrogen. In one implementation, the reaction unit is designed as a catalytic unit for the flameless combustion of the hydrogen having at least one catalyst for catalyzing the hydrogen.
Resumen de: US2025125653A1
A mobile hydrogen supply system includes a natural energy power generation device that generates electric power from natural energy, and a hydrogen generation device that generates hydrogen. The hydrogen generation device is operable on electric power generated by the natural energy power generation device, and the natural energy power generation device and the hydrogen generation device are transportable.
Resumen de: US2025125395A1
A metal fluoride-functionalized proton-exchange solid support includes a proton-exchange solid support comprising a substituent group including an oxygen atom, and a metal fluoride group comprising a multivalent metal atom covalently bonded to the oxygen atom included in the substituent group, wherein the metal atom has a negative formal charge.
Resumen de: US2025125396A1
There is provided a composite electrolyte membrane for an electrochemical device, comprising at least one reinforced polymer electrolyte membrane having a first surface and an opposing second surface. The reinforced polymer electrolyte membrane comprises a microporous polymer structure and an ion exchange material, in which the ion exchange material is at least partially embedded within the microporous polymer structure to render the microporous polymer structure occlusive. The composite electrolyte membrane further comprises a plurality of porous layers comprising a first porous layer and a second porous layer, in which the first porous layer is adjacent to the first surface of the first reinforced polymer electrolyte and the second porous layer is adjacent to the second surface of the reinforced polymer electrolyte. Also disclosed is a membrane electrode assembly comprising such a composite electrolyte membrane and a redox flow battery, fuel cell, and electrolyzer comprising such a membrane electrode assembly.
Resumen de: US2025125390A1
A sustainable water fueled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Resumen de: AU2023349727A1
A system (1) for producing ammonia comprises an ammonia reactor (44) which is designed to produce ammonia (NH3) from a synthesis gas, the synthesis gas comprising hydrogen (H2) and nitrogen (N2), and the system also comprises an electrolizer (2) which is designed to produce hydrogen and oxygen from water, wherein: a compressor (6) is provided and is fluidically connected to the electrolizer (2) and is designed to compress the hydrogen (H2) coming from the electrolizer (2); and the compressor (6) is designed to compress mobile hydrogen (H2).
Resumen de: FI20236153A1
According to a first aspect of the present disclosure there is provided an arrangement (10) for a proton exchange membrane (PEM) device. The arrangement comprises the anode (13) of said PEM device, a hydrogen feed line (11,12) for feeding hydrogen to the anode (13), a circulation line (14) fitted in parallel with the anode of the PEM device for circulating part of the hydrogen from said feed line (12) past the anode, and at least one slip-stream filter (15) arranged on said circulation line (14) for removing impurities from the hydrogen. The slip-stream filter (15) at its input end is connected to said circulation line (14) via a first valve (16) and at its output end is connected to the fuel return outlet (18) of said anode. The fuel return outlet being in flow connection with a purge line (20) for the anode having a second valve (17). The slip-stream filter (15) during a regeneration process may be flushed with gas from said circulation line (14) through said second valve (17).
Resumen de: WO2025076572A1
The invention relates to an electrolytic reaction system (1) for producing process gases in the form of gaseous hydrogen and oxygen, comprising at least three electrode assemblies (2), each of which comprise a plurality of hollow cylindrical electrodes that are arranged coaxially to one another and are positioned one inside the other. At least three electrode assemblies (2) are uniformly distributed about a common central vertical axis (4), and a hollow cylindrical container wall (5) for receiving an electrolyte is provided for each electrode assembly (2). A cover element (7) is supported on the upper end face (6) of each of the container walls (5), and the cover element (7) has through-openings (8) which run in the vertical direction and which are designed to discharge process gases produced within the container walls (5). A collecting hood (9) is provided on the cover element (7) in order to combine process gases exiting the individual through-openings (8). An electromagnetic coil (10) which is designed in the form of a ring and comprises a central air core (11) is received by the cover element (7) or is mounted on the cover element (7) and is aligned such that the central vertical axis (4) of the at least three electrode assemblies (2) passes through the central air core (11).
Resumen de: WO2025078333A1
The present invention relates to an electrode (100) for electrolysis of electrolyte, said electrode comprising: first porous layer (102) permeable to electrolyte and gases produced by the decomposition of electrolyte; a second porous layer (104) permeable to electrolyte and gases produced by the decomposition of electrolyte, said second porous layer (104) being arranged adjacent to the first porous layer (102), wherein the first porous layer (102) comprises Nickel.
Resumen de: WO2025078381A1
The various embodiments of the present invention disclose a water electrolyser using alkaline medium, comprising: a first end plate and a second end plate and a plurality of cells stacked in-between the first and the second end plate. Each cell comprises an anode cell frame and a cathode cell frame, each cell frame further comprises a central opening, at least one inlet channel transversing through the cell frame, and at least one inlet pathway grooved in the cell frame for connecting the inlet channel to the central opening. The inlet pathway comprises an inlet orifice <b>characterized by</b> a minimum cross-sectional area in the inlet pathway. The cross-sectional area of the inlet channel in the stack is greater than the sum of the cross-sectional area of the plurality of inlet orifices in the stack by at least a predetermined factor, the predetermined factor being larger than 1 and smaller than or equal to 4.
Resumen de: WO2025078241A1
The present invention relates to improved water purification in power-to-liquid systems and processes, which are based on reverse water-gas shift reaction in conjunction with the electrolysis of water in order to provide hydrogen, as a result of the controlled use of an additional at least one ion exchanger and/or at least one gase-phase filtering device.
Resumen de: WO2025077747A1
A control method and apparatus for a hydrogen production device, a device, and a medium. The method comprises: acquiring electric energy information of an input current of a hydrogen production device (101); on the basis of the electric energy information, determining a predicted flow passing through fluid regulating valves in the hydrogen production device, wherein the fluid regulating valves comprise a high-frequency regulating valve and a low-frequency regulating valve which are arranged in parallel (102); and adjusting the opening degree of the low-frequency regulating valve on the basis of the predicted flow, a first flow selected from a flow range corresponding to a preset opening degree range of the high-frequency regulating valve, and a second flow corresponding to the current opening degree of the low-frequency regulating valve (103). When the input current fluctuates greatly, the opening degree of the low-frequency regulating valve is adjusted to reserve sufficient adjustable opening degree margin for the high-frequency regulating valve.
Resumen de: WO2025080255A1
An apparatus for producing hydrogen from variable electric generators includes a variable output generator operatively coupled to a power supply. A plurality of electrolysis cells is operatively coupled to the power supply. A cooling water system removes heat from the cells, and includes a hot water tank for receiving and storing water heated by the cells and a cold water tank arranged to store cooled water for cooling the cells. An evaporative desalinator has a heat input in communication with the hot water tank and a cooled water output in communication with the cold water tank. The size of the tanks corresponds to variability of the electric generator, the maximum output of the generator and an operating rate of the desalinator. Part of water discharged from a fresh water output of the desalinator is used as feed input to the cells and the remainder is available for use as fresh water.
Resumen de: WO2025079394A1
This lithium salt production method includes an adsorption step, a washing step, and a desorption step. In the adsorption step, a second electrode 2 and a first electrode 1 including an adsorbent (for example, λ-MnO2), are immersed in a raw material water 21 containing LiCl. By applying a first voltage between the first electrode 1 and the second electrode 2, Li+ is adsorbed on the first electrode 1. In the washing step, the first electrode 1 that has been subjected to the adsorption step is washed with a washing liquid 22 containing water. In the desorption step, the first electrode 1 that has been subjected to the washing step and a third electrode 3 are immersed in water 23 containing anions. A second voltage is applied between the first electrode 1 and the third electrode 3. As a result of the foregoing, Li+ is desorbed from the first electrode 1, H2 is formed on the third electrode 3, and a lithium salt is generated from Li+ and anions. The first voltage and/or the second voltage are generated by electric power derived from renewable energy.
Resumen de: WO2025079345A1
A water splitting cell that is a water electrolysis cell for use in a water splitting device that splits water and generates hydrogen when irradiated with light, said water splitting cell comprising: a laminate in which an anode, a perovskite battery cell, and a cathode are laminated in the given order; and an electrically insulating protective material which covers the outer periphery of the laminate.
Resumen de: DE102023210058A1
Die Erfindung betrifft einen Gas-Flüssigkeit-Separator (1) für eine Elektrolyseanlage, umfassend einen Behälter (2) mit einem Einlass (3) zum Einleiten eines Gas-Flüssigkeit-Gemischs, das sich im Behälter (2) aufgrund des Schwerefelds der Erde in eine Gasphase (4) und eine Flüssigphase (5) trennt, mit einem Gas-Auslass (6) zum Ausleiten von Gas aus der Gasphase (4) sowie einem Flüssigkeits-Auslass (7) zum Ausleiten von Flüssigkeit aus der Flüssigphase (5). Erfindungsgemäß umfasst der Gas-Flüssigkeit-Separator (1) eine steuerbare Heizeinrichtung (8), mittels welcher der Behälter (2) beheizbar ist.Die Erfindung betrifft ferner eine Elektrolyseanlage mit mindestens einem erfindungsgemäßen Gas-Flüssigkeit-Separator (1) sowie ein Verfahren zum Betreiben einer Elektrolyseanlage.
Resumen de: DE102023127801A1
Die vorliegende Erfindung betrifft eine Wasserelektrolyseelektrode mit einem lonomer, das in Poren eines Nickel-Eisen-Katalysators gefüllt ist, und ein Verfahren zur Herstellung davon. Während des Galvanisierungsprozesses des Katalysators auf einem Substrat zur Herstellung der Wasserelektrolyseelektrode wird Wasserstoffgas entfernt, wodurch eine Porenstruktur innerhalb des Katalysators gebildet wird. Durch Füllen dieser Porenstruktur mit dem Ionomer ist es möglich, die Effizienz und Haltbarkeit der Wasserelektrolysevorrichtung zu verbessern.
Resumen de: DE102023128289A1
Die Erfindung betrifft eine Wasserstoffproduktionsanlage, umfassend mindestens eine erste Produktionslinie, umfassend zumindest eine erste Elektrolysevorrichtung mit einer Mehrzahl von ersten Elektrolysemodulen und eine erste Verdichtervorrichtung mit einer Mehrzahl von ersten Verdichtermodulen, eine Steuerung, umfassend zumindest ein Fahrplanerstellungsmodul und ein Steuermodul, wobei das Fahrplanerstellungsmodul eingerichtet ist zum Erstellen eines Ansteuerfahrplans zumindest für die ersten Elektrolysemodule und für die ersten Verdichtermodule, basierend auf jeweiligen Leistungskennlinien der jeweiligen ersten Elektrolysemodule, jeweiligen Leistungskennlinien der jeweiligen ersten Verdichtermodule und mindestens einem vorgegebenen Optimierungskriterium, und wobei das Steuermodul eingerichtet ist zum Ansteuern der ersten Verdichtermodule und der ersten Elektrolysemodule, basierend auf dem erstellten Ansteuerfahrplan.
Resumen de: WO2025080121A2
The present invention discloses an electrolyser for water splitting in hydrogen/oxygen production and methods thereof. The electrolyser comprises a first electrode plate (100) coated with a first catalyst comprising a first ion transfer opening (101) formed therethrough along a first lateral axis of the first electrode plate (100); a second electrode plate (200) coated with a second catalyst comprising a second ion transfer opening (201) formed therethrough along a second lateral axis of the second electrode plate (200); and an electrically insulative adhesive layer (300) configured for securing together the first electrode plate (100) and the second electrode plate (200) in a face-to-face manner or a back-to-face manner, forming separate compartments each for a hydrogen gas and an oxygen gas resulting from the water splitting that provide immunity against any mixing of the hydrogen gas and the oxygen gas at any level of an electrical power supply.
Resumen de: US2023420718A1
Embodiments are directed to composite membranes having a microporous polymer structure, and an ion exchange material forming a continuous ionomer phase within the composite membrane. The continuous ionomer phase refers to absence of any internal interfaces in a layer of ionomer or between any number of layers coatings of the ion exchange material provided on top of one another. The composite membrane exhibits a haze change of 0% or less after being subjected to a blister test procedure. No bubbles or blisters are formed on the composite membrane after the blister test procedure. A haze value of the composite membrane is between 5% and 95%, between 10% and 90% or between 20% and 85%. The composite membrane may have a thickness of more than 17 microns at 0% relative humidity.
Resumen de: AU2023254123A1
Embodiments of the invention relate to producing hydrogen from a subsurface formation by injecting a reactant into the subsurface formation and reacting the reactant with the subsurface formation to form at least one of hydrogen gas or a mineralized product within the subsurface formation. The hydrogen produced is collected or one or more components of the reactant is sequestered to form a mineralized product in the subsurface formation. Other embodiments of the invention relate to producing hydrogen by injecting a thermal fluid into the subsurface rock formation, where the thermal fluid includes a reactant. The reactant is reacted with components in the subsurface formation to form at least one of hydrogen gas mineralized sulfur, or mineralized carbon.
Resumen de: CN119137312A
An electrode for an oxygen evolution reaction suitable for water electrolysis under alkaline conditions, comprising a ceramic material having a stability coefficient (SF) between 1.67 < = SF < = 2.8, calculated by formula (II) wherein ro represents the ion radius of the oxide ion (O2-), rB, av represents the weighted average ion radius of the transition metal, nA, nB, av represents the weighted average ion radius of the transition metal, nA represents the ion radius of the oxide ion (O2-), nA represents the ion radius of the oxide ion (O2-), nA represents the ion radius of the oxide ion (O2-), and nA represents the ion radius of the oxide ion (O2-). Av represents the weighted average oxidation state of the rare earth metal or the alkaline earth metal, and rA and av represent the weighted average ion radius of the rare earth metal or the alkaline earth metal. The invention further relates to an alkaline electrolysis stack comprising at least one such electrode, and to a method for water electrolysis using the alkaline electrolysis stack.
Resumen de: US2025122075A1
The disclosure relates to a process for producing ammonia. A hydrocarbon mixture and steam are supplied to a primary reformer. The hydrocarbon mixture and the steam are at least partly converted to carbon monoxide and hydrogen in the primary reformer. The gas mixture from the primary reformer is directed into a secondary reformer. The secondary reformer is supplied with process air, at least comprising oxygen and nitrogen, such that unconverted hydrocarbon is converted to carbon monoxide and hydrogen.
Resumen de: GB2634522A
An electrode (100) for electrolysis, said electrode comprising: a first porous layer (102) permeable to electrolyte and gases produced by the decomposition of electrolyte and a second porous layer (104) permeable to electrolyte and gases produced by the decomposition of electrolyte. The second porous layer is located adjacent to the first porous layer (102), and the first porous layer (102) comprises nickel. Metal swarf may be used as the basis for both porous electrodes through a sintering method. The second porous layer (104) may comprise titanium. The electrode (100) may comprise a flow through electrode for the electrolysis of water.
Resumen de: EP4538424A1
The various embodiments of the present invention disclose an electrolyser stack, preferably water electrolyser using alkaline medium, comprising: a first end plate and a second end plate and a plurality of cells stacked in-between the first and the second end plate. Each cell comprises an anode cell frame and a cathode cell frame, each cell frame further comprises a central opening, at least one inlet channel transversing through the cell frame, and at least one inlet pathway grooved in the cell frame for connecting the inlet channel to the central opening. The inlet pathway comprises an inlet orifice characterized by a minimum cross-sectional area in the inlet pathway. The cross-sectional area of the inlet channel in the stack is greater than the sum of the cross-sectional area of the plurality of inlet orifices in the stack.
Resumen de: AU2023285309A1
The present invention relates to a framing structure for an electrolyser subject to internal pressure, able to withstand corrosive environments and radial pressure forces. The present invention also relates to an electrolytic cell and electrolyser equipped with said framing structure, as well as its use in high-pressure water electrolysis applications.
Resumen de: EP4538427A1
The invention relates to a method for removing nitrogen compounds, characterised in that it comprises electrolysing a urea derivative of general formula I: (R<sup>1</sup>,R<sup>2</sup>)N-C(=X)-N(R<sup>3</sup>,R<sup>4</sup>), wherein: X means NH, NR<sup>5</sup> or S, R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, R<sup>4</sup> and R<sup>5</sup> can be the same or different, and have the meanings indicated in claim 1, or a polymer of the compound of formula I, in an aqueous medium, in at least one electrolytic cell comprising an anode that comprises a metal, wherein "metal" means one or more metals, one or more compounds of a metal or a mixture of metal compounds or combinations thereof, and comprising a metal cathode. The method further comprises obtaining nitrogen as a result of the oxidation of the nitrogen compounds at the anode and hydrogen as a result of the reduction of the water at the cathode, with the condition that if the anode is made of platinum, the cathode is not made of platinum.
Resumen de: CN119325526A
Disclosed is an electrical energy or electrosynthesis cell, the electrical energy or electrosynthesis cell comprising: a cathode; an anode; and an electrode separator positioned between the cathode and the anode. The liquid electrolyte inlet supplies a liquid electrolyte to the cell and the liquid electrolyte outlet removes the liquid electrolyte from the cell. The liquid electrolyte outlet includes an overflow weir across or through which excess liquid electrolyte flows out of the cell. In another form, one or more instillators are included as part of a liquid electrolyte inlet and/or a liquid electrolyte outlet, and an instillation chamber is positioned below the instillators. In another form, one or more porous capillary structures are located in a liquid passage in the cell (e.g., in a liquid passage provided by an overflow weir) or positioned adjacent the instillator. In another form, one or more current limiters are utilized that create a pressure drop in the liquid electrolyte passing through the current limiter.
Resumen de: GB2634503A
A method of conditioning an anion exchange membrane (AEM) in an electrolysis cell is described. The anion exchange membrane (AEM) comprises non-hydroxide anions. The method comprises: providing an electrolysis cell comprising an anode, a cathode and an anion exchange membrane situated between the anode and the cathode. The anion exchange membrane is then contacted with a conditioning solution comprising hydroxide ions to replace at least some of the non-hydroxide anions with hydroxide anions. The AEM may comprise quaternary ammonium cations. The conditioning solution may comprise potassium hydroxide. A catalyst may be present between the electrode(s) and the membrane such as an hydrogen evolution reaction catalyst (HER) or oxygen evolution reaction catalyst (OER).
Resumen de: CN119233941A
A process for cracking ammonia to form hydrogen is described, the process comprising the steps of: (i) passing the ammonia through one or more catalyst-containing tubes in a furnace to crack the ammonia and form hydrogen wherein the one or more tubes are heated by combustion of a fuel gas mixture to form a flue gas containing nitrogen oxides, the invention relates to a method for producing ammonium nitrate from flue gas, comprising the steps of (i) cooling the flue gas to a temperature below 170 DEG C, where yH2O is mole% of steam in the flue gas, P * H2O is the equilibrium vapor pressure of water in an aqueous ammonium nitrate solution, and p is the minimum operating pressure of the flue gas, and (ii) cooling the flue gas to a temperature below 170 DEG C. # imgabs0 #
Resumen de: AU2025200458A1
The present disclosure relates to electrode compositions, in particular electrode compositions comprising hybrid electrode particles, which can be used in solid oxide electrochemical cells. The present disclosure also relates to processes for preparing hybrid electrode particles. The present disclosure also relates to electrodes, including sintered electrodes, comprising the electrode CA compositions, and to solid oxide electrochemical cells comprising the electrode compositions.
Resumen de: EP4539178A1
The present disclosure relates to the technical field of hydrogen energy power generation, and provides an uninterruptible power supply based on hydrogen energy, which includes a hydrogen production unit, a power storage unit, a power generation device, and a control unit. The hydrogen production unit can prepare oxyhydrogen by an electrolytic method. The power storage unit can supply power to the hydrogen production unit and output electric power to the outside. The power generation device can receive the oxyhydrogen output by the hydrogen production unit and generate electricity, and the power generation device can output electric power to the outside or transmit the electric power to the power storage unit. The control unit communicates with the hydrogen production unit, the power storage unit and the power generation device by electrical signals.
Resumen de: US2025066932A1
The present disclosure provides a functional (photovoltaic) PV powered facilitated Water electrolyzer system for solar hydrogen generation having two components: a functional PV panel and a facilitated water electrolyzer. The present invention provides functional PV powered facilitated water electrolyzer (F-PV-WE) systems. The invention provides a process using integrated functional PV with facilitated water electrolysis for multiproduct generation including hydrogen, oxygen and hypochlorite with reduction in energy and environmental footprint.
Resumen de: CN118786169A
The invention relates to a method for preparing a separator (M) containing a sulfonated polyarylene sulfone polymer (sP), to the separator (M) obtained by the method according to the invention, to a fuel cell, to an electrodialysis cell and to an electrolytic cell comprising the separator (M), to the use of the separator (M) in an electrolytic cell, to an electrodialysis cell or to a fuel cell, and to a method for preparing electrical energy and/or hydrogen.
Resumen de: CN118871621A
Disclosed are electrolysis technique and system embodiments comprising: a plurality of reactors, each reactor comprising an electrolysis electrode and configured to perform a sequence of stages of an electrolysis process, the sequence of stages having a stage offset relative to a sequence of stages of an electrolysis process performed by at least another reactor of the plurality of reactors; one or more power sources for driving the electrolysis process performed by the plurality of reactors; and a control system configured to monitor a change in power capacity of at least one of the one or more power sources and perform at least one of (i) activating or deactivating one or more of the electrolysis processes performed by the plurality of reactors based on the change in power capacity, (ii) adjusting the duration of at least one of the stages of the electrolysis process; (iii) adjusting the power supplied from the one or more power sources to at least one of the plurality of reactors; and/or (iv) adjusting, removing or introducing at least one stage of the electrolysis process.
Resumen de: US2025011946A1
Disclosed are a carbon dioxide capturing method and a carbon dioxide capturing system for co-producing of carbon monoxide and hydrogen. The method includes: capturing, by an alkaline solution, carbon dioxide in a target component, to obtain an aqueous solution containing a carbonate; performing, on the aqueous solution containing the carbonate, a first electrolytic process, to obtain a first aqueous solution containing a bicarbonate and hydrogen; and performing, on the first aqueous solution containing the bicarbonate in the presence of a catalyst, a second electrolytic process, to obtain the carbon monoxide and the hydrogen, where the catalyst is selected as at least one component from a group consisting of an elementary substance of metal, alloy and compound of group VIII, group IB, group IIB, group IVA and lanthanide.
Resumen de: CN119137311A
Disclosed herein are methods and systems related to the use of electrolysis to enhance synthesis gas production. Methods disclosed herein include harvesting a volume of carbon monoxide from a syngas production system operated using a volume of natural gas, feeding the volume of carbon monoxide to a cathode region of an electrolyzer, and generating a volume of the generated chemical using the volume of carbon monoxide and the electrolyzer. The volume of the generated chemical is at least one of a volume of a hydrocarbon, a volume of an olefin, a volume of an organic acid, a volume of an alcohol, and a volume of an N-rich organic compound.
Resumen de: CN118843716A
The production of fuels from low carbon electricity and carbon dioxide by using solid oxide electrolysis cells (SOEC) and Fischer-Tropsch synthesis is presented. Fischer-Tropsch synthesis is an exothermic reaction which can be used for generating steam. Steam generated from a liquid fuel production (LFP) reactor system in which a Fischer-Tropsch reaction occurs is used as a feed to the SOEC. And the efficiency of the whole electrolysis system is improved by the steam with higher temperature. The integration of LFP steam improves the efficiency of electrolysis because the heat of vaporization of liquid water does not need to be supplied by the electrolyzer.
Resumen de: EP4529991A2
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: CN119212789A
The invention relates to a method for converting NH3-containing gases in the presence of a cold plasma, preferably a plasma generated by dielectric barrier discharge (DBD), and a catalyst comprising a support comprising alumina, nickel and at least one iron-containing accelerator. The invention also relates to said catalyst and to the use thereof for the production of high value added molecules such as hydrogen (H2).
Resumen de: WO2025075506A1
The present invention relates to a coated porous media comprising a porous media grafted with at least one compound according to Formula 1 or Formula 2: (1), (2) wherein the asterisk * designates a covalent bond with the porous media, wherein at least one of R1, R2, R3, R4, and R5 groups are different from a hydrogen atom, wherein R1, R2, R3, R4 and R5 groups are independently selected from nitro, bromo, chloro, iodo, thiocyanato, sulphate, sulphonate, sulphonium salts, phosphate, phosphonate, phosphonium salts, amine, ammonium, alcohol, aldehyde, ketone, carboxylic acid, ester, amide, nitrile, anhydride, acid halide, alkyl, alkenyl, alkynyl, aryl, naphthyl, anthryl, pyrryl, polyaromatic groups of higher degree, and wherein the alkyl, alkenyl, alkynyl, aryl, naphthyl, anthryl, pyrryl and polyaromatic groups of higher degree comprise at least one group selected from: nitro, bromo, chloro, iodo, thiocyanato, sulphate, sulphonate, sulphonium salts, phosphate, phosphonate, phosphonium salts, amine, ammonium, alcohol, aldehyde, ketone, carboxylic acid, ester, amide, nitrile, anhydride, and acid halide, wherein R6 group is selected from vinylic terminated organo-silicon compounds, compounds with alkyl chains with at least 6 carbon atoms, preferably at least 10 carbon atoms, or vinylic terminated polar molecules, and wherein R7 group is either a hydrogen atom or a methyl group. The present invention further relates to a coated porous media, comprising a porous media grafted with at
Resumen de: US2025115476A1
According to some embodiments, a process for producing hydrogen may comprise operating an electrolysis cell with a source of electricity to produce an oxygen stream and a hydrogen stream from water, reacting a hydrocarbon feedstock with the oxygen stream to partially oxidize the hydrocarbon feedstock, thereby producing a synthesis gas comprising hydrogen and carbon monoxide; passing the synthesis gas and a water stream to a heat exchanger to produce steam and to cool the synthesis gas; and reacting at least a portion of the synthesis gas from the heat exchanger and at least a portion of the steam from the heat exchanger. The source of electricity to the electrolysis cell for the totality of the operation of the electrolysis cell is not produced from energy provided by the combustion of hydrocarbons;
Resumen de: WO2025073798A1
The invention relates to a method for synthesizing ammonia, having the steps of: - providing hydrogen; - supplying the hydrogen to an ammonia synthesis circulator (10) comprising an ammonia converter (3) in which ammonia is catalytically synthesized; a circulator (1) which supplies a reactant gas mixture, containing the hydrogen and nitrogen, to the ammonia converter (3); and a cooling section (5) in which ammonia is condensed out of a product gas mixture of the ammonia converter (3), wherein the ammonia synthesis circuit (10) is first operated in a full-load operation, in which the ammonia synthesis circuit (10) provides a nominal flow rate of hydrogen, and the ammonia synthesis circuit (10) is converted from the full-load operation to a partial-load operation, in which the ammonia synthesis circuit (10) provides a flow rate of hydrogen which is lower than the nominal flow rate. In the partial-load operation, a first gas flow is branched off from the reactant gas flow and is conducted to the inlet of the circulator (1), and a second gas flow is branched off from the product gas mixture and is conducted to the inlet of the circulator (1).
Resumen de: WO2025073665A1
The present invention relates to a closed carbon loop process comprising: a first step, wherein hydrogen is produced via water electrolysis, a second step, wherein oxygen and/or steam is reacted in a carbon gasification step with solid carbon produced in the fifth step and hydrogen produced in the first step to yield carbon oxides and/or hydrocarbons, wherein the hydrocarbons optionally comprise hetero atoms, a third step, wherein the carbon oxides and/or hydrocarbons produced in step two are converted in a chemical reaction step into carbon-containing products, a fourth step, wherein the carbon-containing products produced in step three are used until they become waste, a fifth step, wherein the waste based on the carbon-containing product produced in step three is converted into solid carbon and a hydrogen-containing product.
Resumen de: WO2025073649A1
The invention relates to a method for producing hydrogen that comprises the following steps: - high-temperature electrolysis of steam in an electrolysis unit (102) taking as input a first flow (F1) comprising steam and a second flow (F2) comprising air, the electrolysis providing a third flow (F3) comprising hydrogen and nitrogen; and - separating the hydrogen and the nitrogen in the third flow (F3), in a purification unit (110), provided to receive the third flow (F3) and provide a fourth flow (F4) essentially comprising hydrogen, and a fifth flow (F5) comprising hydrogen and nitrogen; characterised in that the method further comprises recovering the hydrogen contained in the fifth flow (F5) for the electrolysis. The invention also relates to a system (300) implementing such a method.
Resumen de: WO2025073609A1
The invention relates to a method for synthesizing NH3 with a variable throughput on a system comprising multiple synthesis units connected in parallel. A reactant gas stream comprises H2 which is provided by electrolyzing water with an electric current from a renewable energy. The currently available quantity of H2 varies on the basis of the currently available quantity of renewable energy. On the basis of the currently available quantity of H2 as such, the reactant gas stream is introduced into an individual synthesis unit of the synthesis units or into a plurality of synthesis units or all of the synthesis units in a divided manner in independent sub-streams, NH3 then being synthesized from H2 and N2 in said synthesis unit(s). The invention additionally relates to a system which is configured for carrying out the method.
Resumen de: BE1031991A1
L’invention propose un système et un procédé de régulation du fonctionnement des séparateurs gaz-liquide (GLSan, GLSca) d’un électrolyseur comprenant une pile (10), des séparateurs gaz-liquide anodique et cathodique séparant l’électrolyte et le gaz le long d’un niveau de lessive (lan,lca), le gaz de dioxygène et de dihydrogène s’écoulant de leur chambre respective à travers une vanne de commande de gaz (Van, Vca), caractérisée en ce que la régulation utilise des données de commande représentatives de la pression de gaz anodique (pan) ; la pression de gaz cathodique (pan) ; le niveau de lessive anodique (Ian) ; le niveau de lessive cathodique (Ica) ; pour commander chacune des deux vannes de commande de gaz (Van, Vca) et chacun desdits capteurs permettant d’envoyer des signaux de fonctionnement aux deux vannes de commande de gaz (Van, Vca) pour réguler les pressions de gaz (pan,pca) et les niveaux de lessive (lan,lca) dans le séparateur gaz-liquide anodique (GLSan) et le séparateur gaz-liquide cathodique, (GLSca).
Resumen de: CN118183629A
The present application relates to an integrated process and catalyst for producing hydrogen iodide from hydrogen and iodine. The invention provides a method for producing hydrogen iodide. The process comprises providing a gas phase reactant stream comprising hydrogen and iodine, and reacting the reactant stream in the presence of a catalyst to produce a product stream comprising hydrogen iodide. The catalyst contains at least one selected from the group consisting of nickel, cobalt, iron, nickel oxide, cobalt oxide, and iron oxide. The catalyst is loaded on the carrier.
Resumen de: WO2024178009A2
A hydrogen generating cell comprising an input electrode plate pair, an output electrode plate pair, an additional X plate electrode positioned adjacent the output electrode plate pair, and a plurality of intermediate electrode plates disposed between the input and output electrode plate pairs. A plasma torch is spaced apart from and inductively coupled to the input electrode plate pair. A pulsed DC voltage is applied to the plasma torch and X-plate, while a lower voltage pulsed DC voltage is applied to the input and output electrode plate pair to cause generation of hydrogen gas from an aqueous solution in which the cell is immersed.
Resumen de: SE2250272A1
:The present invention relates to a system and method for producing hydrogen gas is provided The system comprises at least one gas transport vessel which is arranged to transport at least hydrogen up through water by buoyancy, a heat transfer unit connected to an electrolysis unit and arranged to transfer at least a portion of the waste heat from the electrolysis unit to the hydrogen gas that is to be transported by the gas transport vessel.
Resumen de: MX2024010526A
The present disclosure relates to methods and reactors for generating of gas and specifically for generation of oxygen gas and hydrogen gas.
Resumen de: AU2025202132A1
METHODS TO PROVIDE ELECTRIC POWER FROM RENEWABLE ENERGY EQUIPMENT TO AN ELECTRICAL LOAD An HVDC system comprising an AC/DC converter sub-system electrically connected to a renewable energy equipment and a VSC sub-system is provided. A method comprises operating the renewable energy equipment to function as a voltage source to energize an HVDC link between the AC/DC converter sub-system and the VSC sub-system; operating the VSC sub system as a voltage source to energize at least one electrical load electrically connected thereto; if it is determined that the power production rate of the renewable energy equipment is not within a designated parameter, operating the equipment to follow the VSC sub-system such that controlling the AC electric power output influences the power production rate. If it is within the designated parameter, operating the VSC sub-system to follow the renewable energy equipment such that the VSC sub-system adjusts the properties of its AC electric output to match the properties of the electric power generated by the renewable energy equipment.
Resumen de: AU2023363867A1
The invention relates to a method for the synthesis of ammonia (18), in which a gas mixture (make-up gas) (1) comprising hydrogen and nitrogen is provided in a first operating mode with a flow rate that is above a threshold value and in a second operating mode with a flow rate that is below this threshold value in order to form an ammonia synthesis gas (5), which is reacted in an ammonia reactor (R) in at least one first catalyst bed (K1) and in a second catalyst bed (K2), connected to the first catalyst bed, to form a synthesis product (16) containing ammonia, wherein in a cooling device (E3) arranged between the first (K1) and the second catalyst bed (K2), non-reacted ammonia synthesis gas (8) is used as a cooling agent in order to reduce the temperature of an ammonia synthesis gas (12) partially reacted in the first catalyst bed (K1) before it is forwarded to the second catalyst bed (K2), wherein in the second operating mode, the higher the flow rate of the provided make-up gas (1), the greater the reduction in temperature of the partially reacted ammonia synthesis gas (12). What is characteristic is that the ammonia synthesis gas (12) partially reacted in the first catalyst bed (K1) is cooled by indirectly exchanging heat with provided ammonia synthesis gas (8).
Resumen de: WO2025074370A1
An electrocatalytic reactor for conversion of Green House Gas (GHG) emissions into value-added products (VAPs), which includes an electrocatalytic reactor equipped with symmetric or asymmetric electrodes (cathode and anode) that act as electrocatalyst, which are dipped in an electrolytic reaction solution that includes acidified deionised water (H3O+) and a catalyst initiator An external current of 1 to 5 A applied to the electrodes in a voltage range of 1 to 5 V for 3 to 5 hours, which initiates C-C coupling or C-O coupling reactions on the cathode surface forming short-lived cation radical intermediates, wherein the short-lived cation radical intermediates react among themselves, or react with in-situ produced H2 gas, leading to the formation of VAPs such as ethylene, propylene, butadiene, acetic acid, ethyl acetate, ethyl acetate esters, ethoxides, propionaldehyde, ethanol, amides, amines, ammonia, urea, azo-dyes, graphene, MWCNTs, SWCNTs.
Resumen de: WO2025074373A1
An electrocatalytic reactor for conversion of Green House Gas (GHG) emissions that include CO2, CH4 and N2 into p-Xylene and other value-added products (VAPs), wherein the electrocatalytic reactor is equipped with symmetric or asymmetric electrodes (cathode and anode) that act as electrocatalyst, which are dipped in an electrolytic reaction solution that includes acidified deionised water (H3O+) and a catalyst initiator An external current of 1 to 5 A applied to the electrodes in a voltage range of 1 to 5 V, which initiates C-C coupling or C-O coupling reactions on the cathode surface forming short-lived cation radical intermediates, wherein the short-lived cation radical intermediates react among themselves, or react with in-situ produced H2 gas, leading to the formation of p-Xylene as the major product and other VAPs, wherein the other VAPs formed include benzene, toluene and substituted benzene.
Resumen de: WO2025074377A1
The present disclosure provides an electrocatalytic reactor with the arrangement of the reactor assembly line, and process steps in a process plant for electrocatalytic reduction of green-house gas (GHG) emissions into VAPs, wherein the electrocatalytic reactor is equipped with symmetric or asymmetric electrodes (cathode and anode) that act as electrocatalyst, which are dipped in an electrolytic reaction solution that includes acidified deionised water (H3O+) and a catalyst initiator An external current of 1 to 5 A applied to the electrodes in a voltage range of 1 to 5 V for 3 to 5 hours, which initiates C-C coupling or C-O coupling reactions on the cathode surface forming short-lived cation radical intermediates, wherein the short-lived cation radical intermediates react among themselves, or react with in-situ produced H2 gas, leading to the formation of VAPs.
Resumen de: WO2025075575A1
The invention is related to the heat recovery system of the electrolysis unit with heat transfer fluid, which is used to recover the excess heat produced by REM electrolyzers, which separate water into hydrogen and oxygen gases using electrical energy. The invention is particularly related to the heat recovery system of the electrolysis unit with heat transfer fluid, which takes the heat energy generated during the electrolysis process of the REM electrolyzer (20) used to obtain hydrogen, through the cooling plate (22), which allows the electrolyzer (20) to cool down, and sends this waste heat to the heat exchanger (40) with the help of heat transfer pipes (30) to recover the heat, which contains heat transfer fluid containing colemanite, borax, AI2O3, SiO3, CuO, TiO2, SiL, szaybelite, boron carbide, boron solid particles between 10-200 nanometers, which can change phase, do not cluster.
Resumen de: WO2025074772A1
Provided are a multilayer resin pipe suitable for use in a water electrolysis system operating at high voltage, a water electrolysis system provided with this multilayer resin pipe, and a hydrogen transfer method using this multilayer resin pipe. The multilayer resin pipe has: an electrically insulating main pipe; an electrically insulating pressure resistant layer covering an outer surface of the main pipe; an electrically insulating gas barrier layer covering an inner surface of the main pipe; and an electrically insulating elution suppressing layer covering an inner surface of the gas barrier layer.
Resumen de: US2025116022A1
A method of operating a solid oxide electrolysis cell (SOEC) system at partial load, the SOEC system including a plurality of branches each including at least one SOEC stack, includes determining a thermally neutral target voltage and cycling an ON phase and an OFF phase for each of the branches such that the SOEC system operates at an average operating power equal to a chosen percentage of the operating power at the thermally neutral target voltage. In the ON phase, the SOEC stacks in a given branch operate at the thermally neutral target voltage, and in the OFF phase, the SOEC stacks in the given branch are unloaded to an open circuit voltage and operate at 0% of rated power. The frequency of OFF phases for each branch is determined such that stronger or healthier branches have a lower frequency of OFF cycles than weaker or less healthy branches.
Resumen de: US2025116016A1
A buoyant hydrodynamic pump is disclosed that can float on a surface of a body of water over which waves tend to pass. Embodiments incorporate an open-bottomed tube with a constriction. The tube partially encloses a substantial volume of water with which the tube's constriction interacts, creating and/or amplifying fluid-flow oscillations therein in response to wave action. Wave-driven oscillations result in periodic upward ejections of portions of the water inside the tube that can be collected in a reservoir that is at least partially positioned above the mean water level of the body of water, or pressurized by compressed air or gas, or both. Water within such a reservoir may return to the body of water via a turbine, thereby generating electrical power (making the device a wave engine), or the device's pumping action can be used for other purposes such as water circulation, propulsion, dissolved minerals extraction, or cloud seeding. Methods are disclosed for manufacture of hydrogen at sea and for delivery of said hydrogen using a ship. Methods are disclosed for filling a hydrogen-loaded carrier ship at sea.
Resumen de: US2025116009A1
This disclosure provides systems, methods, and apparatus related to electrochemical reduction of gasses. In one aspect, a method includes flowing a gas through a reduction device. The gas is carbon dioxide (CO2) or nitrogen (N2). The reduction device reduces the gas and generates a product stream including the gas, hydrogen (H2), and a chemical. The product stream is flowed through a hydrogen removal device. The hydrogen removal device removes hydrogen from the product stream. The product stream with the hydrogen removed is flowed through the gas reduction device.
Resumen de: WO2025075497A1
The invention provides a separator (1) comprising a first separator side (2), a second separator side (3), a porous membrane (100) and a reinforcement support element (200), wherein (i) the membrane (100) comprises a silicon comprising layer (110) having a first layer side (101) and a second layer side (102), wherein a distance between the first layer side (101) and the second layer side (102) defines a membrane thickness (d mem), (ii) the membrane comprises pores (140), the pores (140) defining open fluid channels from the first layer side (101) to the second layer side (102), (iii) a porosity of the membrane (100) is in the range 1- 10%, (iv) a mean pore cross-sectional dimension (dp) is equal to or less than 10 µm, (v) the membrane thickness (dmem) is equal to or less than 200 µm, and (vi) the membrane comprises a first layer (121) arranged at the first layer side (101) and a second layer (122) arranged at the second layer side (102), wherein the first layer (121) is electrically conductive, and the second layer (122) is electrically conductive, wherein the first layer (121) directly contacts the silicon comprising layer (110), and the second layer (122) directly contacts the silicon comprising layer (110), (vii) the reinforcement support element (200) is configured from the first separator side (2) to the second separator side (3), wherein the reinforcement support element (200) is connected to the silicon comprising layer (110), wherein the reinforcement support elemen
Resumen de: EP4534518A1
The methane generation system according to the present invention includes a methane generation unit including an electrolysis device that electrolyzes water to obtain hydrogen and a methane reactor that obtains a fuel gas containing methane by a methanation reaction using the hydrogen; a reformer that reforms the fuel gas to obtain a reformed gas; a fuel cell that generates electricity by a reaction of obtaining a product gas from the reformed gas and an oxygen-containing gas; a recovery device that separates a recovery gas containing carbon dioxide from return fluid which is a part of the product gas; and a circulation path through which the recovery gas is guided to the methane generation unit.
Resumen de: TW202409348A
An alkaline electrolyzer system comprising an electrochemical cell in proximity to a spacer frame is provided. The spacer frame contains a polymer composition that includes a polymer matrix that contains at least one polyarylene sulfide.
Resumen de: EP4534725A1
A compression apparatus according to an aspect of the present disclosure includes: a compressor that generates compressed hydrogen at a cathode by an electrolysis of water or by oxidation and reduction of hydrogen generated by applying a voltage between an anode and the cathode having flexural rigidity lower than flexural rigidity of the anode; and a controller that, in startup or in shutdown, determines an abnormality based on a gas flow rate at an exit of the anode or a pressure at the cathode after supplying a testing gas from a testing gas supplier to the cathode.
Resumen de: EP4535215A1
A simulation system and method for hydrogen production by water electrolysis. The simulation system for hydrogen production by water electrolysis comprises: a first simulation unit used for simulating a hydrogen production power system to obtain hydrogen production electrical parameters; a controller unit used for outputting a control instruction to control hydrogen production process parameters in a hydrogen production chemical system; a second simulation unit used for simulating the hydrogen production chemical system according to the hydrogen production electrical parameters and the control instruction so as to obtain a hydrogen production result; and a data interaction unit, the first simulation unit, the controller unit, and the second simulation unit being capable of performing data interaction by means of the data interaction unit. Joint simulation of complete chemical and electrical processes for hydrogen production by water electrolysis can be realized.
Resumen de: AU2023277213A1
The present invention is directed to piezo photocatalytic process for the production of hydrogen from water, wherein the process comprises the steps of: (a) providing non-metal-doped barium titanate which includes at least one defect; (b) contacting the non-metal-doped barium titanate provided in step (a) with water to form a mixture; and (c) subjecting the mixture formed in step (b) to: (i) actinic radiation; and (ii) mechanical force, to produce hydrogen from the water, as well as non-metal-doped barium titanate and methods of production thereof.
Resumen de: EP4534728A1
The present invention relates to circular carbon process for transporting energy comprising:a first step, wherein hydrogen is produced via water electrolysis,a second step, wherein the hydrogen produced in the first step and granular pyrolytic carbon produced in the fourth step are reacted to hydrocarbons,a third step, wherein the hydrocarbons produced in the second step are fed into a gas grid,a fourth step, wherein the hydrocarbons are taken from the gas grid, and hydrocarbons are decomposed to hydrogen and granular pyrolytic carbon,a fifth step, wherein the granular pyrolytic carbon produced in the fourth step is transported to a production site of the hydrating gasification of step two,wherein the hydrocarbons decomposition of step four is conducted in a moving or fixed bed of solid substrates and wherein the produced granular pyrolytic carbon has a bulk density in the range of 0.5 to 1.5 g/cc and has a particle size of 0.1 mm (d10) to 10 mm (d90).
Resumen de: EP4534733A1
A laminate for a water electrolysis device includes a polymer electrolyte membrane and an electrode catalyst layer provided on one surface of the polymer electrolyte membrane. The electrode catalyst layer includes a catalyst, a polymer electrolyte, and a fibrous material. A membrane electrode assembly for a water electrolysis device includes the laminate for a water electrolysis device and a second electrode catalyst layer, and includes an electrode catalyst layer, a polymer electrolyte membrane, and a second electrode catalyst layer in this order.
Resumen de: EP4535518A1
Disclosed is a hybrid system in which a solid oxide electrolyzer cell (SOE), a solid oxide fuel cell (SOFC), and a carbon capture system (CCS) are coupled to each other, and more particularly to an SOE-SOFC-CCS hybrid system configured such that a solid oxide electrolyzer cell, a solid oxide fuel cell including a burner configured to burn off-gas, and a carbon capture system are systematically operated and such that by-products and waste heat generated as the result of operation thereof are recycled, whereby consumption of hydrogen and a fuel necessary for power production is minimized.
Resumen de: CN119278297A
The invention relates to a gas-permeable electron-conducting plate for use as a porous transport layer for an electrolytic cell and to a method for producing said gas-permeable electron-conducting plate, to a building unit for an electrolytic cell, and to an electrolytic cell.
Resumen de: CN119301307A
A separator (1) for water electrolysis, said separator (1) comprising, on at least one side thereof:-a surface area Smax,-a surface area SC for contacting an electrode surface, and-a channel (10) for evacuating bubbles, having a cross-section phi C, characterized in that:-the SC/Smax ratio is from 0.025 to 0.50, and-the cross-section phi C is sufficiently large to evacuate bubbles having a diameter of from 5 to 50 mu m.
Resumen de: EP4534197A1
The present disclosure relates to a catalyst for decomposition of ammonia and a method for decomposition of ammonia.
Resumen de: EP4534734A1
A control device for a hydrogen production apparatus is a control device for controlling operation of a hydrogen production apparatus and includes: an estimated reaching time calculation unit configured to calculate, on the basis of a change rate of a pressure of a storing unit for storing hydrogen produced by the hydrogen production apparatus, an estimated reaching time for the pressure of the storing unit to reach a specified value; a start-up time acquisition unit configured to acquire a start-up time of the hydrogen production apparatus in accordance with a state of the hydrogen production apparatus; and a determination unit configured to determine a start-up timing for starting up the hydrogen production apparatus on the basis of a comparison between the estimated reaching time and the start-up time.
Resumen de: AU2023315921A1
The invention relates to a method for operating an electrolysis system (2) comprising at least one electrolyser (4) for generating hydrogen (6) and oxygen (8) as products, and at least two downstream compressors (10) for compressing at least one product (6, 8) produced in the electrolyser (4). In order to ensure part-load operation of the electrolyser (2) that is optimised in terms of efficiency and is also cost-effective, during part load operation of the electrolyser (4), a first group (A) of compressors (10
Resumen de: AU2023326035A1
The invention relates to an electrolysis device (1) for producing hydrogen through electrochemical reaction from an aqueous alkali solution, wherein the electrolysis device (1) comprises an anodic half cell (2) and a cathodic half cell (3). The anodic half cell (2) and the cathodic half cell (3) are separated by means of a membrane (4) and the alkali solution can flow through the cathodic half cell (3). The anodic half cell (2) comprises an anodic electrode (5) and the cathodic half cell (3) comprises a cathodic electrode (6), wherein the anodic electrode (5), the cathodic electrode (6) and the membrane (4) form a membrane-electrode unit (7). Furthermore, in normal operation of the electrolysis device, an initial fill quantity of alkali solution in the cathodic half cell (3) can be changed only by diffusion processes through the membrane-electrode unit (7) and/or by electrochemical reaction of the alkali solution in the membrane-electrode unit (7).
Resumen de: JP2025052834A
【課題】高い反応活性を有し、効率よく水素を製造できる反応媒体を提供すること、および、効率よく水素を製造できる水素の製造方法を提供すること。【解決手段】本発明の反応媒体は、水を熱分解して水素を製造する方法において用いられる反応媒体であって、FeとMgとNiとの複合金属酸化物を含むことを特徴とする。前記複合金属酸化物は、Fe0.33Mg0.33Ni0.33Oxで表されることが好ましい。本発明の水素の製造方法は、請求項1に記載の反応媒体を熱還元する第1の工程と、熱還元された前記反応媒体を水と接触させ、前記反応媒体を酸化するとともに水素を発生させる第2の工程とを有する。【選択図】なし
Resumen de: JP2025049881A
【課題】従来の水素製造方法では水素の発生比率は低く、大きな電力を使用する必要がある。【解決手段】負電極108の周囲には酸性の水溶液227が充填され、正電極107の周囲には血液またはヘモグロビンが充填される。正電極107と負電極108間には電極電圧制御回路114で電圧が印加される。負電極108では水素が発生し、水素は気体収集器109で収集される。正電極107では、電子を放出して、オキシヘモグロビンがメトヘモグロビンになり色が変化する。色の変化は色測定器234で測定する。色の変化が所定値以上に変化すると、メトヘモグロビンの比率が大きくなった判定し、ヘモグロビンを入れ替える。【選択図】図1
Resumen de: AU2022470695A1
A water electrolysis system including a container; a plurality of microcells located inside the container; the microcells are centered around a central axis of the container; a first bracket located on a first side of the microcells; a second bracket located on a second side of the microcells; a plurality of magnets mounted on the first and the second brackets, the magnets are placed in parallel to the microcells; a liquid inside the container. The first and the second brackets are adapted to be connected to a motor. The first and the second brackets rotate during the electrolysis process. The magnets on the first bracket produce a first magnetic field and the magnets on the second bracket produce a second magnetic field; and the first and the second magnetic fields have opposite polarity.
Resumen de: WO2024041728A1
A control unit (40) for a Power-to-Hydrogen (PtH) plant (100) is provided. The control unit (40) includes at least one model (41) and is configure to: calculate maximum efficiency point tracking of the PtH plant (100) by solving an objective function having a predetermined hydrogen production rate of the PtH plant or a predetermined amount of energy input to the PtH plant using the at least one model, wherein the control unit receives measured parameters indicative of status of components of the PtH plant as an input to the at least one model; determine one or more set points for a coordinated operation of the components of the PtH plant based on a solution obtained by solving the objective function; and provide the one or more set points to one or more of the components of the PtH plant to operate the PtH at the maximum efficiency point.
Resumen de: WO2025068933A1
The present invention relates to an integrated system for demineralization and/or purification of water and for the simultaneous production of hydrogen comprising a heat-dissipating element thermally connected to a system for demineralization and/or purification of water which is hydraulically connected to an electrochemical cell producing hydrogen, wherein the system for demineralization and/or purification of water is a system operating through the principle of thermal distillation via membrane and comprises at least two units, each comprising a first chamber, inside which waste water to be demineralized and/or purified flows under pressure and a second chamber, inside which demineralized and/or purified water flows under pressure in the opposite direction with respect to the direction of flow of the waste water, the two chambers being separated by a preferably microporous hydrophobic membrane, wherein the at least two units are placed thermally in series and hydraulically in parallel with continuous flow, wherein each unit is hydraulically connected to a source of waste water and a source of demineralized and/or purified water, in particular wherein each first chamber comprises an inlet portion, hydraulically connected to the source of waste water, for introduction into the first chamber of waste water, while each second chamber comprises an inlet portion, hydraulically connected to the source of demineralized and/or purified water, for introduction into the second chamber
Resumen de: AU2023359996A1
The invention relates to an electrolysis system (1) for generating hydrogen and oxygen as product gases, comprising an electrolysis module (3) and a process unit (5), wherein the process unit (5) has a reactant line (7) for supplying process water and a product line (9), each of which is connected to the electrolysis module (3), and the process unit (5) is equipped with a thermally insulating insulation device (11), comprising a thermal insulating material (17), such that a slow cooling of the process water is produced during a standstill operation.
Resumen de: WO2025067620A1
According to the invention it is provided a method for controlling a grid connected power converter having a DC side with a DC link and an AC grid side, and being configured to control power supply to a hydrogen electrolyzer stack. The power supply to the hydrogen electrolyzer stack is controlled by controlling the DC link to thereby control hydrogen production. The method comprises: determining a grid voltage reference; providing a grid forming control for controlling at least the phase angle of the voltage of the power converter using a grid forming controller, operating according to a grid forming algorithm, the grid forming controller being configured to emulate inertia through control of the voltage of the power converter towards the grid voltage reference; the grid forming controller emulating inertia by charging and discharging an inherent capacitance of the electrolyzer stack; monitoring at least one operating parameter of the hydrogen electrolyzer stack; and limiting a change in charging level of the inherent capacitance based on the monitored operating parameter of the electrolyzer stack.
Resumen de: WO2025067772A1
The invention relates to an electrolysis system (100) comprising: a wind turbine (1); an electrolysis plant (5) which is connected to the wind turbine (1) in order to supply electrolysis current, wherein an island network is implemented without connection to a power supply network; and a heat supply device (7) which is coupled to the electrolysis plant (5) and can be operated with a working medium (23), and which has an evaporator (13) and a condenser (11), and which is designed in such a way that, during a standstill mode, condensation heat of the working medium (23) can be transferred to the electrolysis plant (5) by means of the condenser (11) so as to maintain the temperature above a minimum temperature. During a standstill mode, the heat supply device (7) evaporates a working medium and condenses the evaporated working medium (23), condensation heat being generated and transferred to the electrolysis plant (5) so as to maintain the temperature above a minimum temperature and prevent freezing of water-carrying components of the electrolysis plant (5).
Resumen de: WO2025067773A1
The invention relates to an offshore electrolysis system (100) comprising: a wind turbine (1) having a platform (3) and an electrolysis plant (5) which is arranged on the platform (3) and is connected to the wind turbine (1) in order to supply electrolysis current; and a water supply device (7) which is connected to the electrolysis plant (5) and has a water collector (13) which is designed such that it is possible, without relying on seawater, to obtain water with little or no salt content which can be used as feed water for operating the electrolysis plant (5). The invention also relates to a method for operating a corresponding offshore electrolysis system (100), wherein, without relying on seawater, water is obtained in a water collector (13), the obtained water being of a quality with little or no salt content.
Resumen de: WO2025067764A1
The invention relates to an offshore electrolysis system (100) comprising: a wind turbine (1) with a platform (3) and with an electrolysis plant (5) which is arranged on the platform (3) and is connected to the wind turbine (1) in order to supply electrolysis current; and a heat supply device (7) which is coupled to the electrolysis plant (5) and has a combustion device (13), wherein a fuel reservoir (15) is connected to the heat supply device (7) such that, during a standstill mode, heat generated by means of the combustion device (13) can be transferred to the electrolysis plant (5) so as to maintain the temperature above a minimum temperature. The invention also relates to a method for operating a corresponding offshore electrolysis system (100), wherein, during a standstill mode, heat is generated by means of the heat supply device (7) and transferred to the electrolysis plant (5) so as to maintain the temperature above a minimum temperature and prevent freezing of water-carrying components of the electrolysis plant (5).
Resumen de: WO2025067765A1
The invention relates to an offshore electrolysis system (100) comprising: a wind turbine (1) with a platform (3) and with an electrolysis plant (5) which is arranged on the platform (3) and is connected to the wind turbine (1) in order to supply electrolysis current; and a heat supply device (7) which is coupled to the electrolysis plant (5) and is designed in such a way that heat can be transferred to the electrolysis plant by means of the heat supply device (7) during a standstill mode so as to maintain the temperature above a minimum temperature. The invention also relates to a method for operating a corresponding offshore electrolysis system. During a standstill mode, heat is transferred to the electrolysis plant (5) by means of the heat supply device (7) so as to maintain the temperature above a minimum temperature and prevent freezing of water-carrying components of the electrolysis plant (5).
Resumen de: WO2025065871A1
An off-grid hybrid electrolytic hydrogen production system provided in the present application comprises a new energy power generation unit and an energy storage unit. A power conversion unit converts electric energy output by the new energy power generation unit and the energy storage unit into electric energy suitable for hydrogen production. An electrolysis unit comprises a proton exchange membrane hydrogen production module and a solid oxide electrolysis module, used to produce hydrogen after the introduction of electric energy. A controller uses control of charge and discharge of the energy storage unit to track an electric energy fluctuation value output by the new energy power generation unit, so that a value of total electric energy power fluctuation output by the new energy power generation unit and the energy storage unit is within a set range. The described solution provided by the present application can improve the hydrogen production efficiency of the entire hydrogen production system, and ensure that the hydrogen production system can achieve off-grid operation. Moreover, the present application eliminates the influence of power generation fluctuation of a new energy power generation unit on a hydrogen production result, by means of causing the total power fluctuation output by the new energy power generation unit and the energy storage unit to be within a set range.
Resumen de: WO2025071002A1
The present invention relates to a biogas-based electrochemical hydrogen extraction and separation system comprising a solid oxide fuel cell and a solid oxide water electrolysis cell, and a method for operating same. Specifically, the biogas-based electrochemical hydrogen extraction and separation system comprising a solid oxide fuel cell and a solid oxide water electrolysis cell is characterized by comprising: a fuel supply part for supplying biogas as fuel; a first reaction part for reforming the biogas supplied through the fuel supply part so as to generate a first reformed gas; a second reaction part for secondarily reforming the first reformed gas so as to generate a second reformed gas; a third reaction part for receiving the second reformed gas generated in the second reaction part and generating electricity; a fourth reaction part for receiving unreacted gas generated in the third reaction part and using the unreacted gas as fuel, and receiving steam generated in the third reaction part and generating hydrogen; and a power converter which receives the electricity generated in the third reaction part and supplies the electricity to the first reaction part and the fourth reaction part.
Resumen de: WO2025070387A1
Provided are: a hydroxy ion conductive membrane containing a porous base material and a hydroxy ion conductive polymer disposed at least in pores of the porous base material, wherein the hydroxy ion conductive film has a thickness of 5 μm or more and less than 50 μm, and the polymer contains a constituent component (I) derived from a polyfunctional polymerizable monomer having two or more atoms of at least one kind of atom among oxygen atom, sulfur atom and nitrogen atom in total in a structural moiety other than a polymerizable group by 50 mol% or more of the constituent components of the polymer; a method for producing the hydroxy ion conductive membrane; a membrane electrode assembly, and a hydrogen production method and a hydrogen production system comprising the membrane electrode assembly.
Resumen de: WO2025070388A1
Provided are a membrane electrode assembly, a hydrogen production method, and a hydrogen production system. The membrane electrode assembly has a structure in which a cathode catalyst layer, a hydroxy ion conducting membrane, and an anode catalyst layer are laminated in this order, wherein the tensile strength (a) and the elongation at break (b) of a water-swellable body of a polymer contained in the cathode catalyst layer and/or the anode catalyst layer and the tensile strength (c) and the elongation at break (d) of a water-swellable body of a hydroxy ion conducting polymer constituting the hydroxy ion conducting membrane satisfy the following relationships (Ri) and (Rii). (Ri): Tensile strength (a)>tensile strength (c), (Rii): Elongation at break (b)>elongation at break (d)
Resumen de: WO2025071051A1
The present invention relates to a self-power generation system designed to rapidly produce electricity by directly supplying the hydrogen generated through the electrolysis of ethanol or green ammonia, as it is, to a stack and to enable the produced electricity to be supplied and utilized by power-demanding facilities such as households, factories, or electric vehicle charging stations. The self-power generation system is configured to include: a reformer for generating hydrogen by electrolyzing ethanol or green ammonia; a stack composed of one or more fuel cells that induce an electrochemical reaction between the hydrogen supplied through a transfer pipe connected to the reformer and oxygen from air supplied externally thus to produce electricity and heat; an air supply unit for delivering air to the stack, and a power control unit for supplying the electricity produced in the stack to external sources and storing excess electricity.
Resumen de: WO2025071890A1
An illustrative example embodiment of an apparatus and method includes providing a weave body downstream of an electrolyzer, purifying hydrogen by demisting a hydrogen stream exiting the electrolyzer via flow through the weave body; and de-oxidizing the hydrogen stream during flow through the weave body.
Resumen de: WO2025071230A1
The present invention relates to a polymer electrolyte membrane which is used in an energy device, such as a fuel cell or a water electrolysis system, in which a specification standard for lowering hydrogen gas permeability and increasing hydrogen ion conductivity and accordingly, maximizing selectivity, is quantified through small angle X-ray scattering (SAXS) analysis.
Resumen de: US2025109513A1
Provided herein are systems and methods for electrochemical COx reduction and hydrogen oxidation reactions to promote the reduction of carbon oxides (COx). Embodiments of the systems and methods may be used to produce carbon monoxide (CO) and water. In various embodiments, a reaction between carbon dioxide (CO2) and hydrogen gas (H2) occurs at the anode of a CO2 reduction electrolyzer, promoting the production of reduction products (e.g., CO). In some embodiments, the methods may utilize a feed stream of H2 gas from various sources. In some embodiments, a water electrolyzer upstream of the COx reduction electrolyzer is a source of H2 gas. In some embodiments, the systems and methods include downstream integration processes and related apparatus. In some embodiments, the downstream integration processes include Fischer-Tropsch processes.
Resumen de: US2025109506A1
A system for generating hydrogen includes a chamber configured to receive a fluid, and a first end plate and a second end plate configured to be positioned within the chamber and defining a longitudinal axis between first end plates. The system further includes a plurality of plates positioned between the first end plate and the second end plate, configured to be submerged in the fluid, and including: a cathode plate, an anode plate, and a semi-permeable membrane plate positioned between the cathode plate and the anode plate and configured to allow the passage of some elements therethrough and to block the passage of other elements therethrough. The system further includes at least one plasma source configured to be positioned within the fluid on an axial end of the plurality of plates and configured to generate a directed flow of plasma through the chamber along the axis.
Resumen de: US2025109516A1
Methods and systems for producing iron from an iron-containing ore and removing impurities found in the iron-containing ore are disclosed. For example, a method for producing iron comprises providing a feedstock having an iron-containing ore and one or more impurities to a dissolution subsystem comprising a first electrochemical cell; producing an iron-rich solution, in the dissolution subsystem; treating the iron-rich solution to remove at least a portion of one or more impurities by raising a pH of the iron-rich solution from an initial pH to an adjusted pH thereby precipitating at least a portion of the one or more impurities in the treated iron-rich solution; delivering the treated iron-rich solution to an iron-plating subsystem having a second electrochemical cell; second electrochemically reducing at least a first portion of the transferred formed Fe2+ ions to Fe metal; and removing the Fe metal from the second electrochemical cell thereby producing iron.
Resumen de: US2025109345A1
The fuel production system includes a CH4 recoverer, an electrolyzer, a liquid fuel producer, a steam reformer that performs steam reforming of the methane and produces hydrogen, and a controller. The controller includes: a heat amount determiner that determines whether or not an amount of heat required to increase a temperature in the gasification furnace to a temperature required to gasify the biomass feedstock is less than a predetermined threshold; a H2 production rate determiner that determines whether or not a production rate of hydrogen produced by the electrolyzer is equal to or greater than a predetermined threshold; and a steam reforming controller that controls the steam reformer to perform the steam reforming, and introduces the hydrogen produced, into the gasification furnace, in a case where the heat amount determiner determines that the required amount of heat for the gasification furnace is less than the predetermined threshold, and the H2 production rate determiner determines that the production rate of hydrogen is less than the predetermined threshold.
Resumen de: WO2025072770A1
Provided herein are systems and methods for electrochemical COx reduction and hydrogen oxidation reactions to promote the reduction of carbon oxides (COx). Embodiments of the systems and methods may be used to produce carbon monoxide (CO) and water. In various embodiments, a reaction between carbon dioxide (CO2) and hydrogen gas (H2) occurs at the anode of a CO2 reduction electrolyzer, promoting the production of reduction products (e.g., CO). In some embodiments, the methods may utilize a feed stream of H2 gas from various sources. In some embodiments, a water electrolyzer upstream of the COx reduction electrolyzer is a source of H2 gas. In some embodiments, the systems and methods include downstream integration processes and related apparatus. In some embodiments, the downstream integration processes include Fischer-Tropsch processes.
Resumen de: EP4530378A1
Disclosed in the present invention are a hydrogen production system, and a thermal management method and apparatus therefor. The hydrogen production system comprises: at least two electrolytic cells; and a post-treatment device, the at least two electrolytic cells sharing the post-treatment device, and the post-treatment device comprising first electrolyte inflow branch pipes and second electrolyte inflow branch pipes, wherein the first electrolyte inflow branch pipes share one set of cooling apparatus and are used for guiding a cold electrolyte into a corresponding electrolytic cell, and the second electrolyte inflow branch pipes are bypass branch pipes of the cooling apparatus and are used for guiding a hot electrolyte into a corresponding electrolytic cell. Compared with the prior art, embodiments of the present invention implement accurate control on the temperature of each electrolytic cell and improve system efficiency.
Resumen de: WO2025062828A1
Problem To provide: a catalyst having excellent hydrogen generation efficiency and a method for producing the same; a hydrogen generator comprising the catalyst; and a fuel cell system comprising the hydrogen generator. Solution According to an aspect of the present invention, provided is a catalyst for use in generating hydrogen from a borohydride salt. The catalyst comprises: a core that has interlayer anions and interlayer water molecules and that includes, as the main component, a layered double hydroxide containing iron; and a tripod ligand that is coordinated on the surface of the core in a state of having three hydrophilic groups located on the core side.
Resumen de: WO2023227568A2
The invention relates to a module (1) in the form of a float for producing hydrogen and a system (34) having a plurality of modules (1) of this type. The module (1) has a buoyant support structure (2), which, in the floating state, provides a buoyancy force and to which at least an electrolyzer (3), a solar cell (4), a water supply system (5), at least one system element (6) for storing, forwarding and/or processing hydrogen, and at least one interface element (7) are fastened, each at least indirectly. A module (1) of this type can be connected, by means of the at least one interface element (6), to a plurality of modules (1) to form a large system for producing, storing, processing and/or transferring hydrogen.
Resumen de: EP4529991A2
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: US2020248323A1
A method of producing an electrocatalyst, comprising the steps of: a) electrodeposition or electrochemical plating of an alloy comprising nickel and a second metal on a copper, nickel or other metal substrate; and b) electrochemical or chemical dissolution of deposited second metal to obtain a nanoporous structure on the copper, nickel or other metal substrate.
Resumen de: KR20250043971A
수소생산 및 폐열회수시스템 및 이를 포함하는 부유식 구조물이 개시된다. 본 발명에 따른 수소생산 및 폐열회수시스템 및 이를 포함하는 부유식 구조물에 의하면, 수소 생산 시스템에서 버려지는 폐열을 활용하여 담수를 생산에 투입되는 에너지 비용을 절감할 수 있고, 점차적으로 증가하는 수소 생산 용량에 맞추어 에너지 효율을 높이고 수소 생산 비용을 낮출 수 있으며, 조수기 등 담수화 장치에 적용되는 장비들의 사이즈를 줄임으로써 장치의 소형화를 달성할 수 있다. 또한, 높은 순도의 담수를 활용하여 수소를 생산함으로써 시스템의 안정성을 확보하고 생산공정의 효율성을 높일 수 있다.
Resumen de: MA66601A1
The utility model discloses an automatic nitrogen filling and replacing device for hydrogen production by water electrolysis, which relates to the technical field of hydrogen production by water electrolysis and comprises a nitrogen inlet and a pipeline, wherein the nitrogen inlet is communicated with a check valve through the pipeline, the check valve is communicated with two flowmeters through the pipeline, the pipeline communicated with the check valve and the flowmeters is branched into two paths, the flowmeters are communicated with an electromagnetic valve through the pipeline, the electromagnetic valve is communicated with a pressure reducer through the pipeline, the pressure reducer on the left side is communicated with an oxygen separator through the pipeline, the pressure reducer on the right side is communicated with a hydrogen separator through the pipeline, and alkaline liquid is filled in the lower parts of the insides of the hydrogen separator and the oxygen separator. The device can ensure the replacement speed without deliberately slowing down the nitrogen entering speed by arranging the two pressure reducers, the two electromagnetic valves and the two flowmeters, can remotely and automatically control, does not need field operation, can automatically complete nitrogen filling replacement operation by one key, and improves the automation degree of equipment.
Resumen de: MA65140A1
The invention relates to a method for configuring a plant for the production of green ammonia using renewable energies for the production of hydrogen.
Resumen de: US2025105323A1
An integrated hydrogen-electric engine includes a hydrogen fuel-cell; a hydrogen fuel source; an electric motor assembly disposed in electrical communication with the fuel-cell; an air compressor system configured to be driven by the motor assembly, and a cooling system having a heat exchanger radiator in a duct of the cooling system, and configured to direct an air stream including an air stream from the air compressor through the radiator, wherein an exhaust stream from a cathode side of the fuel-cell is fed via a flow control nozzle into the air stream in the cooling duct downstream of the radiator.
Resumen de: US2025100892A1
Ammonia synthesis process and plant comprising an ammonia synthesis converter and a downstream ammonia cooling system, wherein the ammonia synthesis converter is arranged to receive an ammonia synthesis gas comprising hydrogen and nitrogen and to produce an ammonia product gas stream and an off-gas ammonia stream; said ammonia cooling system comprising:—an ammonia evaporator for evaporating an ammonia liquid stream and generating an ammonia vapor stream;—an off-gas cleaning unit for cleaning said off-gas ammonia stream under the addition of water as a scrubbing agent, generating a water stream and an ammonia depleted off-gas stream;—an absorption cooling unit comprising water for cooling said ammonia vapor stream and collecting a condensed ammonia-water stream;—a regeneration unit for generating from said condensed ammonia-water stream: a purified water stream, said ammonia liquid stream, and an overhead ammonia gas stream.
Resumen de: US2025101365A1
Nitrogen in a form suitable for feeding a population of microbes in a bioreactor is produced by reacting nitrogen gas and hydrogen gas to form ammonia plus an unreacted gas stream under conditions favorable to having little unreacted nitrogen gas in the unreacted gas stream. The ammonia, or a compound derived from the ammonia is fed to the microbes and the unreacted gas stream is optionally fed back into the reaction, or fed into the bioreactor. Oxygen can be produced, such as by electrolysis, and also provided to the microbes. Hydrogen from the electrolysis can be added to the hydrogen being reacted with nitrogen gas, and/or can be added to the bioreactor. Where nitrogen gas is produced from air separation, the residual gases can be another source of oxygen.
Resumen de: US2025100877A1
A process and system for generating hydrogen gas are described, in which water is electrolyzed to generate hydrogen and oxygen, and a feedstock including oxygenate(s) and/or hydrocarbon(s), is non-autothermally catalytically oxidatively reformed with oxygen to generate hydrogen. The hydrogen generation system in a specific implementation includes an electrolyzer arranged to receive water and to generate hydrogen and oxygen therefrom, and a non-autothermal segmented adiabatic reactor containing non-autothermal oxidative reforming catalyst, arranged to receive the feedstock, water, and electrolyzer-generated oxygen, for non-autothermal catalytic oxidative reforming reaction to produce hydrogen. The hydrogen generation process and system are particularly advantageous for using bioethanol to produce green hydrogen.
Resumen de: US2025101940A1
A system in a water body uses buoyant force of gaseous Hydrogen and Oxygen to generate electrical power with one or more turbines that includes power resulting from the buoyant force while transporting the Hydrogen or Oxygen to a higher elevation, without loss of electrons, for conversion to electricity at the higher elevation. Conversion of Hydrogen and Oxygen to water through a Hydrogen Fuel Cell or by burning at the higher elevation may generate additional steam power, hydropower, or purified water. Portable submersible modules may transport the system below or above the water to and from the base of a plumbing portion of the system. The amount of gaseous fuel energy available at the higher elevation is not detrimentally impacted by the generation of electricity by the turbine.
Resumen de: US2025101947A1
A wind turbine is provided that se s a nacelle configured to be arranged on a wind turbine tower, a nacelle housing of the nacelle, wherein the nacelle housing is configured to house at least part of an electrical power generation system of the wind turbine, and a hydrogen production system. The hydrogen production system includes an electrolyzer configured to receive electrical power from the electrical power generation system, wherein the electrolyzer is arranged inside the nacelle housing of the nacelle in which at least the part of the electrical power generation system is arranged. One or more other components of the hydrogen production system are arranged at a base of the wind turbine tower and/or within the wind turbine tower.
Resumen de: WO2025061716A1
The invention relates to a method for operating an electrolysis plant (1), comprising a stack (2) having an anode (3) and a cathode (4), wherein in normal operation of the electrolysis plant (1), water is supplied to the anode (3) via a water circuit (5) with an integrated pump (6), said water being split in the stack (2) by electrolysis into hydrogen and oxygen, and wherein the hydrogen produced by electrolysis is supplied to a gas-liquid separator (8) via a cathode outlet (10) of the stack (2) and a media line (7) connected thereto. According to the invention, a) when the electrolysis plant (1) is switched off, a shut-off valve (11) in an inert gas line (12) is opened, said line connecting an inert gas container (13) to the cathode (4), and the cathode (4) is rinsed with the inert gas, while the water supply to the anode (3) is stopped, and b) when the electrolysis plant (1) is started up again, the following steps are carried out: (i) closing the shut-off valve (11) integrated in the inert gas line (12), (ii) supplying the anode (3) with fresh water via a fresh water supply (14) connected to the water circuit (5) while the power is still turned off, (iii) supplying the stack (2) with the power needed for electrolysis and (iv) producing an amount of hydrogen which corresponds at least to the amount of inert gas present in the cathode (4), preferably corresponds to 1.5 to 10 times the amount of inert gas present in the cathode (4). The invention further relates to an electro
Resumen de: WO2025061610A1
The invention relates to a water recirculation loop (30) for a hydrogen producing electrolysis plant (30) that comprises an electrolysis stack (10). The water recirculation loop (30) comprises: at least one, preferably one, circulation pump (6); a water inlet section (9) connectable to the electrolysis stack (10), wherein the water inlet section (9) can be supplied with water by the pump (6); a water feed section (91) leading to the water inlet section (9);a water outlet section (11) connectable to the electrolysis stack (10), wherein the water at the outlet section (11) being pressurized within the electrolysis stack (10) and/or in the water feed section (91) leading to the water inlet section (9); at least one energy recovery device (8) for transferring water pressure and/or flow energy from the water outlet section (11) to said water feed section (91); and a recirculating section (31) connecting an output of the energy recovery device (8, 28) with an input port of the pump (6).
Resumen de: WO2025061814A1
The invention relates to a system and method for controlling the operation of the gas-liquid separators (GLSan, GLSca) of an electrolyser comprising a stack (10), and anode and cathode gas-liquid separators that separate the electrolyte and the gas along an alkaline solution level (lan, lca), wherein the dioxygen and dihydrogen gases flow from their respective chambers through a gas control valve (V <sb /> an <sb />, V <sb /> ca <sb />), such that the control system uses control data representative of the anode gas pressure (p <sb /> an <sb />), the cathode gas pressure (p <sb /> an <sb />), the anode alkaline solution level (lan) and the cathode alkaline solution level (lca) to control each of the two gas control valves (V <sb /> an <sb /> , V <sb /> ca <sb /> ), and wherein each of the sensors transmits operating signals to the two gas control valves (Van, Vca) in order to control the gas pressures (p <sb /> an <sb />, p <sb /> ca <sb />) and the alkaline solution levels (lan, lca) in the anode gas-liquid separator (GLSan) and the cathode gas-liquid separator (GLSca).
Resumen de: WO2025061540A1
The invention relates to an electrochemical hydrogen compressor (1) comprising at least one compressor unit (4), wherein an electrode arrangement (4c, 4d, 4e) which is disposed between two gas flow regions (4a, 4b) in the at least one compressor unit (4) comprises a gas-tight proton-permeable layer (4d) which is contacted by a gas-permeable cathode layer (4e) on one side of the layer, and which is contacted by a gas-permeable anode layer (4c) on the other side of the layer, wherein the at least one compressor unit (4) forms a compressor arrangement (3) which is arranged in a housing (2) around the interior of a hollow, preferably tubular, gas-permeable core element (5), wherein the interior of the core element (5) is fluidically connected to the radially innermost gas flow region (4b) of the compressor arrangement (3), and the interior of the housing (2) is fluidically connected to the radially outermost gas flow region (4b) of the compressor arrangement (3).
Resumen de: WO2025059699A1
The invention relates to a device and a method for the continuous and/or semi-continuous, photocatalytic and/or photoelectrochemical production of hydrogen from waste water as reaction medium (1), with a flow element (2) forming the reaction space (2). In order to permit a better degree of effectiveness in both photocatalytic and photoelectrochemical hydrogen production from waste water despite simple design conditions, it is proposed that a multiport fitting (3) is provided upstream of the flow element (2) on the inlet side, via which multiport fitting both an oscillation pump (4) and a metering unit (5) for the reaction medium (1) are connected to the flow element (2), and that the oscillation pump (4) forms a conveying device for the reaction medium (1) by at least partially forming a plug flow in the flow element (2).
Resumen de: WO2025064007A1
A method for producing a hydrogen product having a carbon intensity less than about 0.45 kg C02e / kg H2 is provided. The method includes the steps of converting water to oxygen and the hydrogen product through an electrolysis process, providing at least some, and substantially all, of the required energy for the electrolysis process from a biomass power plant, and processing one or more flue gas streams from the biomass power plant in a carbon capture unit to reduce CO2emissions. The energy produced from the biomass power plant may comprise one or more of electricity, steam used as process steam in the electrolysis process, steam used as thermal energy in the electrolysis process, and steam used to power a mechanical drive for one or more compressors, pumps, or other motors generating shaft torque in the electrolysis process.
Resumen de: DE102023209364A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einer Plattform (3) und mit einer auf der Plattform (3) angeordneten Elektrolyseanlage (5), die zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, und weiter umfassend eine an die Elektrolyseanlage (5) angekoppelte Wärmeversorgungseinrichtung (7), die derart ausgestaltet ist, dass in einem Stillstandsbetrieb mittels der Wärmeversorgungseinrichtung (7) auf die Elektrolyseanlage Wärme übertragbar ist, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur bewirkt ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems. Dabei wird in einem Stillstandsbetrieb mittels der Wärmeversorgungseinrichtung (7) auf die Elektrolyseanlage (5) Wärme übertragen, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur herbeigeführt und ein Einfrieren von wasserführenden Komponenten der Elektrolyseanlage (5) verhindert wird.
Resumen de: DE102023209363A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einer Plattform (3) und mit einer auf der Plattform (3) angeordneten Elektrolyseanlage (5), welche zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, und weiter umfassend eine an die Elektrolyseanlage (5) gekoppelte Wärmeversorgungseinrichtung (7), die eine Verbrennungseinrichtung aufweist (13), wobei ein Brennstoffreservoir (15) an die Wärmeversorgungseinrichtung (7) angeschlossen ist, so dass in einem Stillstandsbetrieb mittels der Verbrennungseinrichtung (13) erzeugte Wärme auf die Elektrolyseanlage (5) übertragbar ist, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur bewirkt ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems (100), wobei in einem Stillstandsbetrieb Wärme mittels der Wärmeversorgungseinrichtung (7) erzeugt und auf die Elektrolyseanlage (5) übertragen wird, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur herbeigeführt und ein Einfrieren von wasserführenden Komponenten der Elektrolyseanlage (5) verhindert wird.
Resumen de: DE102023209361A1
Die Erfindung betrifft ein Elektrolysesystem (100) umfassend eine Windkraftanlage (1) und eine Elektrolyseanlage (5), die zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, wobei ein Inselnetz ohne Anschluss an ein Versorgungsnetz realisiert ist, weiter umfassend eine an die Elektrolyseanlage (5) gekoppelte und mit einem Arbeitsmedium (23) betreibbare Wärmeversorgungseinrichtung (7), die einen Verdampfer (13) und einen Kondensator (11) aufweist, und die derart ausgestaltet ist, dass in einem Stillstandsbetrieb mittels des Kondensators (11) Kondensationswärme des Arbeitsmediums (23) auf die Elektrolyseanlage (5) übertragbar ist, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur bewirkt ist.Dabei wird in einem Stillstandsbetrieb mittels der Wärmeversorgungseinrichtung (7) ein Arbeitsmedium (23) verdampft und verdampftes Arbeitsmedium (23) kondensiert, wobei Kondensationswärme erzeugt und auf die Elektrolyseanlage (5) übertragen wird, so dass eine Temperaturhaltung oberhalb einer Mindesttemperatur herbeigeführt und ein Einfrieren von wasserführenden Komponenten der Elektrolyseanlage (5) verhindert wird.
Resumen de: DE102023209359A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einer Plattform (3) und mit einer auf der Plattform (3) angeordneten Elektrolyseanlage (5), welche zur Versorgung mit Elektrolysestrom an die Windkraftanlage (1) angeschlossen ist, und weiter umfassend eine an die Elektrolyseanlage (5) angeschlossene Wasserversorgungseinrichtung (7), die einen Wassersammler (13) aufweist, der derart ausgestaltet ist, dass meerwasserunabhängig Wasser mit keinen oder nur sehr geringen Mengen von Salzen gewinnbar ist, das als Edukt-Wasser zum Betrieb der Elektrolyseanlage (5) verwendbar ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems (100), wobei in einem Wassersammler (13) meerwasserunabhängig Wasser in einer Qualität gewonnen wird, bei der das gewonnene Wasser keine oder nur sehr geringe Mengen von Salzen aufweist.
Resumen de: US2025101614A1
The present disclosure provides approaches for increasing the adhesion of a catalyst ink on a substrate, use of binders within an electrode ink to enhance coating uniformity, incorporating pore-forming agents within an electrode ink, approaches for growing an electrode on a reinforcement layer, increasing the electrochemically active surface area, and incorporation of certain materials in an electrode ink. The present disclosure also relates to electrodes for electrochemical cells, including area-scalable electrodes designed for high-speed manufacturing. The materials, devices and methods described herein may apply to either one or both of an anode or a cathode electrode for an electrochemical cell.
Resumen de: US2025101609A1
The invention relates to a method, an electrolyte membrane, and a corresponding electrolysis cell or an electrolysis stack for producing hydrogen and oxygen from water vapor using electric energy and/or a corresponding fuel cell or a fuel cell stack in order to produce electric energy using hydrogen and oxygen by means of a redox reaction of lithiated iron oxide iron which is dissolved in a liquid alkali carbonate salt. The membrane for splitting water vapor into hydrogen and oxygen consists, in the embodiment according to the invention, of a novel lithiated iron oxide electrolyte which is dissolved in a liquid alkali carbonate salt mixture, generally also referred to as a carbonate melt, which includes lithium carbonate among others. The electrolyte and the liquid carbonate salt are bonded in a heat-resistant non-conductive matrix, for example consisting of lithium aluminate LiAlO2 and/or another heat-resistant material with a capillary effect.
Resumen de: US2025101608A1
An illustrative example embodiment of an apparatus and method includes providing a weave body downstream of an electrolyzer, purifying hydrogen by demisting a hydrogen stream exiting the electrolyzer via flow through the weave body; and de-oxidizing the hydrogen stream during flow through the weave body.
Resumen de: US2025101620A1
A solar-powered ammonia and oxygen production system is disclosed. The system includes an electrolyzer, a PV cell unit, an absorption cooling unit (ACU), a solar parabolic trough collector (PTC), a cryogenic air separation unit (CSU), a cooler, an air compressor, a hydrogen compressor and a nitrogen compressor, an air turbine, and a catalytic converter. The system utilizes these components to co-produce ammonia and oxygen while generating surplus power. The PTC is thermally coupled with the ACU to cool the air coming from the air compressor. The cold air is supplied to the CSU. The nitrogen output from the CSU feeds into the nitrogen compressor, and from there, to the catalytic converter. The hydrogen from the electrolyzer is compressed by the hydrogen compressor, and supplied to the catalytic converter. The catalytic converter further produces ammonia based on the hydrogen and nitrogen received therein.
Resumen de: US2025101602A1
Methods and apparatuses for converting metal carbonate salts to metal hydroxides are disclosed. The methods involve electrochemical production of hydrogen ions (H+) for decarbonating the metal carbonate salt to generate metal ions in a chemical compartment of the electrochemical cell. The metal ions are transported to a cathode compartment where they combine with hydroxide (OH−) to form metal hydroxides. The methods and apparatus may be applied to produce calcium hydroxide which may be used as a precursor for cement clinker. In some embodiments electrochemically produced hydrogen and oxygen are burned to produce heat for production of cement clinker.
Resumen de: US2025101601A1
Microorganisms and bioprocesses are provided that convert gaseous C1 containing substrates, such as syngas, producer gas, and renewable H2 combined with CO2, into nutritional and other useful bioproducts.
Resumen de: US2025101618A1
A method for performing electrolysis with an electrolysis installation, including recording a respective measurement value of the electrolysis for multiple points of time and from the points of time, selecting multiple reference points of time, which define a reference period. Fitting a mathematical function to the measurement values recorded for the reference points of time. Performing at least one of the following sub-steps: from the mathematical function, determining an ageing coefficient that is a measure of the ageing of the electrolysis installation, and/or recording a respective measurement value of the electrolysis for at least one point of time that lies after the reference period, comparing this measurement value with a corresponding value calculated with the mathematical function and issuing an indication in case a result of this comparison violates a tolerance criterion.
Resumen de: US2025101617A1
An object is to provide a cathode that maintains high energy conversion efficiency over a long period of time without increase in overvoltage even when hydrogen generation is repeatedly started and stopped. In order to achieve the above-mentioned object, the present disclosure is a cathode for generating hydrogen including a conductive substrate and a catalyst layer including, on a surface of the conductive substrate: at least one of Pt, a Pt oxide, and a Pt hydroxide; and at least one of a metal, an oxide, and a hydroxide of a lanthanoid element that becomes electrochemically stable as trivalent ions within the potential window of water of pH 7 or higher and pH 16 or lower. The molar ratio of the Pt element to the lanthanoid element (Pt:lanthanoid) in the catalyst layer is 95:5 to 65:35.
Resumen de: US2025101619A1
It is described a high-pressure alkaline electrolyzer for splitting water into hydrogen and oxygen, said electrolyzer comprising a stack of electrolysis cells (1), with channels supplying lye to the cathodes and anodes and channels conducting hydrogen from the cathodes and oxygen from the anodes. The electrolyzer includes first and second lye inlet channels (4a, 4b), a multitude of first intermediate lye channels (5a) conducting lye from the first lye inlet channel (4a) to each cathode (3a) in the stack, a multitude of second intermediate lye channels (5b) conducting lye from the second lye inlet channel (4b) to each anode (3b) in the stack, wherein the hydrogen conducting channels include a common hydrogen outlet channel (7a) and a multitude of intermediate hydrogen channels (8a) conducting hydrogen from each cathode (3a) to the common hydrogen outlet channel (7a), and the oxygen conducting channels include a common oxygen outlet channel (7b) and a multitude of intermediate oxygen channels (8b) conducting oxygen from each anode (3b) to the common oxygen outlet channel (7b).
Resumen de: US2025104935A1
An electrode including a substrate, zinc (Zn) doped CrV spinel oxide (ZCVO) nanoparticles, a conductive carbon compound, and a binding compound. A mixture of the ZCVO nanoparticles, the conductive carbon compound, and the binding compound at least partially coats a surface of the substrate. A supercapacitor including the electrode. A method of generating hydrogen with the electrode.
Resumen de: US2025101613A1
An electrolyser system and method of electrode manufacture. The electrolyser system may comprise a first vessel in communication with an electrolyser stack, a power supply, an electrode, a separator, a membrane, and a second vessel in communication with the electrolyser stack. The electrode may comprise a catalytic material and a micro-porous and/or nano-porous structure. The method of electrode manufacture may comprise providing a substrate, contacting the substrate with an acidic solution, applying an electric current to the substrate, simultaneously depositing a main material and supporting material comprising a scarifying material onto the substrate, and leaching the scarifying material.
Resumen de: US2025105308A1
A sulfur-containing platinum-carbon catalyst, a preparation method thereof, and an application thereof are provided. The sulfur-containing platinum-carbon catalyst contains sulfur-containing conductive carbon black and a platinum metal loaded thereon. The total sulfur content in the sulfur-containing conductive carbon black is greater than or equal to the surface sulfur content, and the weight fraction of platinum is 20-70% by weight based on the total weight of the catalyst. The sulfur-containing platinum-carbon catalyst of the invention has a lower overpotential and a higher weight specific activity.
Resumen de: US2025101615A1
A ruthenium-based nano-catalyst for a hydrogen generation reaction having excellent catalytic activity and efficiency by the catalyst surface structure, a method for preparing the same, a hydrogen generation electrode and a water electrolysis system.
Resumen de: AU2023365839A1
The present disclosure relates to a hydrogen production control system and method, and a storage medium. The hydrogen production control system comprises: a safety controller; a first valve and a second valve, which are respectively connected to the safety controller; a hydrogen production controller; a third valve and a fourth valve, which are respectively connected to the hydrogen production controller; an oxygen-side gas-liquid separation apparatus, which is respectively connected to the first valve and the third valve; and a hydrogen-side gas-liquid separation apparatus, which is respectively connected to the second valve and the fourth valve, wherein the hydrogen production controller is used for controlling the pressure of the oxygen-side gas-liquid separation apparatus by means of the third valve and controlling the liquid level of the hydrogen-side gas-liquid separation apparatus by means of the fourth valve; and the safety controller is used for adjusting the pressure of the oxygen-side gas-liquid separation apparatus by means of the first valve and/or adjusting the liquid level of the hydrogen-side gas-liquid separation apparatus by means of the second valve when a hydrogen production parameter is greater than or equal to a preset parameter alarm threshold value. In this way, the system safety is effectively ensured, and the production efficiency is improved.
Resumen de: AU2023340993A1
The disclosure pertains to a plant for the production of ammonia. The ammonia is produced from hydrogen obtained by electrolysis of water. The electrolysis is powered by a renewable source of energy, complemented with power obtained from the plant during periods of low or no availability of the renewable energy. To this end, the plant is configured such that it can be operated in a charge configuration (obtaining and storing power) and a discharge configuration (employing said power).
Resumen de: JP2025042333A
【課題】水溶性有機化合物を含有する飲料にマイナスの電荷を印可することで発生させた水素を飲料の中に多量に溶存させることができ、これによって、時間経過によっても水素が抜け難く、製造時のエネルギー効率が良い水素飲料生成装置の提供を課題とする。【解決手段】容器に入れられた水溶性有機化合物を含有する飲料にマイナス電荷を印可するための陰極で構成される電極部11と、電極部11に電圧を供給する電源部Dとを少なくとも備え、電極部11は、容器20の金属製導電体で形成される底面と接触する導電性材料で形成される接触型電極部で構成される水素飲料生成装置である。【選択図】 図1
Resumen de: WO2025061044A1
Method for preparing a doped metal phosphorus trichalcogenide (dMPT) comprising: (a) contacting a first metal salt, an optional base and a fluorine salt under hydrothermal conditions thereby growing a first metal precursor on a conductive substrate; (b) contacting the first metal precursor with an aqueous solution of a second metal salt thereby forming a doped metal precursor; and (c) contacting the doped metal precursor, phosphorus, and sulfur thereby forming a mixture; and heating the mixture;a dMPT, and a method for producing hydrogen gas using the same.
Resumen de: WO2025060428A1
The present application discloses a multi-opening unipolar plate and an electrolytic cell for electrolytic hydrogen production. The multi-opening unipolar plate comprises a plate body and cushion blocks. The plate body comprises a flow field area and opening areas. The opening areas are distributed on two sides of the flow field area in the length direction of the multi-opening unipolar plate. First through holes are formed in the cushion blocks. The cushion blocks are arranged on two sides of the opening areas in the thickness direction of the multi-opening unipolar plate; the cushion blocks cover the opening areas; and the first through holes correspond to openings of the opening areas. At least some of the cushion blocks are provided with flow channels enabling the openings and the flow field area to be communicated. The cushion blocks can cover the opening areas in the thickness direction of the multi-opening unipolar plate and surround the openings of the opening areas in the circumferential direction, thereby sealing the openings of the opening areas, reducing the risk of fluid leakage from the openings to the outside of the multi-opening unipolar plate and the risk of fluid leakage from one opening to other openings, improving the sealing performance of the opening areas, and thus improving the safety of the multi-opening unipolar plate in the working process.
Resumen de: WO2025062828A1
Problem To provide: a catalyst having excellent hydrogen generation efficiency and a method for producing the same; a hydrogen generator comprising the catalyst; and a fuel cell system comprising the hydrogen generator. Solution According to an aspect of the present invention, provided is a catalyst for use in generating hydrogen from a borohydride salt. The catalyst comprises: a core that has interlayer anions and interlayer water molecules and that includes, as the main component, a layered double hydroxide containing iron; and a tripod ligand that is coordinated on the surface of the core in a state of having three hydrophilic groups located on the core side.
Resumen de: WO2025063428A1
The present invention relates to a composite electrolysis device for producing hydrogen and hypochlorous acid water, having a novel configuration for generating hydrogen and hypochlorous acid water by electrolyzing dilute hydrochloric acid, the device comprising: an electrolytic cell (100) which has + and - electrodes (110, 120) disposed therein so as to electrolyze dilute hydrochloric acid inputted from the outside, and has formed in the upper end thereof a chlorine gas discharge hole (130) and a hydrogen discharge hole (140) for discharging chlorine gas and hydrogen generated from the electrolysis of the dilute hydrochloric acid; a dilution tank (200) which is provided on the upper side of the electrolytic cell (100) so as to communicate with the chlorine gas discharge hole (130), has dilution water flowing thereinto from the outside, and has hypochlorous acid water generated therein by means of the chlorine gas, entering through the chlorine gas discharge hole (130), being dissolved in the dilution water; an auxiliary electrolytic cell (300) which is provided on one side of the electrolytic cell (100) so that the end portions on one side of the + and - electrodes (110, 120) are inserted therein, has hydrochloric acid, contained in the hypochlorous acid water, electrolyzed therein by having a portion of the hypochlorous acid water generated in the dilution tank (200) flowing thereinto through a hypochlorous acid water inflow line (310) of which one end is connected to the d
Resumen de: WO2023161339A1
Combustion process, comprising: a) a production step of a binary fuel gas consisting of hydrogen and at least of between 5 and 50 vol% of nitrogen, preferably between 15 and 35 vol% nitrogen, and b) a combustion step using as only fuel gas the binary fuel gas at a combustion chamber able to receive as fuel gas the binary fuel gas, wherein the combustion chamber is selected from the group of furnaces and fired process heaters.
Resumen de: AU2023270735A1
The invention relates to hydrogen producing devices comprising: -An inner tube (2) with macroscopic holes, the tube having at one end an entrance opening, and at the other end an exit opening, the openings allowing entrance of moist a gas and allowing exit of a gas comprising oxygen being produced in the device respectively, -An electrode assembly (8) covering the outer surface of said tube, the assembly comprising an oxygen producing electrode (5) at the inner side of the assembly, and a hydrogen producing electrode (4) at the outer side of the assembly, the electrodes being separated from each other by a separator (3), -A liquid or solid material with hygroscopic properties.
Resumen de: AU2023272285A1
The invention relates to a water electrolyzer system (1) for producing hydrogen. The water electrolyzer system (1) comprises an electrolysis stack (8) for converting water into hydrogen, power electronics (12) for transforming the alternating current into a direct-current in order to supply the electrolysis stack (8), components (56, 64, 72, 80) for preparing the process media supplied to and discharged from the electrolysis stack (8), and a control unit (18) for controlling the electrolysis stack (8), the power electronics (12), and the components (56, 64, 72, 80) for preparing the media. At least the electrolysis stack (8), the power electronics (12), and the control unit (18) are formed together as an electrolyzer module (36), and the components (56, 64, 72, 80) for preparing the media and for conveying the media are formed together as a process module (52). The modules (36, 52) are equipped with connection possibilities (32, 40, 48, 84), via which the individual modules (36, 52) can be fluidically and electrically connected together.
Resumen de: CN119365633A
The invention relates to an electrolysis system comprising at least one electrolysis module (3A, 3B), the electrolysis module (3A, 3B) having a plurality of electrolysis cells (5) connected in series. According to the invention, a DC-conducting switching device (6) is provided which is electrically connected in parallel and which has an accessible power resistor (7) in such a way that, in the closed state, a current path through the power resistor (7) can be activated in order to cause a bridging of the electrolytic cell (5) and excess power can be dissipated via the power resistor (7). The invention further relates to a method for operating such an electrolysis plant (1) for decomposing water into hydrogen and oxygen, and to a composite plant (100) comprising an electrolysis plant (1) which is directly connected to a wind turbine (31).
Resumen de: CN119213172A
The invention relates to a solid oxide electrolysis unit for industrial hydrogen, carbon monoxide or synthesis gas production, comprising at least two solid oxide electrolysis cores, an electrical supply for managing electrical power to the solid oxide electrolysis cores, and a conduit connected to the solid oxide electrolysis cores, and each solid oxide electrolysis core comprises a plurality of solid oxide electrolysis stacks of solid oxide electrolysis cells. According to the invention, the solid oxide electrolysis unit comprises a power supply module comprising a transformer and at least one power supply unit, and a pipe module comprising pipe headers and fluid connections to and from the solid oxide electrolysis core, wherein the power supply module and the pipe module are arranged adjacent to each other, and the solid oxide electrolysis core is arranged above the power supply module and/or the pipe module.
Resumen de: GB2633496A
A passive dual modulating regulator that responds to a pressure differential between a hydrogen-side and an oxygen-side of one or more proton-exchange membrane (PEM) cells is provided. The passive dual modulating regulator includes a flexible diaphragm that is clamped along its periphery between hemispherical chambers. A bi-directional valve assembly extends through the flexible diaphragm and includes opposing valve plugs for selectively closing the output ports of the respective hemispherical chambers. Large or sustained pressure imbalances between the hydrogen-side and the oxygen-side of a hydrogen generation system are avoided without active control inputs of any kind, and consequently a rupture of the PEM is entirely avoided.
Resumen de: EP4528862A1
A pore-filling membrane having excellent chemical durability and mechanical strength, a fuel cell including the pore-filling membrane and having excellent durability, and an electrolysis device are provided. The pore-filling membrane has a porous base material and a polyarylene polymer, in which the polyarylene polymer is filled into pores of the porous base material.
Resumen de: WO2025063428A1
The present invention relates to a composite electrolysis device for producing hydrogen and hypochlorous acid water, having a novel configuration for generating hydrogen and hypochlorous acid water by electrolyzing dilute hydrochloric acid, the device comprising: an electrolytic cell (100) which has + and - electrodes (110, 120) disposed therein so as to electrolyze dilute hydrochloric acid inputted from the outside, and has formed in the upper end thereof a chlorine gas discharge hole (130) and a hydrogen discharge hole (140) for discharging chlorine gas and hydrogen generated from the electrolysis of the dilute hydrochloric acid; a dilution tank (200) which is provided on the upper side of the electrolytic cell (100) so as to communicate with the chlorine gas discharge hole (130), has dilution water flowing thereinto from the outside, and has hypochlorous acid water generated therein by means of the chlorine gas, entering through the chlorine gas discharge hole (130), being dissolved in the dilution water; an auxiliary electrolytic cell (300) which is provided on one side of the electrolytic cell (100) so that the end portions on one side of the + and - electrodes (110, 120) are inserted therein, has hydrochloric acid, contained in the hypochlorous acid water, electrolyzed therein by having a portion of the hypochlorous acid water generated in the dilution tank (200) flowing thereinto through a hypochlorous acid water inflow line (310) of which one end is connected to the d
Resumen de: EP4527988A1
Method for performing an electrolysis with an electrolysis installation (1), comprisinga) recording a respective measurement value (5) of the electrolysis for multiple points of time (6),b) from the points of time (6) used in step a), selecting multiple reference points of time (7), which define a reference period (8),c) fitting a mathematical function (10) to the measurement values (5) recorded in step a) for the reference points of time (7) selected in step b),d) performing at least one of the following sub-steps:d1) from the mathematical function (10) obtained in step c), determining an ageing coefficient that is a measure of the ageing of the electrolysis installation (1),d2) recording a respective measurement value (15) of the electrolysis for at least one point of time (16) that lies after the reference period (8), comparing this measurement value (15) with a corresponding value calculated with the mathematical function (10) obtained in step c) and issuing an indication in case a result of this comparison violates a tolerance criterion.
Resumen de: EP4527983A1
The invention describes a water electrolysis arrangement comprising a water electrolyser (2) with a feed water inlet (21), a hydrogen outlet (22) and an oxygen outlet (23); and a water purifier assembly (1) adapted for connection between a raw water source and the feed water inlet (21) of the water electrolyser (2), and comprising an aeration stage (1<sub>aer</sub>) for aerating raw water (W<sub>raw</sub>); characterized in that the aeration stage (1<sub>aer</sub>) comprises an aeration vessel (10) with a raw water inlet (101) arranged to convey raw water (W<sub>raw</sub>) from the raw water source into the aeration vessel (10); an aeration inlet (102) connected to the oxygen outlet (23) of the water electrolyser (2); and an aerated water outlet (103) arranged to convey aerated water (W<sub>aer</sub>) to a subsequent stage of the water purifier assembly (1). The invention further describes a method of performing water electrolysis using such a water electrolysis arrangement (1).
Resumen de: EP4527989A1
A control system for a hydrogen production facility is a control system for controlling operation of a hydrogen production facility including at least one water electrolyzer. The control system includes: a required hydrogen flow rate acquisition part configured to acquire a required hydrogen flow rate that is a hydrogen generation amount required for the water electrolyzer; a conversion part configured to convert the required hydrogen flow rate into a current required to generate hydrogen at the required hydrogen flow rate at the water electrolyzer and acquire a provisional required current; and a first correction part configured to acquire a current set value to be provided to the water electrolyzer by correcting the provisional required current using a first correction factor based on a difference between the required hydrogen flow rate and an actual hydrogen flow rate that is a hydrogen generation amount generated actually at the water electrolyzer.
Resumen de: TW202428338A
A process for producing hydrogen comprises the following steps: (a) providing a starting mixture containing bromine, water and a sulfur containing compound, (b) reacting the starting mixture provided in step (a) so as to produce a reaction mixture effluent comprising sulfuric acid and hydrogen bromide, (c) separating the reaction mixture effluent obtained in step (b) into one or more hydrogen bromide enriched compositions and into one or more sulfuric acid enriched compositions, wherein at least one hydrogen bromide enriched composition contains at most 1,000 ppm of sulfuric acid, wherein step (c) comprises at least two distillation steps, (d) subjecting at least a portion of the at least one hydrogen bromide enriched composition containing at most 1,000 ppm of sulfuric acid obtained in step (c) to an electrolysis so as to obtain hydrogen and a bromine containing composition, wherein the electrolysis cell is operated at an operational temperature of at least 70 DEG C, and (e) recycling at least a portion of the bromine containing composition obtained in step (d) back to step (a).
Resumen de: CN118984891A
The invention relates to a method for producing a graphite-containing metal oxide electrode, comprising the following steps: a) preparing (1) an electrolytic cell (10) containing an electrode (11), another electrode (12) and an aqueous and/or non-aqueous carbon-and cyano-free solution (14), b) introducing (2) a nigra (15) and a proton source into the solution (14) in the electrolytic cell (10), and c) applying (3) a voltage to the electrode (11) and the other electrode (12) such that the noble metal-free metal oxide and graphite provided by the black substance (15) are deposited on the electrode (11), thereby forming a graphite-containing metal oxide coating (17) on the electrode (11) to produce a graphite-containing metal oxide electrode. In addition, the invention also relates to a graphite-containing metal oxide electrode manufactured according to the method. Furthermore, the invention relates to the use of a graphite-containing metal oxide electrode for producing hydrogen and/or oxygen in water electrolysis and/or photoelectrochemical water electrolysis, and to an electrolytic cell (20) for producing hydrogen and/or oxygen in water electrolysis and/or photoelectrochemical water electrolysis, it comprises a graphite-containing metal oxide electrode as a cathode (22) and/or a graphite-containing metal oxide electrode as an anode (21).
Resumen de: AU2023313378A1
The present invention relates to a method and device for producing hydrogen by dissociating water molecules through thermochemical reactions, using a small amount of active material. The thermochemical reactions are induced by solar power with a moderate concentration of up to 50 suns, which can be achieved through linear or parabolic concentrators.
Resumen de: CN119032441A
The present invention relates to mixed metal oxide catalysts, in particular Pt and Ru-containing oxide catalysts, oxide-based catalysts, for use in polymer electrolyte membrane (PEM) fuel cells, water electrolysis, regenerative fuel cells (RFC) or oxygen generating electrodes in various electrolytic applications.
Resumen de: AU2023220801A1
A method of electric current measurement at an electrolyser cell stack is provided. The method comprises the following steps: to provide at least one sensor (11) having an element which is responsive to the presence of a magnetic flux and/or magnetic flux changes adjacent to an input or exit manifold channel (6, 7) outside of a current injector plate in the electrolyser stack, ensure an electric or a wireless connection between the sensor (11) and a recording and/or display device, supply an electrical potential difference between two current injector plates having the electrolyser cell stack arranged between them, capture a signal value indicative of magnetic flux and/or magnetic flux change at the sensor location by at least one sensor (11), make at least one signal value available for storage and/or transmission to a remote location through the wired and/or wireless connection.
Resumen de: CN119095792A
The present invention relates to a process for producing methanol by synthesis gas produced by combining electrolysis of a water feedstock for producing a stream comprising hydrogen with electrolysis of a carbon dioxide rich stream for producing a stream comprising CO and CO2 wherein the CO/CO2 molar ratio of the synthesis gas is greater than 2. The invention also relates to a method for producing syngas by subjecting a combined feed gas stream of CO2 and steam to one-way co-electrolysis in an SOEC unit.
Resumen de: JP2024003164A
To provide means for solving the problem on radioactive contamination by applying hydrogen water to applications that are different from an application of removing a radioactive substance from soil and that appropriately exhibit functions of hydrogen water with unique properties.SOLUTION: In a method for reducing an amount of radioactivity in liquid containing a radioactive substance by dissolving hydrogen in the liquid, hydrogen may be dissolved in the liquid by mixing a substance containing a radioactive substance with hydrogen water containing hydrogen of 1.0 ppm or more.SELECTED DRAWING: None
Resumen de: US2025092541A1
A sulfur-modified carbon material contains conductive carbon black and sulfur elements distributed therein. The total sulfur content in the sulfur-modified carbon material is equal to or more than 1.2 times, preferably equal to or more than 1.5 times, the surface sulfur content. A process for preparing the sulfur-modified carbon material includes an impregnation step to impregnate the conductive carbon black with a solution containing sulfur at 10-80° C. for 1-5 h, and a drying step.
Resumen de: US2025092541A1
A sulfur-modified carbon material contains conductive carbon black and sulfur elements distributed therein. The total sulfur content in the sulfur-modified carbon material is equal to or more than 1.2 times, preferably equal to or more than 1.5 times, the surface sulfur content. A process for preparing the sulfur-modified carbon material includes an impregnation step to impregnate the conductive carbon black with a solution containing sulfur at 10-80° C. for 1-5 h, and a drying step.
Resumen de: US2025092544A1
Method for preparing a doped metal phosphorus trichalcogenide (dMPT) comprising: (a) contacting a first metal salt, an optional base and a fluorine salt under hydrothermal conditions thereby growing a first metal precursor on a conductive substrate; (b) contacting the first metal precursor with an aqueous solution of a second metal salt thereby forming a doped metal precursor; and (c) contacting the doped metal precursor, phosphorus, and sulfur thereby forming a mixture; and heating the mixture; a dMPT, and a method for producing hydrogen gas using the same.
Resumen de: US2025092531A1
The invention generally concerns processes for the production of hydrogen gas.
Resumen de: WO2025056228A1
The present invention relates to a process for producing hydrogen from an ammonia-containing gas with a supported catalyst in the form of a ruthenium-endowed support body, and to the use of such a ruthenium-containing supported catalyst in a process for producing hydrogen. The process comprises the providing of a supported catalyst in the form of a ruthenium-endowed support body, wherein the support body comprises a refractory oxide as support material, is cylindrical and has at least three mutually spaced-apart channels that extend fully through the support body, where one of the channels extends along a central longitudinal axis.
Resumen de: WO2025056226A1
The present invention relates to a method for producing hydrogen from an ammonia-containing gas with a ruthenium-containing carrier catalyst, and to the use of a ruthenium-containing carrier catalyst in a method for producing hydrogen. The method comprises producing a ruthenium-containing carrier catalyst using an oxalate-containing ruthenium precursor compound, and bringing the carrier catalyst into contact with the ammonia-containing gas.
Resumen de: US2025092542A1
An electrode includes a metallic substrate and a layer of cobalt (Co) and cadmium (Cd) doped bimetallic metal-organic framework (BMMOF11) material at least partially covering a surface of the metallic substrate. The BMMOF11 material contains irregular shaped microcrystalline structures with pointed edges, and the irregular shaped microcrystalline structures are in the form of sheets that are stacked on top of one another. A method of making the electrode, and a method of electrochemical water splitting.
Resumen de: US2025092541A1
A sulfur-modified carbon material contains conductive carbon black and sulfur elements distributed therein. The total sulfur content in the sulfur-modified carbon material is equal to or more than 1.2 times, preferably equal to or more than 1.5 times, the surface sulfur content. A process for preparing the sulfur-modified carbon material includes an impregnation step to impregnate the conductive carbon black with a solution containing sulfur at 10-80° C. for 1-5 h, and a drying step.
Resumen de: US2025092546A1
A preparation method for a one-dimensional Ni12P5/Ni2P polycrystalline heterostructure catalyst used for high-efficiency water oxidation is provided. In particular, nickel foam is used as a conductive carrier and a nickel source, sodium phosphite is used as a phosphorus source, and the one-dimensional polycrystalline heterostructure catalyst is synthesized therefrom by means of a two-step hydrothermal-phosphorization method. The combination of the one-dimensional heterostructure and the nickel foam conductive carrier is beneficial for charge transfer and the release of bubbles on the surface of an electrode/electrolyte. The prepared Ni12P5/Ni2P/NF catalyst has a relatively low electrocatalytic water oxidation overpotential and long-term stability in an alkaline solution. After the Ni12P5/Ni2P/NF is loaded with monatomic Ir, the water oxidation overpotential can be further reduced.
Resumen de: US2025091862A1
A plant, such as a hydrocarbon plant, is provided, which has a syngas stage for syngas generation and a synthesis stage where the syngas is synthesized to produce syngas derived product, such as hydrocarbon product. The plant makes effective use of various streams; in particular, CO2 and H2. The plant does not comprise an external feed of hydrocarbons. A method for producing a product stream, such as a hydrocarbon product stream is also provided.
Resumen de: US2025092545A1
A plasmonic substrate includes a base, a metallic film on the base, and a semiconducting photocatalyst on the metallic film. A method for producing a plasmonic substrate includes depositing a first metal layer having a thickness ranging from 10 to 200 nm and having a first metal through a physical vapor deposition technique onto a base, depositing a second metal layer having a second metal through a physical vapor deposition technique onto the first metal layer forming a multilayered metal template, immersing the multilayered metal template into a solution having a salt or complex of the second metal for a period of time forming a metallic film, and depositing a semiconducting photocatalyst on the metallic film. A method of catalyzing hydrogen production includes immersing a plasmonic substrate in a photocatalytic solution, exposing the plasmonic substrate to light, and generating hydrogen at a surface of the semiconducting photocatalyst.
Resumen de: US2025092543A1
An oxygen evolution reduction electrocatalyst includes a pyrochlore compound with the chemical formula Sm2Ru2xM2-2xO7, where M is selected from the group consisting of Ir, Sc, Fe, Cu, Pd, Cr, and Rh, and x is less than 1.0 and greater than or equal to 0.5. Also, a water electrolysis cell includes an anode, a cathode, an electrolyte, and the oxygen evolution reduction electrocatalyst.
Resumen de: AU2025201415A1
The invention relates to an electrolytic cell com-prising or consisting of (i) two metal half-cells which form the an-ode chamber and the cathode chamber, (ii) an anode and a cathode arranged in the anode chamber and cathode chamber respective-ly, (iii) a separator membrane, which separates the two electrodes from one another; (iv) for each half-cell at least one inflow and one outflow for reactant and product; and (v) optionally spacers which position the two electrodes in their respective electrode chambers, the two half-cells being connected over their perimeters, but elec-trically isolated from one another and having a wall thickness of 0.05 to 0.15 mm.
Resumen de: AU2024204846A1
An electrode according to an embodiment including a support and a catalyst layer provided on the support and alternately stacked with sheet layers and gap layers. The catalyst layer is for electrolysis. The catalyst 5 layer comprises a first metal which is one or more elements selected from the group consisting of Ir, Ru, Pt, Pd, Hf, V, Au, Ta, W, Nb, Zr, Mo, and Cr, and a second metal which is one or more elements selected from the group consisting of Ni, Co, Mn, Fe, Cu, Al, and Zn. The catalyst layer comprises a first region and a second region. The first metal in the first region is 10 more oxidized than the first metal in the second region. A ratio of the second metal in the first region is greater than the ratio of the second metal in the second region. Fig. 1 Fig. 2
Resumen de: WO2025059026A1
Provided herein are systems and methods for utilizing aqua-ammonia as an energy or hydrogen storage and transport medium. A method for delivering power, the method comprises converting enriched ammonia to electrical power and heat; and using the heat to remove water from aqua-ammonia, thereby producing the enriched ammonia.
Resumen de: DE102023209125A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage (1), umfassend einen Stack (2) mit einer Anode (3) und einer Kathode (4), wobei im Normalbetrieb der Elektrolyseanlage (1) der Anode (3) über einen Wasserkreislauf (5) mit integrierter Pumpe (6) Wasser zugeführt wird und das Wasser im Stack (2) durch Elektrolyse in Wasserstoff und Sauerstoff aufgespalten wird, und wobei der durch Elektrolyse erzeugte Wasserstoff über einen Kathodenauslass (10) des Stacks (2) und eine hieran angeschlossene Medienleitung (7) einem Gas-Flüssigkeit-Separator (8) zugeführt wird. Erfindungsgemäß ist vorgesehen, dassa) beim Abschalten der Elektrolyseanlage (1) ein Absperrventil (11) in einer Inertgasleitung (12) geöffnet wird, die einen Inertgasbehälter (13) mit der Kathode (4) verbindet, und die Kathode (4) mit dem Inertgas gespült wird, während die Wasserversorgung der Anode (3) eingestellt wird, undb) beim Wiederanfahren der Elektrolyseanlage (1) die folgenden Schritte ausgeführt werden:(i) Schließen des in die Inertgasleitung (12) integrierten Absperrventils (11),(ii) Versorgen der Anode (3) mit Frischwasser über eine an den Wasserkreislauf (5) angeschlossene Frischwasserversorgung (14) bei noch abgeschaltetem Strom,(iii) Versorgen des Stacks (2) mit dem für die Elektrolyse benötigten Strom und(iv) Produktion einer Wasserstoffmenge, die mindestens der Menge an in der Kathode (4) vorhandenem Inertgas, vorzugsweise der 1,5- bis 10-fachen Menge an in der Kath
Resumen de: WO2025058339A1
The present invention relates to a copper-nickel-iron double layer hydroxide nanoprism, a manufacturing method thereof, and a use thereof as a water electrolysis catalyst. The present invention discloses a catalytic electrode for water electrolysis, the catalytic electrode comprising: a metal foam; and a composite transition metal chalcogenide heterostructure formed on the metal foam. This catalytic electrode for water electrolysis can exhibit improved electrochemical catalytic activity for both a hydrogen evolution reaction (HER) and an oxygen evolution reaction (OER) in a water electrolysis reaction, can efficiently produce hydrogen with a lower energy supply than conventional noble metal electrodes, and can be used in both anion exchange membrane water electrolyzers and solar cell-water electrolysis systems. The present invention relates to a nanosphere hybrid structure containing nickel cobalt selenide and molybdenum selenide, and a use thereof as a water electrolysis catalyst. The present invention relates to a water electrolysis catalyst in which zinc cobalt sulfide and molybdenum disulfide are hetero-bonded, and a manufacturing method thereof.
Resumen de: WO2025058397A1
A multistage electrochemical hydrogen compressor according to an embodiment of the present invention may include: a stack for compressing hydrogen; and a current supply unit for applying a current to the stack, wherein the stack includes: a low-pressure end plate having an inlet through which low-pressure hydrogen is introduced; a high-pressure end plate having an outlet for discharging high-pressure hydrogen acquired by compressing the low-pressure hydrogen; a plurality of cells disposed between the low-pressure end plate and the high-pressure end plate; and a membrane-electrode assembly each disposed between the plurality of cells, and the current supply unit is connected to each of the plurality of cells to selectively control current application to the plurality of cells.
Resumen de: WO2025058260A1
An apparatus integrated with floating offshore wind power for producing offshore green hydrogen, according to one embodiment, comprises: an offshore wind power generator; a hydrogen production system for producing hydrogen by using seawater; a control unit for controlling at least one portion of the hydrogen production system; and a power source unit for supplying power to at least one portion of the hydrogen production system or the control unit.
Resumen de: WO2025055403A1
A hydrogen drying system for hydrogen production using renewable energy. Two adsorbers (1, 2) are arranged in parallel, the two adsorbers (1, 2) alternately perform an adsorption process and a desorption process, the adsorption flow of each of the adsorbers (1, 2) changes along with the fluctuations of input renewable energy, and an operating state of each of the adsorbers (1, 2) is switched by means of accumulating the hydrogen flow treated by each of the adsorbers (1, 2) during a single adsorption process; a pre-adsorber (3) is connected in series to one of the adsorbers (1, 2) and is used for assisting in the desorption process; and during the desorption process, hydrogen in the pre-adsorber (3) or the adsorbers (1, 2) is circulated by means of a hydrogen self-circulation apparatus (4), and the desorption process is independent of the adsorption process. Since the adsorption process and the desorption process are independent of each other, after a raw gas enters the adsorbers (1, 2) and absorption is completed, all the raw gas is output; and during the desorption process, hydrogen in the pre-adsorber (3) or the adsorbers (1, 2) is circulated by means of the hydrogen self-circulation apparatus (4) to realize hydrogen regeneration, so that the problem of desorption being incomplete due to desorption interruption caused by the flow fluctuations of the raw hydrogen is solved, intermittent and fluctuating renewable energy can be matched to perform hydrogen production, and an op
Resumen de: DE102024119758A1
Die vorliegende Erfindung betrifft eine Vorrichtung (10) zur Erzeugung von Energie, aufweisend wenigstens ein Photovoltaikmodul (17) mit einer oder mehreren Photovoltaikzellen (102; 17a), sowie wenigstens ein Elektrolysemodul (19) mit wenigstens einer Elektrolysezelle (19d). Um eine Vorrichtung (10) bereitzustellen, die zum einen konstruktiv einfach aufgebaut ist, ohne dass es für deren Betrieb zwischengeschalteter Komponenten bedarf, und die zum anderen vielseitig eingesetzt und modular verwendet werden kann, ist vorgesehen, dass die wenigstens eine Photovoltaikzelle (17a) elektrisch direkt mit der wenigstens Elektrolysezelle (19d) verbunden ist, und dass das Photovoltaikmodul (17), insbesondere die wenigstens eine Photovoltaikzelle (17a) und das Elektrolysemodul (19), insbesondere die wenigstens eine Elektrolysezelle (19d) konfiguriert sind, dass die Maximalleistungs-Spannung der Photovoltaikzellen (17a) der Spannung im Betriebspunkt der wenigstens einen Elektrolysezelle (19d) entspricht.
Resumen de: US2025092551A1
An electrolysis unit A fluid manifold system is feeding electrolytic solution into the electrolytic cells and discharging the electrolytic solution out of the electrolytic cells. The cavity of an expandable closing device is pressurized so that its shell expands and the volume of the cavity increases. The expandable closing device is arranged within the fluid manifold system, so that the fluid manifold system is open for the passage of electrolytic solution if the expandable closing device is in a depressurized state and the fluid manifold system is closed for the passage of electrolytic solution if the expandable closing device is in a pressurized state.
Resumen de: US2025091905A1
An eFuels plant and process for producing synthetic hydrocarbons using renewable energy are disclosed. The eFuels plant comprises a hydrocarbon synthesis (HS) system and a renewable feed and carbon/energy recovery (RFCER) system. The RFCER comprises a heat integration system between an electrolysis unit and a thermal desalination unit. The thermal desalination unit is configured to receive seawater and a first amount of thermal energy and to produce a desalinated water stream and a brine effluent stream. The electrolysis unit is configured to receive a demineralized water stream and an amount of electrical energy to produce a hydrogen stream, an oxygen stream, and a second amount of thermal energy, wherein the second amount of thermal energy is absorbed by a second low temperature heat transfer fluid stream to produce a second high temperature heat transfer fluid stream. A fluidly segregated piping system containing a heat transfer fluid is configured to withdraw heat from the electrolysis unit and deliver heat to the thermal desalination unit. A control system manages flows of the heat transfer fluid between the electrolysis unit and the thermal desalination unit, the addition of heat to the flow to the thermal desalination unit, and/or the removal of heat from the flow to the electrolysis unit.
Resumen de: US2025092537A1
In this disclosure, a process of recycling acid, base and the salt reagents required in the Li recovery process is introduced. A membrane electrolysis cell which incorporates an oxygen depolarized cathode is implemented to generate the required chemicals onsite. The system can utilize a portion of the salar brine or other lithium-containing brine or solid waste to generate hydrochloric or sulfuric acid, sodium hydroxide and carbonate salts. Simultaneous generation of acid and base allows for taking advantage of both chemicals during the conventional Li recovery from brines and mineral rocks. The desalinated water can also be used for the washing steps on the recovery process or returned into the evaporation ponds. The method also can be used for the direct conversion of lithium salts to the high value LiOH product. The method does not produce any solid effluent which makes it easy-to-adopt for use in existing industrial Li recovery plants.
Resumen de: US2025092323A1
There is provided a method and apparatus for producing hydrogen gas from biogenic material (210) within a pressure vessel (10). The method comprises heating a granular material (15) to greater than 500° C., adding a batch of biogenic material (210) into the pressure vessel with the heated granular material (15) at atmospheric pressure, closing the pressure vessel, and mixing the heated granular material (15) with the biogenic material (210) inside the closed pressure vessel (10) to raise the temperature of the biogenic material (210) and commence gasification, the gasification producing gas that increases the pressure inside the pressure vessel (10), the produced gas comprising hydrogen gas.
Resumen de: US2025091976A1
A method of producing formaldehyde, the method comprising: generating electrolytic hydrogen from the electrolysis of water; providing a feedstock gas stream comprising the electrolytic hydrogen and one or both of carbon monoxide and carbon dioxide; converting at least a portion of the feedstock gas to methanol; converting at least a portion of the methanol to formaldehyde and hydrogen; separately recovering at least some of the formaldehyde and at least some of the hydrogen; and recycling at least some of the recovered hydrogen to the feedstock gas stream.
Resumen de: DE102023125551A1
Die Erfindung betrifft eine Elektrolysevorrichtung (1) zur elektrochemischen Erzeugung von Wasserstoff aus Wasser, mit- einem Kathodenbereich (3) und einem von dem Kathodenbereich (3) separierten Anodenbereich (5),- einer Wasserzufuhrvorrichtung (7), die eingerichtet ist, um dem Anodenbereich (5) Wasser zur elektrochemischen Umsetzung in dem Anodenbereich (5) zuzuführen,- eine Wasserrückführvorrichtung (9), die eingerichtet ist, um Wasser aus dem Kathodenbereich (3) in den Anodenbereich (5) zurückzuführen, wobei- die Wasserrückführvorrichtung (9) eine Energiewandlungsvorrichtung (11) aufweist, die angeordnet und eingerichtet ist, um Energie des über die Wasserrückführvorrichtung (9) zurückgeführten Wassers zu wandeln.
Resumen de: US2025092532A1
A process of producing hydrogen from air comprising: contacting a hygroscopic liquid with a source of air to absorb a water content from said source of air into the hygroscopic liquid; and electrolytically converting the water absorbed in the hygroscopic liquid into hydrogen and oxygen.
Resumen de: WO2025056589A1
The present invention relates to an ammonia synthesis plant having a hydrogen device and a synthesis circuit, wherein the synthesis circuit has a conveying device, a converter and a first bypass line. The hydrogen device is designed to provide hydrogen. The conveying device is designed to cyclically convey a gas mixture, containing nitrogen, hydrogen and ammonia, in a synthesis circuit conveying direction, wherein the conveying device has a suction side and a pressure side. The converter is designed to catalytically convert nitrogen and hydrogen at least partially into ammonia, wherein the converter has an inlet and an outlet, wherein the inlet of the converter is fluidically connected to the pressure side of the conveying device and the outlet of the converter is fluidically connected to the suction side of the conveying device. The first bypass line is arranged from the suction side of the conveying device to the pressure side of the suction device parallel to the conveying device in the fluidically opposite direction and is designed for the stoppable return of a first partial stream of the gas mixture from the pressure side of the conveying device to the suction side of the conveying device, wherein the first bypass line has a cooling device which is designed to cool the first partial stream of the gas mixture. The first bypass line has a second bypass line, which is arranged parallel to the cooling device in the fluidically same direction, and which is designed for the st
Resumen de: WO2023217683A2
In order to provide a device (1) for providing hydrogen (H2) by means of an electrolysis unit (2) which allows the longest possible service life of the electrolysis unit (2) even in case of fluctuating energy supplies to the electrolysis unit (2), a reciprocating piston compressor (3) is provided to compress the hydrogen (H2) generated by the electrolysis unit (2), the reciprocating piston compressor (3) having at least one automatic intake valve (5). A retraction gripper (6) is provided in order to hold the intake valve (5) selectively in an open position, an electrically actuatable actuator (7) is provided to activate the retraction gripper (6), and a control unit (4) is provided to control the actuator (7), the control unit (4) being designed to actuate the actuator (7) in such a way that an outlet pressure (p1) of the hydrogen (H2) at the outlet of the electrolysis unit (2), or a differential pressure (Δp) between an anode and a cathode of the electrolysis unit (2), is adjustable to a predefined target value (p1_soll, Δp_soll).
Resumen de: GB2633722A
An integrated hydrogen-electric engine includes a hydrogen fuel-cell; a hydrogen fuel source; an electric motor assembly disposed in electrical communication with the fuel-cell; an air compressor system configured to be driven by the motor assembly, and a cooling system having a heat exchanger radiator in a duct of the cooling system, and configured to direct an air stream including an air stream from the air compressor through the radiator, wherein an exhaust stream from a cathode side of the fuel-cell is fed via a flow control nozzle into the air stream in the cooling duct downstream of the radiator.
Resumen de: WO2025058397A1
A multistage electrochemical hydrogen compressor according to an embodiment of the present invention may include: a stack for compressing hydrogen; and a current supply unit for applying a current to the stack, wherein the stack includes: a low-pressure end plate having an inlet through which low-pressure hydrogen is introduced; a high-pressure end plate having an outlet for discharging high-pressure hydrogen acquired by compressing the low-pressure hydrogen; a plurality of cells disposed between the low-pressure end plate and the high-pressure end plate; and a membrane-electrode assembly each disposed between the plurality of cells, and the current supply unit is connected to each of the plurality of cells to selectively control current application to the plurality of cells.
Resumen de: KR20250038040A
본 발명은 수전해 설비에서 생산된 수소를 저장하는데 이용되며 수전해 생산 수소의 고순도 저장을 위한 수소 저장탱크 및 이를 구비한 수전해 시스템을 개시한다. 본 발명의 수전해 생산 수소의 고순도 저장을 위한 수소 저장탱크는 수분 분리판에 의해 제1 챔버와 제2 챔버로 구획되며, 수분 분리판은 유입관이 연결되어 제1 챔버로 수전해 설비에서 생산된 수소를 유입시키는 유입공부, 유입공부를 통해 제1 챔버로 유입된 수소가 제2 챔버로 배출되는 배출공부를 포함하며, 제1 챔버로 유입된 수소가 제2 챔버로 이동하는 과정에서 수분 분리판에 수소를 접촉시켜 수소에서 수분을 분리시킨다.
Resumen de: CN119095792A
The present invention relates to a process for producing methanol by synthesis gas produced by combining electrolysis of a water feedstock for producing a stream comprising hydrogen with electrolysis of a carbon dioxide rich stream for producing a stream comprising CO and CO2 wherein the CO/CO2 molar ratio of the synthesis gas is greater than 2. The invention also relates to a method for producing syngas by subjecting a combined feed gas stream of CO2 and steam to one-way co-electrolysis in an SOEC unit.
Resumen de: CN118984733A
Highly active and stable water electrolysis catalysts with reduced noble metal loading and methods of making the same are described. The method involves depositing a substantially continuous platinum group metal (PGM)-based precursor thin shell layer on a nanoscale inorganic oxide core to form a coated inorganic oxide core. The coated inorganic oxide core is heated in the presence of a template to convert the substantially continuous PGM-based precursor thin shell layer to a substantially continuous PGM oxide thin shell layer. The template is then removed, forming a water electrolysis catalyst comprising a nanoscale inorganic oxide core having a substantially continuous PGM oxide thin shell layer. The water electrolysis catalyst comprises less than 30% by weight of PGM oxide.
Resumen de: CN119032201A
A catalyst coated ion conducting membrane is described. The catalyst coated ion conducting membrane includes an ion conducting membrane; an anode catalyst coating on a first surface of the ion-conducting membrane, or a cathode catalyst coating on a second surface of the ion-conducting membrane, or both, where the anode catalyst coating or the cathode catalyst coating or both comprises a conductive polymer. Membrane electrode assemblies and electrolysis systems incorporating the catalyst coated ion conducting membranes are also described.
Resumen de: TW202403105A
An electrolyzer system comprising an electrochemical cell and an electrolyzer fluidic member utilized to supply a fluid to the electrochemical cell is provided. The electrolyzer fluidic member comprises a polymer composition that includes a polyarylene sulfide.
Resumen de: EP4524099A1
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Wasserstoff aus einem Ammoniak-haltigem Gas mit einem Trägerkatalysator in Form eines mit Ruthenium-ausgestatteten Trägerkörpers, sowie die Verwendung eines solchen Ruthenium-haltigen Trägerkatalysators in einem Verfahren zur Herstellung von Wasserstoff. Das Verfahren umfasst das Bereitstellen eines Trägerkatalysators in Form eines mit Ruthenium-ausgestatteten Trägerkörpers, wobei der Trägerkörper als Trägermaterial ein refraktäres Oxid umfasst, zylinderförmig ist und mindestens drei voneinander beabstandete Kanäle aufweist, die sich vollständig durch den Trägerkörper erstrecken, wobei einer der Kanäle sich entlang einer zentralen Längsachse erstreckt.
Resumen de: EP4524098A1
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Wasserstoff aus einem Ammoniak-haltigem Gas mit einem Ruthenium-haltigen Trägerkatalysator, sowie die Verwendung eines Ruthenium-haltigen Trägerkatalysators in einem Verfahren zur Herstellung von Wasserstoff. Das Verfahren umfasst die Herstellung eines Ruthenium-haltigen Trägerkatalysators unter Verwendung einer Oxalat-enthaltenden Ruthenium-Vorläuferverbindung, sowie das Kontaktieren des Trägerkatalysators mit dem Ammoniakhaltigen Gas.
Resumen de: WO2025058260A1
An apparatus integrated with floating offshore wind power for producing offshore green hydrogen, according to one embodiment, comprises: an offshore wind power generator; a hydrogen production system for producing hydrogen by using seawater; a control unit for controlling at least one portion of the hydrogen production system; and a power source unit for supplying power to at least one portion of the hydrogen production system or the control unit.
Resumen de: CN119640311A
本发明公开了一种电催化剂及其制备方法和应用,属于电催化剂领域。所述电催化剂包括导电基底和活性成分;活性成分负载于导电基底表面;活性成分结构式为CeFe‑LDH@F‑NiCoP;F‑NiCoP为氟掺杂镍钴磷化物,CeFe‑LDH为铈铁层状双氢氧化合物;活性成分中的F‑NiCoP以二维纳米片阵列的形式原位生长在所述导电基底表面,活性成分中的CeFe‑LDH纳米颗粒生长在F‑NiCoP二维纳米片表面,形成活性成分的三维异构结构。本发明制备的三维异质结构电催化剂具备丰富的催化活性位点和出色的析氧催化活性,并且在碱性大电流条件下展现出优异的耐久性,对促进绿色清洁能源的发展意义重大。
Resumen de: CN119640301A
本发明涉及无机催化剂的载体技术,旨在提供一种应用于电催化水分解的金属‑硅藻土载体的制备方法。该方法包括:硅藻土过筛和酸浸处理;将酸浸硅藻土放入去离子水,进行超声分散处理,得到硅藻土浊液;然后加入金属乙酸盐溶液,混合后进行超声和搅拌处理;再将混合物转移至水热釜中进行水热反应,反应结束后过滤、清洗固体,得到用作载体的金属‑硅藻土。本发明所制备的硅藻土载体具有发达的孔隙结构和大的比表面积,有助于催化剂均匀分散,暴露更多活性位点,从而提高催化活性;该载体可作为负载催化剂的部分原料,或直接用作催化剂应用于电催化水分解;在应用于HER/OER时具有较低过电位、较小塔菲尔斜率、较高转换频率和较好稳定性。
Resumen de: CN119640313A
本发明属于电解水催化技术领域,具体涉及一种高熵磷‑氟化物纳米颗粒催化剂的制备方法、制得的催化剂及析氧电极。本发明提供的高熵磷‑氟化物纳米颗粒催化剂的制备步骤为,首先取Ni、Fe、Cu、Co、Mn的可溶性金属盐溶解在蒸馏水或/和乙醇中配置成浓度为0.005 mol/L的金属盐溶液,将溶液雾化成微纳米尺寸的气溶胶液滴并吹入氢氧化铵溶液中,雾化结束后抽滤、干燥,得到前驱体粉末;然后将前驱体粉末在无氧环境中分别与PH3和HF反应,反应结束后得到高熵磷‑氟化物纳米颗粒催化剂。本发明的制备方法可以在在常温常压下合成前驱体,制备高熵磷‑氟化物纳米颗粒催化剂温度仅为500℃,明显低于传统的高熵合金熔融锻造制备技术。
Resumen de: CN119640331A
本发明公开了一种加速电解堆活化速度的方法,包括:S1:向电解堆氢氧两侧通入去离子水,去离子水温度为T0,保持电解堆电极充分湿润;S2:采用恒电压策略进行电解堆活化操作,控制电解堆平均单节电池为V1,此时电解堆出口水温为T1,调节电解堆出口氢压力、氧压力分别为P1和P2;S3:在设定的平均单节电池V1下,随运行时间的增长,电解堆出口水温度逐渐升高,电流密度继续增加,维持出口氢压力、氧压力为P1和P2;S4:待电解堆出口水温上升至指定运行温度Tend,稳定一段时间,直至电解堆平均单池电压不发生明显变化,完成活化操作。
Resumen de: CN119633849A
本发明属于无机功能复合材料制备与应用领域,涉及一种多壳层复合催化材料及其制备方法与应用。其为Zn2MnO4与CdS复合的材料,Zn2MnO4为纳米多壳层空心球结构,CdS为纳米颗粒,若干CdS纳米颗粒包覆在Zn2MnO4表面。该催化材料不仅具有更高的比表面积,提供更多表面活性位点,还能够增强光的折射与反射,进而提高光的利用效率。同时,Zn2MnO4/CdS复合材料之间构建的具有内界电场的异质结,可以促进光生载流子的高效分离,从而产生具有高氧化还原能力的空间分离空穴和电子,实现高效的光催化产氢性能。相比于单一Zn2MnO4相比,本发明提供的多壳层复合催化材料具有更优异的光催化分解水产氢性能。
Resumen de: CN119633689A
本发明涉及一种氢化锂水解制氢装置及其电池系统,属于制氢装置领域,包括反应腔体、氢化锂储料盘和伸缩直线电机;所述反应腔体,用于水和氢化锂反应,上端设有用于氢化锂压块投料的通孔;所述氢化锂储料盘,设置在反应腔体上方,依次由上储料盘、氢化锂密封管和下储料盘组成;所述储料盘安装在步进电机输出轴上,通过步进电机驱动旋转;所述伸缩直线电机,设置于氢化锂储料盘上方用于带动推头戳破薄膜,推动氢化锂块到反应腔体,所述反应腔体上方设有外壳,氢化锂储料盘和伸缩直线电机设置在外壳内。用氢化锂与水反应产生氢气,相比传统的高压储氢罐,大大提高了设备的安全性,避免了高压氢气泄漏和爆炸的风险,降低潜在危险。
Resumen de: AU2023315921A1
The invention relates to a method for operating an electrolysis system (2) comprising at least one electrolyser (4) for generating hydrogen (6) and oxygen (8) as products, and at least two downstream compressors (10) for compressing at least one product (6, 8) produced in the electrolyser (4). In order to ensure part-load operation of the electrolyser (2) that is optimised in terms of efficiency and is also cost-effective, during part load operation of the electrolyser (4), a first group (A) of compressors (10
Resumen de: CN119640325A
本发明属于电催化技术领域,具体涉及一种含铱微晶纳米材料及其制备方法和应用。该含铱微晶纳米材料包括铱单质微晶和包覆在所述铱单质微晶外层的铱氧化物微晶;所述铱氧化物微晶为IrOx,0<x<2;具有团簇状结构。本发明提供的含铱微晶纳米材料不仅具有优异的电催化活性,还具有良好的长期稳定性,能够在PEMWE的工况条件下高效长期稳定运行。
Resumen de: CN119640314A
本发明属于新材料合成和技术领域,公开了一种方酸配合物衍生的镍铁基双金属氢氧化物及其制备方法和一种包括方酸配合物衍生的镍铁基双金属氢氧化物的电极。本发明所述方酸配合物衍生的镍铁基双金属氢氧化物表面具有天然的孔道结构能够促进电解液中的氢氧根离子、反应中间体脱离的质子和产物氧气分子的快速转移和传送,以保持较高的催化活性和长久的大电流稳定性。本发明所述方酸配合物衍生的镍铁基双金属氢氧化物的制备方法,绿色、简便且高效。本发明所述包括方酸配合物衍生的镍铁基双金属氢氧化物的电极,有望能克服大电流环境下的恶劣条件,对实现电解水制绿氢的规模化发展具有重要的现实意义。
Resumen de: CN119633861A
本发明涉及新材料及催化制氢领域,具体涉及一种异质催化剂及其制备方法和应用,具体制备方法是向三乙胺和去离子水的混合溶剂中加入金属源和光敏剂,并添加一水合次亚磷酸钠或次亚磷酸钠作为磷源,混合均匀后,在可见光的光照下搅拌即得分散于溶液的异质结构催化剂,所述分散于溶液的异质结构催化剂经后处理得到异质结构催化剂的纳米颗粒;该催化剂的制备由可见光驱动,不需要高温煅烧或加热处理,在制备过程中可原位生成氢气,制备的催化剂分解次亚磷酸钠产氢反应不需要在光催化或电催化条件下进行,在常温下静置即可产氢。
Resumen de: CN119642104A
本发明涉及再生气体生成装置技术领域,尤其是一种气体纯化设备使用的再生气体生成装置,包括PEM水电解模块和混合气体箱,所述混合气体箱的输入端连接有N2供给阀门和H2供给阀门,所述H2气体分离器的输出端与气体压缩泵相连接。通过H2供给阀门、PEM电解模块之间的配合,当压力降到设定的基准压力以下时,PEM电解模块会重新供电,并将氢气与氮气混合后供给P‑Gas储存容器,从而为气体净化装置的再生过程提供所需的再生气体,该装置通过水电解过程产生氢气并与外部供应的氮气混合,能够高效且连续地支持气体净化装置的再生需求,避免了传统的高压氢气储罐及外部气体供应的复杂性。
Resumen de: CN119640304A
本发明公开了一种合金为活性金属的电催化析氢催化剂及其制备方法和应用,通过水热法制备SiO2,再通过掺杂Cu形成CuSiOx,最后载上非贵金属并且用贵金属置换还原或是加入还原剂形成合金负载在CuSiOx上。本发明中CuSiOx具有较大比表面积能够有效的负载上非贵金属与贵金属形成的合金,并大大提高了其分散性,且多孔的结构增大了催化剂的反应面积,提高催化剂的析氢活性。本发明的催化剂在较低贵金属的负载量时既具有优异的析氢活性,在电流密度为10mA/cm2的过电势为24mV,在经过1000次伏安循环测试后,过电势仍能保持在25mV,优于20wt%Pt/C催化剂。
Resumen de: CN119640326A
本发明涉及一种基于异质皮层修饰的碱性水电解膈膜及其制备方法,属于碱性水电解技术领域,包括Zirfon型基膜以及其外表面的聚酰胺PA层、苯并咪唑连接聚合物BILP层/GO,所述PA层、BILP/GO层均由界面聚合反应生成。本发明采用PA皮层、BILP/GO的异质皮层结构设计,不仅制备简单,生产成本低,而且致密的皮层具有更好的隔气性能、PA层的高强度高弹性提升了机械强度,BILP/GO层的分子重构机理提高隔膜的高温耐碱性、GO上的大量含氧官能团带来更高的亲水性、更低的面电阻。
Resumen de: CN119640310A
本发明涉及析氧反应电催化剂领域,公开了析氧反应电催化剂及其制备方法和应用。一种制备析氧反应电催化剂的方法,所述方法包括:(1)将金属盐溶液或金属熔盐在金属基底表面进行电沉积;(2)将步骤(1)的电沉积产物进行热处理;(3)将步骤(2)的热处理产物与含硫化合物混合进行硫化;其中,所述热处理的条件包括:以1‑5℃/min的速度升温至300℃及以上,并在该温度下维持1‑5h。本发明合成了一种自支撑的析氧反应电催化剂,通过硫化过程成功地引入了丰富的氧空位和异质结构,共同增强了析氧反应的电荷转移,在同一电流密度下表现出更低的过电位,并且可以稳定运行,且时间较长。
Resumen de: CN119640312A
本发明公开了一种具有三硫化二铬/二硫化三镍界面的纳米锥结构析氢电极及其制备方法,析氢电极包括导电基底以及在所述导电基底上原位生长的具有三硫化二铬/二硫化三镍界面的纳米锥结构催化涂层。本发明以镍网为导电基底,在镍网上原位生长具有三硫化二铬/二硫化三镍界面的纳米锥结构涂层作为析氢催化剂,其中,三硫化二铬/二硫化三镍界面层分解水活性较高,优化了二硫化三镍催化涂层氢原子脱附困难的问题,同时引入了更多的活性位点,大大降低了分解水所需的过电位,有效提升析氢效率;采用一步电化学沉积法,制备方法简单高效,催化剂稳定性强,制备的析氢电极在碱性电解水制氢领域具有广阔的应用前景。
Resumen de: CN119640287A
本发明公开了一种基于窄间隙电解槽生产纳米C‑S‑H的装置及制备方法,本装置包括电解槽组件,其包括酸性反应液仓、碱性反应液仓、分隔膜和双极板,分隔膜将酸性反应液仓和碱性反应液仓分隔,双极板有两个且对反应液仓和分隔膜进行夹持固定;电解槽组件的数量有至少两个且相互串联;电解组件,其向电解槽组件提供电能;酸液池,其与各个酸性反应液仓连接;碱液池,其与各个碱性反应液仓连接;沉淀反应池,酸液池和碱液池中的电解液均流通至沉淀反应池。本装置通过多个串联的电解槽组件,增大酸性电解液与碱性电解液的接触面积,酸性反应液仓和碱性反应液仓的间距更近以提升电解效率;另外对钙质矿物和硅质矿物的纯度要求不高,摆脱对高纯度原料的依赖。
Resumen de: CN119652152A
本发明涉及风能发电技术领域,具体涉及一种纳米摩擦发电机及制氢系统,包括摩擦纳米发电机及电解槽,其特征在于:所述发电机与电机槽之间接入整流桥,所述电解槽由若干微电解槽串联而成,每个微电解槽由一个阳极室和一个阴极室内构成。本发明不仅简化了制氢系统的结构,还大幅提高了其能量转换效率和实用性,为氢能的高效、可持续生产提供了有力的技术支持。
Resumen de: MX2024009895A
Tantalum nitride and specifically a novel Ta<sub>3</sub>N<sub>5</sub> nanoparticles, such as single crystalline Ta<sub>3</sub>N<sub>5</sub> nanoparticles, are disclosed. The nanoparticles used with a co-catalyst is further disclosed. The present invention also relates to Ta<sub>3</sub>N<sub>5</sub> nanoparticles modified with a metal oxide, such as a CoO<sub>x</sub> cocatalyst, wherein Ox represents an oxide that is part of the cobalt oxide. A catalyst, such as for water oxidation to produce O<sub>2</sub>, is disclosed. The nanoparticles can further be modified to include a water reducing catalyst. A water splitting catalyst is further disclosed. Methods of making the nanoparticles and catalyst are also disclosed. Methods to split water utilizing the catalyst are further described.
Resumen de: AU2025200640A1
ELECTRICAL POWER GENERATION SYSTEMS AND METHODS REGARDING SAME A solid or liquid fuel to plasma to electricity power source that provides at least; one of electrical and thermal power comprising (i) at least one reaction cell for the catalysis of atomic hydrogen to form hydrinos, (ii) a chemical feel mixture comprising at least two components chosen from: a source of H20 catalyst or H2 0 catalyst; a source of atomic hydrogen or atomic hydrogen; reactants to form the source of H20 catalyst or H20 catalyst and a source of atomic hydrogen or atomic hydrogen; one or more reactants to initiate the catalysis of atomic hydrogen; and a material to cause the feel to be highly conductive, (iii) a fuel injection system such as a railgun shot injector, (iv) at least one set of electrodes that confine the fuel and an electrical power source that provides repetitive short bursts of flow-voltage, high-current electrical energy to initiate rapid kinetics of the hydrino reaction and an energy gain due to forming hydrinos to form a brilliant-light emitting plasma, (v) a product recovery system such as at least one of an augmented plasma railgun recovery system and a gravity recovery system (vi) a fuel pelletizer or shot maker comprising as me Her. a source or hydrogen and a source of H20, a dripper and a water bath to form fuel pellets or shot, and an agitator to teed shot into the injector, and (vii) a power converter capable of converting the high-power light output of the cell into electric
Resumen de: CN119640298A
本发明涉及气体催化技术领域,尤其涉及一种用于析氢催化的铂基非晶合金催化薄带及其制备方法,其中制备方法包括以下步骤:S1、将铂、镍、铜和磷按质量比36:1:3:2混合并熔炼吸铸为非晶合金棒材;S2、将非晶合金棒材熔化,喷射到快速旋转的铜辊轮表面冷却,得到铸态薄带;S3、将铸态薄带进行退火处理,得到老化薄带;S4、将老化薄带进行超声波加载处理,获得铂基非晶合金催化薄带。本发明制得的用于析氢催化的铂基非晶合金催化薄带,活性位点多,催化性能稳定。且制备工艺要求简单、制备时间短、可重复性强、适合大规模生产。
Resumen de: CN119633901A
本发明涉及光催化材料技术领域,具体提供一种氮化碳/硫化铟锌/多酸复合材料及其制备方法和应用。本发明的目的是要解决多酸作为光催化产氢催化材料光生电荷复合率高、光谱范围窄的问题,提供一种可以提高其产氢性能作为光催化材料的制备方法。所述方法包括以三聚氰胺、三聚硫氰酸、尿素按照一定比例混合后合成的管状氮化碳作为前驱体;再通过热回流的方式在管状氮化碳上原位生长片层状硫化铟锌,得到氮化碳/硫化铟锌异质材料;最后再将上述氮化碳/硫化铟锌异质材料添加至HCl‑Tris缓冲溶液中,超声分散,添加盐酸多巴胺作为粘结剂,同时加入钴取代磷钨酸盐Na10Co4(H2O)2(α‑PW9O34),室温搅拌,即得到了氮化碳/硫化铟锌/多酸复合材料。该复合材料的制备解决了多酸易溶于水、光谱响应范围窄,硫化铟锌光生电子和空穴易复合的问题,促进了光生电荷的分离,同时独特的管状片层多级结构增加了材料的比表面积,使得催化活性位点能更多的显露出来,为高性能多酸基光催化剂的开发提供了一条技术路线。
Resumen de: AU2023288544A1
Disclosed herein are low voltage electrolyzers and methods and systems of using those low voltage electrolyzers. Specifically, the electrolyzers can include a pH buffer in the catholyte and/or anolyte of the electrolyzer and generating a gas at the cathode or anode that is consumed at the other of the cathode or anode to reduce the open-circuit potential.
Resumen de: CN119638019A
本发明提供了一种双功能自支撑电极复合材料及其制备方法和应用,本发明将生长在泡沫镍上的NiMoOx纳米线加入到含有镍源、钴源、铁源和六亚甲基四胺的混合溶液中,水热反应,得到前驱体;然后在氢和氩混合气氛下热解,得到双功能自支撑电极复合材料。与现有技术相比,本发明使用六亚甲基四胺在较低温度下在NiMoOx纳米线表面原位合成NiCoFe‑MoNi4/MoO2/NF,并将其用作一种有效的全解水双功能电催化剂。本发明三元NiCoFe复合物与MoNi4/MoO2之间产生了强烈的协同效应,提高了催化剂的内在活性。催化剂同时作为阴极和阳极参与催化反应,其性能超越了市售贵金属电极的催化性能。
Resumen de: CN119649933A
本发明公开一种基于第一性原理电解海水中优化FeCoOOH双金属羟基氧化物催化材料析氧反应选择性能的方法,所述方法包括:第一性原理弛豫计算,FeCoOOH双金属羟基氧化物材料晶体晶面切割,计算晶体稳定构型对应的系统能量;基于第一性原理搭建,构筑氯离子和氢氧根与所述目标的稳定吸附构型并进行弛豫计算,计算吸附态下对应的系统能量;基于前期得到的原始稳定构型能量与吸附态稳定构型能量,计算不同吸附位点以及不同单原子掺杂对于氯离子吸附目标的吸附性能影响。本发明利用第一性原理计算,无需针对特定场景逐一开展现场实验,便能精确预估各类单原子基团在FeCoOOH双金属羟基氧化物催化表面吸附目标氯离子过程中的吸附性能变化,实现催化单原子对于选择性能策略的定向筛选。
Resumen de: CN119640315A
本发明属于纳米功能材料及电化学催化技术领域,具体涉及一种自组装α‑氢氧化钴/氧化锰复合电催化析氧材料及其制备方法与应用。本发明利用氢氧化钴纳米管和氧化锰纳米晶制备α‑氢氧化钴/氧化锰(α‑Co(OH)2/MnO)复合材料,并将其负载至镍网(Ni)上制作α‑氢氧化钴/氧化锰@镍网电极(α‑Co(OH)2/MnO@Ni),此电极可作为工作电极,在碱性条件下实现电解水制氢过程,为实现氢气的制取提供了一个简单、高效、方便、经济的新思路。
Resumen de: CN119649932A
本发明公开一种基于第一性原理利用电解液优化提高NiFe‑LDH双金属羟基氧化物催化材料抗波动性能的方法。所述方法包括:第一性原理弛豫计算,NiFe‑LDH双金属羟基氧化物晶体低密勒指数晶面切割,计算晶体稳定构型对应的系统能量;基于第一性原理搭建,构筑多种酸根与所述目标的稳定吸附构型并进行弛豫计算,计算吸附态下对应的系统能量;基于前期得到的原始稳定构型能量与吸附态稳定构型能量,计算不同酸根离子吸附态的总能量与电子结构。利用第一性原理计算,无需针对特定场景逐一开展现场实验,便能精确预估各类酸根离子在NiFe‑LDH双金属羟基氧化物催化表面吸附过程中的晶体轨道布局变化,实现特定酸根吸附对于催化材料优化抗波动性能的定向筛选。
Resumen de: CN119640294A
一种基于风电、潮流能、海水电解制氢、加氢的综合海上能源平台及方法,它包括风电机组、制氢机构、呈正三角形结构的三浮筒‑三负压桶上下组合式浮式基础,浮式基础的上方形成用于固定安装制氢机构的三角支撑台,制氢机构包括与风电机组分别电性连接的光伏组件、海水电解槽、氢气压缩设备、氢气储存设备和后备电源,海水电解槽、氢气压缩设备、氢气储存设备之间依次连接有输氢管道,后备电源分别与海水电解槽、氢气压缩设备和氢气储存设备电性连接,海水电解槽与光伏组件电性连接,在海底设置海底储氢站,且通过锚链的方式固定平台,使得平台在制氢和输氢过程中更稳定。
Resumen de: CN119640289A
本发明公开了基于月壤水冰净化及电解水制备氧气的系统、方法,涉及月球水冰资源原位利用技术领域。本发明包括电解池,电解池的内部两侧分别安装有电解阳极与电解阴极,电解池的顶部位于电解阴极位置通过管道连接有循环泵一,且循环泵一的进水端通过管道连接有水冰净化机构,水冰净化机构用于向电解池内供水。本发明通过阴极进水方式设计电解水装置,可避免制备的氧气中含有大量未反应的水,从而得到组分单一的氧气。本发明为月面潜在的水资源净化及电解水制备氧气提供新的思路,一方面可以实现月面水冰资源的净化,另一方面利用净化的水进一步以阴极进水方式电解制备高纯度氧气,为月表制备生保物资、月面推进剂提供技术支撑。
Resumen de: CN119640300A
本申请提供了一种电催化析氢催化剂及其制备方法和应用,电催化析氢催化剂包括有序介孔碳CMK‑3和二硒化钼,至少部分二硒化钼负载于有序介孔碳CMK‑3的孔道中。本申请的电催化析氢催化剂,以有序介孔碳CMK‑3作为载体,在有序介孔碳CMK‑3的孔道中负载二硒化钼,形成MoSe2/CMK‑3复合电催化析氢催化剂。有序介孔碳CMK‑3具有高度有序的介孔结构和良好的导电性,将二硒化钼负载在有序介孔碳CMK‑3的孔道中,能够更好地暴露二硒化钼的催化活性位点,同时提升催化材料整体的导电性,从而有效提升电催化析氢催化剂的催化活性,并降低析氢过电位、降低析氢能耗。
Resumen de: CN119640334A
本申请提供了一种碱性水电解制氢系统、氧中氢检测方法、控制器及系统,所述系统包括多个电解槽、氧侧分离装置以及氧中氢检测装置;所述氧侧分离装置与所述多个电解槽连通,从所述电解槽电解水形成的气液混合物中分离得到氧气,并将分离得到氧气过程中得到的碱液排回所述多个电解槽;所述氧中氢检测装置与所述多个电解槽连通,用于检测每个所述电解槽形成的所述气液混合物的氧中氢含量;所述氧中氢检测装置包括碱液存储器,用于存储检测所述气液混合物的氧中氢含量过程中分离的碱液,所述碱液存储器与所述多个电解槽直接或间接连通。本申请可实现制氢系统每个电解槽的单独氧中氢含量检测,并保证避免碱性水电解制氢系统中碱液浓度不会随运行时间不断降低,保证系统制氢性能。
Resumen de: CN119649930A
本发明公开了一种碱性电解制氢系统混合空间尺度动态响应建模方法,属于新能源技术领域。本发明的方法构建了包含一维碱性电解槽模型和零维分离循环模型的混合空间尺度框架。首先,建立表征碱性电解槽内部交叉渗透、物质传输过程以及电压电流的动态响应特性的一维碱性电解槽模型。其次,建立表征碱液循环和氢氧两侧气液分离的动态响应特性的零维分离循环模型。然后对所得数据采用有限体积法进行离散,并采用压力速度耦合算法对一维碱性电解槽模型求解,采用有限差分法对零维分离循环模型求解。本发明的方法,在提升碱性电解制氢动态响应特性建模精度具有显著效果,实现了碱性电解槽内部的一维物质传输可观测,为系统仿真与控制设计提供有效工具。
Resumen de: CN119615264A
本发明公开了一种通过构建底层和顶层结构对氧化铁光阳极光电催化改性的方法,本发明利用分次旋涂FeOOH表面ZrOx的方式,通过简单退火实现在纳米棒上形成大量密集的孔洞,大大提升了比表面积,且缩短了空穴转移的距离,更好的实现电子空穴分离,另外,本发明通过调控底层Nb2O5的厚度,实现对氧化铁与FTO玻璃接触界面电子回注的问题的解决,同时实现对氧化铁进行外源铌离子掺杂,有效提升氧化铁内部载流子浓度和导电率,同时底层的存在能够有效抑制SnO2导电层中大离子半径的Sn4+进入氧化铁晶格产生内部缺陷。
Resumen de: CN119608157A
一种高分散钌负载的铈锆固溶体光催化剂、制备方法及其在室温光催化氨分解制氢中的应用,属于光催化氨分解制氢技术领域。本发明是以铈盐和锆盐为原料制备铈锆固溶体前驱体,研磨成粉末后高温煅烧得到铈锆固溶体,再分散于去离子水中后滴加钌前驱体溶液和还原剂,还原反应后得到钌负载的铈锆溶液,经抽滤、干燥、研磨后得到高分散钌负载的铈锆固溶体光催化剂,该光催化剂可以在室温光催化氨分解制氢中得到应用。本发明所述的光催化剂在室温,可见光照射下,氨气分解制备氢气的转化效率提高,大大突破了该反应的热力学限制,其氨分解产氢率达到56.12mmol H2gcat‑1min‑1,氨气转化率达74.83%。
Resumen de: CN119614900A
本发明属于锂离子筛盐湖提锂领域,具体涉及一种钛系锂离子筛吸附方法及辅助系统。一种钛系锂离子筛吸附辅助系统,其特征在于,包括后处理池、电解槽、锂离子筛、吸附剂再生池、氢气收集系统、氯气收集系统、锂液罐、电解槽设有进液口,盐湖卤水进入电解槽,电解槽还包括一个出液口,与后处理池连接,电解槽还设有阳极和阴极,阳极与氯气收集系统相连,阴极与氢气收集系统相连;电解槽与吸附剂再生池相连,锂离子筛通过管道在电解槽与吸附剂再生池之间传输,吸附剂再生池与锂液罐相连。
Resumen de: CN119615267A
本发明属于电催化技术领域,具体涉及一种RuO2/Co3O4@NC双功能电催化材料及其制备方法和应用,其中电催化材料是以碳布为基底,表面负载氮掺杂碳壳层包裹Co3O4与RuO2构成异质结构。同时,本发明还提供了电催化材料的制备方法和在电催化全解水中的应用。本发明得到的RuO2/Co3O4@NC双功能电催化剂不仅能提升复合材料的电催化析氢和析氧性能,还可以提高析氢和析氧长时间运行稳定性。
Resumen de: CN119626356A
本发明公开了一种适应宽范围功率波动的多电解槽协同优化控制方法,属于新能源技术领域。本发明的方法采用一个优化框架进行制氢电源功率、电解槽功率、电储能功率、电解槽时序生产状态的协同优化,优化中采用有限时域滚动求解方法,滚动时域长度为小时级,采样时间为分钟级或小时级,分别建立优化目标函数和约束模型,采用数学规划或启发式算法进行优化模型求解,得到多电解槽制氢系统各设备运行功率与电解槽状态。本发明的方法在宽范围功率波动工况下,实现电池储能削弱电解槽频繁启停,在窄范围功率波动工况下,实现电池储能保障电解制氢系统在最佳效率运行,确保系统能源最大化利用和高效运行,为多电解槽制氢系统协同优化控制提供新方法。
Resumen de: CN119615246A
本发明提供一种镍基硫族异质结构的高效电解水催化剂及应用,本发明将不同质量比的氟化铵和尿素、镍盐用水热的方法,在碳布上生长六边形纳米片结构的氢氧化镍材料,可以增加在退火过程中与硫粉或硒粉的接触面积,从而使退火后维持完整的形貌。本发明所制备的高效电解海水析氧催化剂具有以下优点:(1)形貌的凹凸不平增加了催化活性面积,并且有利于氢气从表面逸出;(2)可以精确调控镍基催化剂界面的电子结构提高催化活性,从而获得高活性、高选择性和持久稳定性的电解海水催化剂;(3)简单易得,且其制备操作简便,可控性强,具有普适性。
Resumen de: CN119612596A
本发明涉及一种新型Cs1+掺杂的锶铁基钙钛矿固体氧化物电解池阴极材料,属于固体氧化物电解池阴极材料领域。Cs1+的掺杂促进了电解池在运行时CO2分子在阴极材料表面的吸附和解离。Cs1+的掺杂还有助于锶铁基钙钛矿中氧空位的生成,并促进了氧离子在阴极体相中的传输速率。电解池在850℃、1.6伏外加电压下的电解性能为2205mA cm‑2,电极阻抗为0.18Ωcm2。该电池在800℃、600mA cm‑2的外加电流下表现出了100个小时的稳定运行。
Resumen de: CN119615273A
本申请提供一种掺杂铂、钌、锡和镨的制氢电极及其制备方法和电解水制氢装置,涉及电解水制氢领域。掺杂铂、钌、锡和镨的制氢电极的制备方法包括:将混合粉体涂覆到导电基材的表面;将涂覆有混合粉体的导电基材进行热氧化处理,混合粉体包括第一金属粉、第二金属粉和造孔剂,第一金属粉包括Ni粉,第二金属粉包括Pt粉、Ru粉、Sn粉和Pr粉;将经过热氧化处理的结构放入碱性溶液中,进行活化处理,得到掺杂铂、钌、锡和镨的制氢电极。本申请在制氢电极中引入了铂、钌、锡、镨,可以降低析氢过电位。由本申请方法制备的制氢电极具有较高的催化活性、较高的稳定性和均匀分布的多孔结构,可以显著提高电解效率,延长设备的使用寿命。
Resumen de: CN119615277A
本发明公开了一种电解槽制氢控制方法、装置及电子设备。其中,该方法包括:获取预定氢能系统的系统数据;在储氢设备中的氢能容量小于预定容量的情况下,依据风能功率与预测使用功率的比较结果,确定是否控制接入电能系统的一次控制结果;依据一次控制结果,确定目标供能功率;在目标供能功率大于或等于预测使用功率的情况下,确定预测使用功率与电解槽启动功率的比例;依据比例,确定电解槽控制数据;发送控制指令至目标电解槽,以控制目标电解槽制氢。本发明解决了在电解槽制氢时,存在频繁启停的技术问题。
Resumen de: CN119615251A
本发明提供了一种碳辅助合成FeCoNiCuMo/C@NF多金属复合材料及其制备方法和应用,将含氮聚合物分散在水中,作为溶液A;将钼源、尿素、NH4F、镍源、钴源、铁源和铜源混合分散在溶剂中,作为溶液B;将溶液B滴入溶液A中,搅拌后,向所得混合溶液中加入泡沫镍,进行水热反应,得到前驱体;再在氢和氩混合气氛下热解,得到FeCoNiCuMo/C@NF多金属复合材料。与现有技术相比,本发明通过一步水热一步热解的简单合成方式,将聚合物衍生碳载体与多孔金属载体的优势耦合,改善了催化剂的结构稳定性;一维纳米棒结构,独特结构优势可以暴露更多的活性位点,使催化剂具有超越贵金属的HER和OER以及全解水性能。
Resumen de: CH721106A2
Verfahren und Gerätschaft zur Produktion und zur oralen Aufnahme und intrazellulären Invasion von aktivem Wasserstoff in Körperzellen als effizientes Antioxidant mittels Wasserelektrolyse mit Bor-dotierten Voll-Diamant- und Titan Kohlenfasern Kontakt - Elektroden zur Produktion von aktivem Wasserstoff-Wasser durch die Erzeugung von überschüssigen Elektronen im elektrolysierten Wasser und zur Mikroclusterisation des Wassers zur verbesserten und rascheren Resorption und Invasion von aktivem negativ geladenem atomaren Wasserstoff als Antioxidant in Körperzellen unter zusätzlicher Injektions-Zugabe von gasförmigem Medizinal-Wasserstoff.
Resumen de: CN119615226A
本发明公开了一种电解水析氧催化电极及其制备工艺,涉及电极材料领域。本发明在制备电解水析氧催化电极时,将泡沫镍经草酸刻蚀后,再由草酸钠进行表面修饰得到修饰衬底;再将修饰衬底、镍网阳极和电沉积溶液进行电沉积制得电解水析氧催化电极。本发明制备的电解水析氧催化电极具有优良的稳定性、催化均匀性和工艺重复性。
Resumen de: CN119615238A
本发明公开了一种晶格‑间隙混合型RuO2固溶体酸性析氧电催化剂的制备方法及应用。本发明通过在RuO2晶胞中同时引入高价金属作为晶格取代掺杂组分、非金属作为间隙掺杂组分,构筑晶格‑间隙混合型RuO2固溶体结构,从而显著提升RuO2电催化剂的活性与稳定性。所述制备方法包括:将可溶性的钌盐、高价金属盐、非金属盐与熔盐介质溶解于去离子水中,搅拌形成溶液;通过冷冻干燥该溶液制备前驱体,随后采用热处理前驱体得到晶格‑间隙混合型RuO2固溶体酸性析氧电催化剂。本发明所制备的晶格‑间隙混合型RuO2固溶体酸性析氧电催化剂,在10mA cm‑2电流密度下催化析氧反应所需过电位可低至168mV,并能在酸性环境中持续稳定工作超过500h,可极大满足酸性析氧电催化剂的应用需求。
Resumen de: CN119615212A
本发明提供了一种电解制氢装置及其制氢方法。该电解制氢装置包括:气流控制传导单元、电解制氢单元、电源供给单元和气体收集单元,气流控制传导单元用于将空气引入并提高流量,得到处理后空气后传输;电解制氢单元包括电解槽和吸湿单元,电解槽包括电极单元,吸湿单元设置在电解槽中,电极单元一端延伸至吸湿单元内部,吸湿单元用于采用包括电解质的吸湿材料吸收处理后空气中的水分,得到电解质溶液,同时连续向电解质溶液补充水分;电极单元用于将电解质溶液进行电解,得到氢气和氧气;电源供给单元用于向电极单元供电;气体收集单元用于收集氢气和氧气。本申请充分利用空气,摆脱了电解水制氢对水资源的依赖,实现干旱等地区的氢气生产。
Resumen de: CN119615269A
本发明涉及催化剂技术领域,具体公开了一种负载型铱基OER催化剂制备方法与应用,本发明制备负载型氧化铱催化剂,采用了一种创新的前驱体盐类双水解合成方法,该方法的合成手段简单可控,反应温度控制在60℃,相较于传统的水热法、乙二醇还原法所需要的160℃以上,更加低温节能,且有利于得到均匀分散的超小氧化铱纳米颗粒(2~3 nm)。单电极上Ir负载量为0.014 mg/cm²,解决了现有制备工艺铱使用量大的问题,大大降低了生产成本;且性能是商业氧化铱催化剂的6倍,标准电势为1.6 V时,电流密度可达到75 mA cm‑2。通过才有创新合成策略,有效减少贵金属的使用量,本发明的催化剂提高了能源转换效率,在经济性和可持续性方面具有显著优势。
Resumen de: CN119615231A
本发明属于电解水技术领域,具体涉及一种水电解用电极及其制备方法和应用。本发明利用聚苯乙烯微球有序地组装在形成模板,在模板的间隙填充电沉积Ru,去除模板获得反蛋白石结构,利用循环伏电沉积技术负载Ir建立良好的气体传输通道同时也具有良好的催化剂活性和稳定性,并且能更好地防止气体扩散层的腐蚀。本发明利用蒸发自组装方法在较温和条件下控制合成尺寸大小均一,分散度良好的多孔隙互连的有序电极,该催化剂在经过锻烧后仍可保持原貌,具有较好的热稳定性。
Resumen de: CN119615235A
本申请公开了一种三元金属碲化物双功能水制氢催化剂及制备方法,具体的以九水合硝酸铁、六水合硝酸钴、六水合硝酸镍及反丁烯二酸为原料,先于N,N‑二甲基甲酰胺中搅拌均匀,经反应釜特定条件反应、离心、清洗、干燥得Fex(CoNi)‑MOF;再将其与碲粉依特定比例于H2/Ar混合气高温煅烧制得Fex(CoNi)Tex;接着将Fex(CoNi)Tex负载在泡沫镍上,制得催化剂材料Fex(CoNi)Tex@NF,其中Fe2(CoNi)Te@NF的HER和OER催化活性优异,具备丰富活性位点,具有过电位低、动力学优、阻抗小,循环稳定性佳等优异特性。本发明为电解水制氢提供了成本低、催化活性优异的高效非贵金属催化剂,可有力推动制氢技术商业化进程。
Resumen de: CN119615268A
本发明公开了一种纳米八面体电催化剂及其制备与应用,属于催化剂制备技术领域。本发明的纳米八面体电催化剂的制备方法,包括以下步骤:以Cu2O纳米八面体为模板,通过沉淀转化策略在其表面沉积(CoCu)2V2O7活性层,然后掺杂Ru,得到纳米八面体电催化剂。本发明的纳米八面体电催化剂的制备工艺简便、条件温和、耗时短、成本低,适合大规模生产,解决了现有传统催化剂活性不足、稳定性差、选择性低、能耗高、动力学迟缓的问题,所制得的电催化剂适用于PET塑料升级利用耦合高效制氢,具有环境污染治理和清洁能源制备的双重功效。
Resumen de: CN119615203A
本申请实施例提供一种便携式制氢装置及制备方法,涉及气体制备技术领域。在本申请实施例中,便携式制氢装置包括:控制器、制氢驱动模块、制氢电极片和电解槽。通过制氢驱动模块的第一驱动电路生成与用户所需的氢气生成速率相匹配的制氢电极片的正极驱动信号,以及通过制氢驱动模块的第二驱动电路生成制氢电极片的负极驱动信号,实现了对便携式制氢装置的氢气生成速率的灵活控制,从而解决了目前在氢气生成速率的控制上灵活性比较低,难以满足不同的氢气生成需求的问题,提高了氢气装备装置的可操作性。
Resumen de: CN119615245A
本发明公开了一种纳米板状钴基双金属磷化物异质结构材料的制备方法,包括以下步骤:(1)将乙酰丙酮镍、乙酰丙酮铁或乙酰丙酮钼中的一种、乙酰丙酮钴和对苯二甲酸溶解后,与泡沫镍铁通过溶剂热法反应,得到负载钴基双金属有机框架的泡沫镍铁;(2)将负载钴基双金属有机框架的泡沫镍铁和一水合次磷酸钠在管式炉中高温煅烧,得到纳米板状钴基双金属磷化物异质结构材料。本发明还公开了上述制备方法得到的纳米板状钴基双金属磷化物异质结构材料及其在电解水析氢析氧中的应用。通过简单的制备方法得到的纳米板状钴基双金属磷化物异质结构材料在电解水析氢析氧时可提高其电化学性能,具有高活性和高稳定性。
Resumen de: ZA202100168B
In a method for generating various synthesis gases by electrolysis, comprising feeding steam and compressed air to the cathode and anode, respectively, of the electrolysis unit or of the first of a series of electrolysis units into the first of a series of electrolysis units, the electrolysis units are operated under an elevated gas pressure, and the oxygen-rich gas leaving the anode is subsequently expanded down to approximately ambient pressure using a gas expander. The electrolysis units are preferably solid oxide electrolysis cell (SOEC) stacks.
Resumen de: CN119615240A
本发明公开了一种高熵合金电解水催化材料及其制备方法,涉及电解水催化材料技术领域,所述高熵合金电解水催化材料为片状结构,主要成分为FeaCobNicCuxMoy,按照原子百分比计,a+b+c+x+y=1,60at%≤a+b+c≤at90%,10at%≤x+y≤40at%,20at%≤a≤40at%,20at%≤b≤40at%,10at%≤c≤20at%,5at%≤x≤35at%,5at%≤y≤35at%。本发明通过使用片状结构的高熵合金作为电解水催化材料,主要成分为Fe、Co、Ni、Cu和Mo,不仅可以提供高的催化性能,还能够有效降低使用成本,有利于促进电解水制氢技术的推广应用。
Resumen de: CN119615258A
本发明公开了一种用于电解海水制氢的硫酸盐插层催化剂的快速合成方法,所述方法如下:一、将金属盐溶解在溶剂中,得到初始沉积液,将稳定剂溶解在初始沉积液中,获得电沉积液;二、将基体置于电沉积液中,通过电沉积得到CoFe催化剂前驱体;三、将CoFe催化剂前驱体置于硫脲和氢氧化钾的混合溶液中进行氧化;四、将氧化后的催化剂置于氢氧化钾溶液中进行循环氧化。本发明的制备方法简单、快捷、高效,可以适用于大面积电极的制备,活化后的电极具有优越的OER活性和极强的抗氯特性,在自然海水中电流密度达到100mA·cm‑2仅需265mV的过电位,在自然海水中连续电解1000h后仅出现5.0μV/h的低衰减速率。
Resumen de: CN119615281A
本发明公开了一种电解制氢系统的工艺控制方法及电子设备。其中,该方法包括:获取工况信息,工况信息用于确定电解制氢系统当前的工作状态,工况信息包括电解制氢系统内目标部件的状态参数;基于工况信息作为模型输入,利用工艺调节模型进行生成控制信息,其中,工艺调节模型基于选定的强化学习算法训练得到,控制信息用于表征对目标部件的运行参数进行调节的最优控制策略;基于控制信息调节目标部件的运行参数,其中,运行参数包括如下至少之一:储氢罐压力、电解槽工作电参数、压缩机转速。本发明解决了由于现有控制方法在应对可再生能源波动时的响应速度慢造成的控制精度低的技术问题。
Resumen de: CN119615185A
本公开涉及一种电解水制氢的方法,其中,该方法包括:使水在电解槽进行电解;使阴极产物进入氢气冷却器与冷却介质进行换热后进入氢洗涤塔进行分离处理;使阳极产物进入氧气冷却器与冷却介质进行换热后进入氧洗涤塔进行分离处理;氢洗涤塔的塔釜设有第一升气塔盘和第一降液管;氧洗涤塔的塔中设有第一填料层;氧洗涤塔的塔顶设有第一气液分离装置;氧洗涤塔的塔釜设有第二升气塔盘和第二降液管;氧洗涤塔的塔中设有第二填料层;氧洗涤塔的塔顶设有第二气液分离装置。本公开提供的方法有效实现设备的优化、能耗低,能够有效分离氢气和氧气中夹带的碱液,工艺流程简单且整体运行安全性和稳定性高,制备得到的氢气和氧气产品纯度高。
Resumen de: CN119612927A
本发明公开了一种氧气综合利用系统及控制方法,属于玻璃生产线技术领域;包括第一供氧管路,连接于分馏塔和窑炉之间,用于将分馏塔产出的第一气体传输至窑炉,第一供氧管路上设有稳压阀和位于稳压阀输出侧的第一节点,稳压阀用于调节第一气体的压力;储氧罐,用于存储水电解后产生的第二气体;第二供氧管路,连接于储氧罐和第一节点之间,用于将第二气体传输至窑炉,第二供氧管路上设有减压阀组,减压阀组用于调节第二气体的压力。上述技术方案的有益效果是:能够保证氧气的压力和流量稳定,减少氧气的浪费,充分利用水电解产生的氧气,达到节能的目的。
Resumen de: WO2024057608A1
An electrode comprising: a substrate having a surface formed of at least one of nickel, nickel oxide, and nickel hydroxide; and scale-like protruding parts provided on the surface of the substrate.
Resumen de: CN119612885A
本发明属于水处理技术领域,尤其是氢能源电解水净化装置,针对现有设备在清理过程中需要停机,导致处理效率降低的问题,以及内壁需要人工清理,清理效率较低的问题,现提出如下方案,其包括两个安装座,两个所述安装座的顶部依次贯穿固定设有第一储存桶、沉淀桶、第一转换桶、第二转换桶、第三转换桶和第二储存桶,所述第一储存桶和沉淀桶、沉淀桶和第一转换桶以及第三转换桶和第二储存桶之间均通过进水管相连通,通过多级转换桶和搅拌轴的配合,实现了对水源的高效净化和电解水制备前的预处理,提高了电解效率和氢气纯度,通过灵活的搅拌系统、自动化的位置调节、智能的升降控制以及优化的搅拌匙设计,确保了搅拌效果和内壁清理的彻底性。
Resumen de: CN119615241A
本发明属于水电解制氢领域,具体涉及一种NiMC自生长析氢阴极的薄层制备工艺,其中,M为Cu、Mo、Co、Fe、Mn。本发明是在经过前期预处理后的多孔镍基材料表面自生长形成薄层析氢阴极。自生长过程通过自动喷涂、丝网印刷、刷涂、浸渍等工艺实现,可实现析氢活性组分NiMC在多孔镍基底上的原位生长。优势有:在高温加热条件下,自动喷涂到多孔镍基材料表面的瞬时过程中原位生长形成NiMC自支撑结构,所形成的析氢阴极无贵金属负载;具有较高的精度与重复性;在碱性介质中具有较高的HER活性与稳定性;制备工艺过程简单、易于实现质量控制、工艺重复性好,制备的电极具有较高重复性与均匀性,适合大面积HER电极的批量制备。
Resumen de: CN119615262A
本发明涉及电催化剂制备技术领域,具体是涉及一种超亲水强疏硫双功能催化剂及其制备方法与应用,包括:CoMoFe‑LDF/NF氢氧化物前驱体的合成、水热硒化制备CoMo‑Fe3Se4/NF以及该催化剂在SOR和HER中的应用。该催化剂结构展现出超亲水性能,能显著改善电解液与电极之间的浸润性,促使氢气泡更易于从电极表面释放,从而保证了充足的活性位点供给,大幅提高了HER的效率。此外,该材料还表现出强烈的疏硫特性,可有效避免SOR过程中硫元素在催化剂表面的沉积,减少催化剂失活的风险。综上所述,这种新型催化剂不仅拥有出色的电催化活性,而且在析氢反应以及硫离子氧化反应中展现出广阔的应用。
Resumen de: CN119615283A
本发明提供了一种适用于多水口制氢电解堆的分水器,包括:水腔,包括直筒结构,其一端与水源连接;电解堆水口接头,数量为多个且沿所述水腔长度方向排列,其一端连接所述水腔,其另一端连接电解堆水口;调节锥杆组件,设置于所述水腔的另一端,通过调节所述调节推杆组件在所述水腔中的深度,调节所述电解堆水口接头中的流量;所述水腔一端连接有水源另一端连接调节推杆组件通过所述调节推杆组件在所述水腔中的深度从而改变所述水流流入的电解堆水口实现分流,有效地解决电解堆不同功耗及水流量下进水端各水口水量分配不均的问题,分流后的水经过所述电解堆水口进入电解堆制氢,满足电解堆不同工况下运行过程中各水口对应流道内的水管理需求。
Resumen de: CN119615247A
一种Ni掺杂纳米花结构Ni‑V2O5@NC及其制备方法与应用,属于电解水制氧技术领域。具体步骤如下:将偏钒酸铵、二水合草酸和六水合硝酸镍依次加入去离子水中,搅拌至溶解,通过水热和碳化处理得到纳米花状结构Ni‑V2O5@NC。本发明利用Ni掺杂的方法,抑制了V2O5的团聚现象,从而提供了高的比表面积和丰富的活性位点;Ni掺杂优化了V2O5的缺陷结构,有利于激发活性位点使得催化剂具有高的反应活性。Ni具有高的导电率,掺杂V2O5后提高了材料的导电性。此外,Ni掺杂有助于形成更稳定的氧化态,从而提高了结晶度和稳定性。基于以上优势,Ni‑V2O5@NC在析氧反应(OER)中展现出良好的电化学性能。
Resumen de: CN119615200A
本发明涉及电解水制氢的技术领域,提供一种降低生产负荷下限的电解制氢系统及控制方法,系统包括:电解槽、氢分离器、氧分离器和纯氧模块;电解槽的阴极侧设有氢侧出口,氢分离器与氢侧出口连接;电解槽的阳极侧设有氧侧出口,氧分离器与氧侧出口连接;纯氧模块适用于向氧分离器内输出高纯氧,高纯氧用以和氧侧出口的初氧混合,使初氧中氢含量不满足设定条件的情况下,氧分离器出口的混合氧中的氢含量满足设定条件。如此设置,可大幅提高氧侧出口处初氧中的氢含量上限,从而降低了电解制氢系统的生产负荷下限,使其能充分适应可再生能源处理的宽幅快速波动。
Resumen de: CN119615204A
本发明实施例提供一种高压差质子交换膜电解槽的电解液循环系统,包括:电解槽1、氧分离器2、氢分离器3、水箱4、气水分离器5、氧气排放系统6、氢气排放系统7、换热器8、树脂罐9、循环泵10、补水泵11及水循环系统12。针对高压质子交换膜电解槽的运行情况,在氢分离器和氧分离器中间取消连通管,在氢分离器通过气水分离器与水箱相连,避免氢分离器在排出液体过程中,从液体中逸散出过多的氢气进入氧分离器中,降低氧中氢的纯度。
Resumen de: WO2024028762A1
The invention relates to a method for heating a furnace comprising radiant tubes and being able to thermally treat a running steel strip comprising the steps of: i. supplying at least one of said radiant tubes with H2 and O2 such that said H2 and said O2 get combined into heat and steam, ii. recovering said steam from said at least one of said radiant tubes, iii. electrolysing said steam so as to produce H2 and O2, iv. supplying at least one of said radiant tubes with said H2 and O2 produced in step iii, such that they get combined into heat and steam.
Resumen de: CN119615219A
本发明涉及电解槽技术领域,特别涉及一种PEM电解槽的一体化有序阳极组件及PEM电解槽。该阳极组件包括利用金属粉末材料经3D打印一体成型的极板结构、凸台流道结构和有序扩散结构。极板结构设置有外部电源接口和进水口。用于电解的水经进水口进入流道结构,经扩散结构到达反应层表面进行电化学反应。本发明打破传统极板结构、蛇形流道结构和无序金属毡“三明治”叠层结构,通过利用金属粉末材料,经3D打印一体成型出极板结构、凸台流道结构和有序扩散结构一体化有序阳极组件,如此可以消除传统叠层之间的界面接触电阻,同时基于有序化结构,减少传热传质带来的传输损失,使得其反应的效率更高,并减少电解池的重量、体积和组件数量。
Resumen de: CN119615191A
本发明提供一种稀土修饰的全固态电解池制备合成气方法,通过浸渍稀土氧化物纳米催化剂,将稀土氧化物微粒锚定在多孔的SFM骨架上,大幅度提升了材料的催化活性,增加了参与反应的活性位点,有利于电化学还原反应的进行,实现了合成气的成分连续可控制备。本发明简化了传统浸渍方式的制备工艺,解决了固体氧化物电解池在高温运行时的阴极稳定性问题,同时合理地利用了稀土资源,降低了生产成本,避免了传统的阴极运行时的积碳和需要添加保护气氛来防止氧化等缺点。
Resumen de: CN118792678A
The invention belongs to the technical field of nano materials, and particularly discloses an electrode catalyst and a preparation method thereof.The electrode catalyst comprises a nano-particle cluster comprising at least three metal elements; and a dispersion layer formed between the nanoparticles of the nanoparticle cluster. The preparation method comprises the following steps: preparing a precursor mixed solution; and adding a reducing agent into the precursor mixed solution, stirring, reacting and drying to obtain the electrode catalyst. The active sites of the nano-particle cluster disclosed by the invention are highly exposed, and the nano-particle cluster has high conductivity.
Resumen de: CN119615244A
本发明公开了一种钌掺杂纳米针薄片碳载四氧化三钴自支撑电极及其制备方法与应用。将六水合硝酸钴、氟化铵、三氯化钌和尿素混合溶液通过水热法制备钌钴前驱体,干燥后在空气中进行煅烧,得到碳布上生长的RCO催化剂。本发明催化剂具有纳米针薄片式结构,能够提供高质量的反应物传输通道,在碱/酸性电解液中,催化剂均表现出优异的析氧反应电催化活性和稳定性,可用于酸、碱性溶液电解水装置作为高效阳极催化剂,具有良好的市场前景。
Resumen de: CN119615228A
本发明提供一种PEM制氢用双极板及电解槽,涉及电解水制氢技术领域。该PEM制氢用双极板,包括板体,板体设有阳极流场和阴极流场,阴极流场的第一端侧设有进水口,进水口连通第一阴极侧水整流通道,进而通过第一水透流口与阳极流场的阳极侧水整流通道连通,阴极流场的第二端侧设有出水口和第二阴极侧水整流通道,阳极侧水整流通道通过第二水透流口与第二阴极侧水整流通道连通,第二阴极侧水整流通道与出水口连通;板体还设有氢气出口,阴极流场设有阴极侧氢气汇流通道,阳极流场设有阳极侧氢气汇流通道,阴极侧氢气汇流通道与阳极侧氢气汇流通道连通,阳极侧氢气汇流通道与氢气出口连通。本发明提高了集成度,简化整体结构。
Resumen de: CN119615275A
本发明公开了一种电解水复合隔膜,由耐碱聚合物和二氧化锆构成,隔膜表面具有多孔层,隔膜内部具有双相连续多孔结构,制备时,先将有机溶剂与稀释剂混合,随后依次加入耐碱聚合物和纳米二氧化锆颗粒得到铸膜液,将铸膜液置于干净的玻璃板上,并刮涂制备为液膜;最后快速放入到凝固浴中,通过在铸膜液中引入添加剂,利用温度形成预先的微观相分离,然后再发生溶剂的置换,液膜从玻璃板上脱落得到隔膜。本发明具备孔隙率高、孔径均一、电阻低、机械稳定性好和使用寿命长的性能特点,制备简单可靠,降低碱性水电解槽的使用和维护成本。
Resumen de: CN119615205A
本发明公开了一种采用高性能极板的双室电解单元,其阴极流场的流道区至少包括具有多条直流道的阴极直线型流道区和具有多条弯折流道的曲线型流道区,阴极直线型流道区均匀设于曲线型流道区两侧;弯折流道的长度为直流道长度的1.1‑1.3倍;通过延长电解液经过弯折流道的路径长度,使电解液流经曲线型流道区的压降对比阴极直线型流道区的压降达到1‑2倍的关系,同时也增加了阴极流场的整体压降,使氢气的流速得以降低,避免阴极流道内的氢气过快流出;本发明保证了流道中电解液分配均匀,通过优化流道区域的布局,并在变径流道的基础上加入阳极弯曲流道和阳极流道截断的设计,保证了电解单元工作的稳定性,提升了电解单元的效率和稳定性。
Resumen de: CN119615236A
本发明公开一种Co4S3析氧反应催化剂及其制备方法,本发明解决了现有在碱性电解水研究中遇到的阳极析氧反应动力学缓慢的问题,选择具有结构有序、高比表面积和孔隙可调的沸石咪唑酯骨架材料(ZIFs),制备了成本低廉、性能优越的催化剂。本方法:首先制备ZIFs‑立方体作为基底,通过硫化钠的刻蚀作用最终形成前驱体,最后通过管式炉进一步加热反应得到纳米立方体Co4S3催化剂,催化剂在10 mA cm‑2电流密度下过电位低至156 mV,且在连续反应72 h后仍能保持89%的初始电流。
Resumen de: CN119615211A
本发明涉及污废水处理原位资源化技术领域,具体涉及一种污废水原位电解制氢装置及方法,包括真空装置及真空罐、储液箱、原水箱、自清洗过滤器、水泵、膜蒸馏组件、汽水分离罐、冷凝器和电解制氢单元。电解制氢单元与储液箱连通,真空装置与真空罐连通,真空罐与储液箱连通,冷凝器与真空罐连通,汽水分离罐与冷凝器连通,膜蒸馏组件与汽水分离罐连通,水泵与膜蒸馏组件连通,原水箱与水泵连通,自清洗过滤器与原水箱连通。从而将污废水过滤并进行膜蒸馏后得到纯净水进入储液箱中。电解制氢单元电解纯净水生产氢气和氧气,氢气转换为氢能,为污水站提供紧急能源供给,氧气可回供污废水站进行纯氧曝气,降低设备能耗。
Resumen de: CN119615276A
本发明公开了一种碱性水电解用复合隔膜及其制备方法与应用,复合隔膜依次包括:高分子多孔质层和复合多孔涂层;其中,复合多孔涂层中含有网格状结构的支撑体;高分子多孔质层由聚砜和壳聚糖组成;复合多孔涂层由耐碱高分子聚合物和无机纳米颗粒组成。本发明提供的复合隔膜兼具在强碱介质中高的化学和机械稳定性、高孔隙率和小孔径、对碱液有良好的润湿性、低气体渗透性和低面电阻,同时可以抑制改性PPS隔膜掉粉问题。
Resumen de: CN119615201A
本发明公开了一种连通管及其用于气液分离的方法和包含其的电解水制氢装置,连通管包括主管道、捕气管、多孔导气管。所述主管道为主体,主管道内部密集排列捕气管,捕气管彼此之间紧密连接,并最外层的捕气管的外壁与主管道内壁紧密连接,固定在主管道内部,每个捕气管内部有一根多孔导气管,多孔导气管外壁与捕气管内壁通过连接柱连接,将多孔导气管固定在捕气管中部并与捕气管保持一定距离,捕气管通过管道自身的亲气性和粗糙度将主管道中的气泡截留,小气泡融合成大气泡,通过浮力向上运输或者通过多孔导气管进行气体导走,通过连通管后的溶液气体含量大幅度降低,实现被动的气液分离,减小连通管导致的氢氧混合的情况。
Resumen de: CN119626354A
本发明提供一种AEM电解制氢设备的仿真方法及装置,本发明通过渲染模块建立与AEM电解制氢设备原理图相同的动态运行图,通过采集模块采集AEM电解制氢设备的运行数据,通过储存模块储存数据,通过判断模块判断用户需求指令,若为“时况显示”,则通过显示模块显示最新运行数据或历史数据曲线动态图,若为“系统仿真”,则通过建模模块建立能够模拟AEM电解制氢设备的动态运行仿真模型,并根据用户输入的动态条件得到对应的仿真结果。本发明提出将AEM电解制氢设备的原理图做成动态运行图,有利于精确直观反应各元器件的状态,在发生故障时可以快速找到问题的位置;本发明提出通过搭建能够模拟EM电解制氢系统的仿真模型,可以减少系统调试的浪费及风险。
Resumen de: CN119608040A
本发明公开了一种水解制氢水洗一体化反应器,包括罐体,罐体内部设有制氢空腔和水洗空腔,罐体的顶部设有与制氢空腔连通的注水口,以及与水洗空腔连通的出气口,制氢空腔内放置有硼氢化钠粉末,水洗空腔内填装有清水,水洗空腔内设有至少一导气管,导气管的一端与制氢空腔的顶部连通,导气管的另一端延伸至水洗空腔底部,并与罐体的内底壁之间形成一高度差。解决了反应器和水洗罐之间通过管路接口连接,随着长时间大流量的供氢,氢气中夹杂的颗粒杂质会贴附于两者之间的管路及接口内,长时间运行接口及管路易堵塞的问题。
Resumen de: CN119608043A
本发明公开了一种水解制氢冷凝一体化反应器,包括:反应装置以及冷凝器,所述反应装置内部形成有一反应腔,其还设置有与所述反应腔相通的氢气出口,所述氢气出口用于排出反应腔内的反应气体;所述冷凝器设置在所述氢气出口和所述反应腔之间的导向通道内,用以与自反应腔向氢气出口移动的介质进行接触,并对所述介质实施冷凝处理;本方案将冷凝器和制氢装置一体化设置,冷凝器位于氢气出口和反应腔之间,能够将反应气体中的蒸气冷凝成液体,携带或沉积颗粒物质,以防止堵塞,冷凝器还能够阻隔气泡,促进泡沫破裂,降低液面,确保气体顺畅排出。
Resumen de: CN119617670A
本发明公开了一种氨分解制氢装置及控制方法,包括氨分解组件和太阳能利用组件,氨分解组件包括氨分解反应管,氨分解反应管内部设有氨分解催化模块和电加热模块;太阳能利用组件设有多个复合太阳能机构、驱动机构、电存储机构,驱动机构用于分别带动多个复合太阳能机构绕自身的旋转轴线转动,复合太阳能机构设有绕旋转轴线环形间隔设置的反射镜面和光伏板,电加热模块和光伏板均与电存储机构连接。驱动机构控制其中一部分复合太阳能机构旋转使得反射镜面将光线反射汇聚太阳光至氨分解反应管,控制另外一部分复合太阳能机构旋转使得光伏板转动至接收太阳光进行发电并存储于电存储机构,同时利用存储的电力辅助加热使得氨反应保持在适宜的温度。
Resumen de: CN119615280A
本发明公开了一种电解制氢系统的控制方法、装置和存储介质。其中,该方法包括:获取电源的功率信号和历史功率曲线;基于历史功率曲线和功率信号,得到预测功率曲线;基于预测功率曲线,生成目标控制策略集,目标控制策略集用于控制目标组件执行目标动作,目标动作包括控制电解槽进行电解或对电解槽内的碱液进行加热。本发明解决了碱性电解系统的动态响应能力差的技术问题。
Resumen de: CN119615284A
本发明公开了一种电解制氢电解液液体相互注入装置,涉及电解技术领域,包括第一中转仓、浓电解液储存仓与淡电解液储存仓,所述第一中转仓与浓电解液储存仓、淡电解液储存仓均通过两个第二输送管管连接,第一中转仓上配合安装有第一驱动电机,所述第一中转仓与第一储存仓、第二储存仓均通过一组第三输送管连接,相应的第三输送管上配合安装有驱动泵,所述第一中转仓内转动配合安装有转流柱,所述转流柱上开设有若干连通孔。本发明适用于浓电解液储存仓内的压力容易发生一定范围内起伏的情况,通过本实施例中的第一储存仓内的浓度传感器对浓电解液的电解质浓度进行监测,可以防止浓电解液中发生压力大范围改变的情况,提升了安全性与稳定性。
Resumen de: CN119615254A
本发明公开了一种热氧化阳极的制备方法,先进行基体的预处理;然后在镍盐,铁盐,铬盐,铈盐,柠檬酸钠,柠檬酸和异丙醇中选取溶解在水中得到混合涂液;随后对镍基体进行第一阶段高温氧化处理;接着将配置好的涂液涂覆在氧化后的镍网上进行第二阶段热氧化处理,形成热氧化阳极,多次第二阶段热氧化处理得到多层叠加的催化层,各催化层之间以及与基体之间结合牢固,不易脱落;并且外层催化层脱落后,内层催化层还能够继续进行析氧反应,不会影响反应的强度和稳定性,大大延长了电极的使用寿命,金属盐的加入在高温下形成氧化物,使得电极具有良好的耐腐蚀性,并且使用过渡金属节省成本,有效降低了过电位,耐腐蚀、寿命长。
Resumen de: CN119613954A
本发明涉及凝胶领域,公开了PEI‑CQDs复合材料、凝胶以及它们的制备方法,所述PEI‑CQDs复合材料的制备方法包括:(1)将石墨在水中电解,得到碳量子点;(2)将碳量子点和聚乙烯亚胺在可选的助剂的存在下进行反应,得到PEI‑CQDs复合材料。所述PEI‑CQDs复合材料能够应用于凝胶的制备过程,使得低分子量的PEI也能够用于制备凝胶,且能够缩短凝胶时间。
Resumen de: CN119615265A
本发明公开了一种碱性纯水电解析氧反应电极材料及其合成方法和应用,首先将镍基底进行预处理,处理后的镍基底置于真空干燥箱中;将含有Sn4+的金属盐溶于去离子水中,搅拌至完全溶解得到前驱体溶液;将镍基底完全浸没在配制的前驱体溶液中静置,静置后取出镍电极经干燥后即可得到碱性纯水电解析氧反应的电极材料,该材电极料具有均匀且致密的二维纳米片状阵列结构,利用本发明方法合成的电极材料对对碱性模拟海水电解析氧反应具有良好的催化效果,在1M KOH介质中,10 mA cm‑2电流密度下过电势仅需300~330 mV,在1M KOH介质中,500 mA cm‑2电流密度下的稳定性可长达24h,没有出现失活。
Resumen de: CN119615249A
本发明公开了一种栾树叶状硒化镍/硒化钒自支撑复合电极及其制备方法和应用,制备方法中以硒粉为硒源,以十二烷基硫酸钠和聚乙烯吡咯烷酮用作形貌调控剂,将钒源和碱源混合均匀,采用水热反应法在泡沫镍上原位合成镍钒基氢氧化物前驱体,随后在前驱体中加入硒粉,采用热解法制备一体化Ni3Se2/V5Se8/NF自支撑复合电极。本发明一方面加速了电化学反应过程中的氧化还原进程,降低反应中间体吸附能垒,从而提高材料的催化性能;另一方面提高电催化反应过程中电子转移,促进催化活性的提升,有效保证了活性材料与NF基底间可形成较强的相互作用,使其在电化学应用中表现出良好的机械稳定性和抗变形能力。
Resumen de: CN119608140A
本发明公开了一种协同产氢和降解葡萄糖的光催化异质结材料及其应用,属于生物医药技术领域。光催化异质结材料为二维纳米片,包括单质铋、氧缺陷Bi2WO6以及氢掺杂TiO2。利用Na2WO4·2H2O与Bi(NO3)3·5H2O通过溶剂热反应制备Bi2WO6;再用钛酸四丁酯与Bi2WO6通过水热反应制备Bi2WO6/TiO2;最后利用硼氢化钠和Bi2WO6/TiO2真空煅烧得到光催化异质结。本发明构筑的光催化异质结拓宽了光谱响应范围并提高了光生载流子的转移利用率和光子吸收利用率,使材料能够在可见光范围内以葡萄糖为牺牲剂光解水产氢,以该材料制备的功能化水凝胶材料通过协同调节DFU创面微环境治疗DFU。
Resumen de: CN119628113A
本申请涉及一种基于源荷构网的离网制氢的协同控制系统及方法,系统包括:风电机组侧、电网、制氢设备侧;制氢设备侧包括依次电连接的AC/DC不控整流器、DC/DC控制器、开关KM4和电解槽;风电机组侧依次通过第一变压器、第二变压器与制氢设备侧电连接,电网通过开关KM1电连接在第一变压器和第二变压器之间;在离网制氢模式下,开关KM1处于断开状态,开关KM4处于闭合状态,风电机组依次通过第一变压器、第二变压器为制氢设备侧供电;在离网制氢模式下,通过控制风电机组侧输出到制氢设备侧的有功功率平衡稳定电网电压。如此,通过控制有功功率的输出来建立电网电压(即P‑U控制策略),解决了传统电压源型风机变流器在无源环境下电压控制困难的问题。
Resumen de: WO2024047934A1
This alkaline water electrolysis apparatus comprises: a diaphragm including a first major surface and a second major surface opposite to the first major surface; a first electrode including a third major surface and a fourth major surface opposite to the third major surface, the third major surface being provided facing the first major surface of the diaphragm; and a first bipolar plate including a fifth major surface, the fifth major surface being provided in contact with the fourth major surface of the first electrode, wherein the first electrode comprises a first metallic porous body having a three-dimensional network structure.
Resumen de: CN119615260A
本发明提供了一种次序硫化法制备过渡金属硫化物异质结电催化材料,其分子通式为Co4S3‑Co9S8@CNSs//CM。该过渡金属硫化物异质结电催化材料的制备方法包括如下步骤:S1、利用室温溶液搅拌制备纳米立方体形貌的钴基金属有机框架物,记为ZIF‑67;S2、将所制备的ZIF‑67与商业硫粉,以程序升温的方式加热进行退火后,自然降温得到氮、硫共掺杂碳基质包覆的Co4S3纳米立方体,记为Co4S3@CM;S3、将所述的Co4S3@CM与硫粉进一步高温硫化,制备得到由碳纳米片修饰的氮、硫共掺杂基质包覆的Co4S3‑Co9S8的异质结,记为Co4S3‑Co9S8@CNSs//CM。本发明的优点在于通过次序硫化法合成了一种独特的多级碳结构包覆的过渡金属硫化物异质结。其中,异质结构能够构建起质量/电荷传输通道,提供更为丰富的活性位点;碳包覆则能保证其内部包覆的异质结构免受电解液的侵蚀,增强催化剂在使用过程中的稳定性与耐久性。
Resumen de: CN119615234A
本发明提出一种具有高析氧性能的电解电堆及其包含的采用热处理方法制备的IrO2析氧电极,相比于传统高分子粘结剂制备的多孔IrO2电极,该方法制备的析氧电极具有以下两大优势:(1)取消高分子粘结剂,提高了电极表面的亲水性和活性;(2)热处理生成的IrO2颗粒显著增强了催化剂与多孔基底之间的结合力,从而提高了电极的使用寿命和循环稳定性。
Resumen de: CN119615222A
该发明专利名称为:“NiFeLDH/Mo4/3B2‑xTz/NF复合材料的合成方法及其用途”(NiFeLDH为镍铁层型氢氧化物,NF为泡沫镍,T为末端原子,成分为‑F和‑OH),所属领域:电催化剂制备与应用。本发明通过静电吸附法结合电沉积法成功制备出无粘合剂NiFeLDH/Mo4/3B2‑xTz/NF复合材料,这种材料将新型二维材料Mo4/3B2‑xTz和NiFeLDH结合起来,实现性能的提升,该电极在碱性条件下表现出优秀的析氧电催化性能,在1M KOH的碱性条件下,在100mA/cm2的电流密度下过电位为255mV,具有很好的应用前景。本发明公开了这种复合材料的制法及用途。
Resumen de: CN119615187A
本发明涉及一种基于海水的水电解和食盐电解混联制氢的系统和方法。本发明包括:电解水耦合低温蒸馏集成系统、浓海水处理单元和氢气纯化单元,所述电解水耦合低温蒸馏集成系统包括碱性电解槽单元、氧分离冷却单元、氢分离冷却单元、碱液循环过滤单元和海水淡化单元。电解水耦合低温蒸馏集成系统生成的浓海水直接提取盐类并且通过氯碱电解槽制备NaOH和氯气、氢气,让海水利用率更高,本装置设置于海上或是海边,整体占地面积小,实现了海水的高效率资源化利用。
Resumen de: CN119615208A
本发明提供一种水电解系统及控制方法。系统包括电解槽、氢水分离系统和氢排水系统;氢水分离系统包括氢气排出支路和分水支路;氢气排出支路包括二级调压阀、一级调压阀和氢水分离器;分水支路包括氢水分离器和氢水分离器排水阀;氢排水系统包括集水支路和至少一条充压支路;集水支路包括集水器;充压支路包括充压阀,充压阀的一端通过管路与集水器相连,另一端通过管路连接在二级调压阀和一级调压阀之间的管路上。本发明可保证整个系统在排水过程中压力不变,避免氢侧调压阀和氧侧调压阀的动作滞后引起的系统压力波动,避免对电解槽的压力冲击影响其寿命。
Resumen de: CN119615250A
本发明公开一种空心大丽花状镍钴硒化物复合电催化材料及其合成方法和应用,以SiO2球作为模板,采用水热‑溶剂热结合的方法制备空心大丽花状镍钴硒化物复合电催化材料,具体先通过水热反应法制备出镍硅氢氧化物前驱体,该方法操作简单、环保节能且形貌结构易于控制,随后再采用溶剂热法制备NiSe/Co9Se8空心纳米花复合材料,该方法能有效抑制氧化且具有适用范围广、反应过程易控、结晶温度较低等优点,因而两种方法结合可精准控制晶体生长和微观结构,从而制备出具有高活性、高稳定性和高比表面积的电催化剂,在碱性条件下表现出优异的电催化HER和OER性能。
Resumen de: CN119608051A
本发明提供了一种用于废水净化‑光解水制氢的碳气凝胶及其制备方法,其中,Au/Cu‑MOF/SA碳气凝胶作为光热蒸发模块用于太阳能驱动的界面光热废水净化,ZnIn2S4/Au/Cu‑MOF/SA碳气凝胶作为光催化反应模块用于光催化水解制氢。本发明通过设计复合碳气凝胶,将太阳能定位到气‑液界面上,用于废水的蒸发;然后将净化后的蒸馏水作为光催化水解制氢的原料,实现废水净化和光解水制氢一体化。该体系的自漂浮特性将上层光热层和光催化层暴露在水面之上,既可以实现高效的光传输,又可以最大限度地减少水引起的光衰减,并且还能有效地解决传统粉末光催化剂难回收再利用的问题;在具有多种污染物的废水中也可以长期稳定的产生氢气,具有极大的商业应用潜力。
Resumen de: DE102024207640A1
Die vorliegende Anmeldung stellt eine Elektrolysezelle bereit, die Folgendes umfasst: ein Gehäuse; eine Anode und eine Kathode; eine Austauschmembran; eine Anoden-Gasdiffusionsschicht, wobei das Gehäuse eine die Anoden-Gasdiffusionsschicht umgebende Anodenkammer einschließt; und eine Kathoden-Gasdiffusionsschicht, wobei das Gehäuse eine die Kathoden-Gasdiffusionsschicht umgebende Kathodenkammer einschließt. Dabei ist von der Anodenkammer und der Kathodenkammer mindestens eine Kammer mit Wasser befüllt, und durch die Wirkung des Gleichstroms werden in mindestens einer der Kammern Gasblasen gebildet. Diese mindestens eine Kammer wird wahlweise mit einem ersten Gaskreislauf und einem zweiten Gaskreislauf verbunden, und wenn die Akkumulation der Gasblasen einen Grenzzustand erreicht, wird mindestens eine Kammer von der Verbindung mit dem ersten Gaskreislauf auf eine Verbindung mit dem zweiten Gaskreislauf umgeschaltet und nach einer vorgegebenen Zeit erneut auf die Verbindung mit dem ersten Gaskreislauf zurückgeschaltet, wobei der Druck des ersten Gaskreislaufs höher als der Druck des zweiten Gaskreislaufs ist. Die vorliegende Anmeldung stellt ferner ein Gasabscheideverfahren für die beschriebene Elektrolysezelle bereit. Gemäß der vorliegenden Anmeldung können Gasblasen schnell abgeschieden werden, wodurch die Energieeffizienz und die Betriebsstromdichte erhöht werden.
Resumen de: WO2025053690A1
The present invention relates to an electrode for hydrogen evolution and a manufacturing method therefor, the electrode comprising a molybdenum-ruthenium-titanium composite oxide layer formed on a porous titanium metal substrate.
Resumen de: AU2023336295A1
Provided is a hydrogen production system (100), comprising: an electrolysis module (19) that produces hydrogen through steam electrolysis by supplying steam to a hydrogen electrode (11) including a metal component; hydrogen storage equipment (40) that stores the produced hydrogen; a steam supply unit that supplies steam to the hydrogen electrode (11); a regulation unit (50) that regulates the supplied amount of hydrogen supplied by the hydrogen storage equipment (40) to the hydrogen electrode (11) and the supplied amount of steam supplied by the steam supply unit (20) to the hydrogen electrode (11); and a control device (80) that, in accordance with the electrolysis module (19) having exceeded a first switching temperature when the electrolysis module (19) is activated, controls the regulation unit (50) so as to switch a heating medium supply state, in which a heating medium is supplied by a heating medium supply unit (70) to the hydrogen electrode (11), to a steam supply state, in which steam is supplied by the steam supply unit (20) to the hydrogen electrode (11).
Resumen de: DE102023208735A1
Zug (41) mit wenigstens einer Zugeinheit (42, 43) als wenigstens eine Lokomotive (42) und/oder wenigstens ein Waggon (43), wobei an je einer Zugeinheit (42, 43) Räder ausgebildet sind zum Fahren auf Gleisen (44), wobei an und/oder in wenigstens einer Zugeinheit (42, 43) wenigstens eine Elektrolysezelleneinheit (6) und/oder wenigstens ein Elektrolysezellensystem (7) ausgebildet ist zur Wandlung elektrischer Energie in chemische Energie.
Resumen de: DE102024207640A1
Die vorliegende Anmeldung stellt eine Elektrolysezelle bereit, die Folgendes umfasst: ein Gehäuse; eine Anode und eine Kathode; eine Austauschmembran; eine Anoden-Gasdiffusionsschicht, wobei das Gehäuse eine die Anoden-Gasdiffusionsschicht umgebende Anodenkammer einschließt; und eine Kathoden-Gasdiffusionsschicht, wobei das Gehäuse eine die Kathoden-Gasdiffusionsschicht umgebende Kathodenkammer einschließt. Dabei ist von der Anodenkammer und der Kathodenkammer mindestens eine Kammer mit Wasser befüllt, und durch die Wirkung des Gleichstroms werden in mindestens einer der Kammern Gasblasen gebildet. Diese mindestens eine Kammer wird wahlweise mit einem ersten Gaskreislauf und einem zweiten Gaskreislauf verbunden, und wenn die Akkumulation der Gasblasen einen Grenzzustand erreicht, wird mindestens eine Kammer von der Verbindung mit dem ersten Gaskreislauf auf eine Verbindung mit dem zweiten Gaskreislauf umgeschaltet und nach einer vorgegebenen Zeit erneut auf die Verbindung mit dem ersten Gaskreislauf zurückgeschaltet, wobei der Druck des ersten Gaskreislaufs höher als der Druck des zweiten Gaskreislaufs ist. Die vorliegende Anmeldung stellt ferner ein Gasabscheideverfahren für die beschriebene Elektrolysezelle bereit. Gemäß der vorliegenden Anmeldung können Gasblasen schnell abgeschieden werden, wodurch die Energieeffizienz und die Betriebsstromdichte erhöht werden.
Resumen de: DE102023208729A1
Die Erfindung betrifft eine Strategie zum Betreiben eines Elektrolysezellenstapels (10) eines Elektrolyseurs oder eines Elektrolyseuraggregats (1), wobei der Elektrolysezellenstapel (10) über seine Lebensdauer (t) hinweg von einer Leistungselektronik (100) mit einer elektrischen Leistung (P) versorgbar ist und/oder versorgt wird, und ein sich mit zunehmender Lebensdauer (t) erhöhender elektrischer Leistungsbedarf des Elektrolysezellenstapels (10) durch ein Erhöhen eines Betriebstemperaturniveaus (T) des Elektrolysezellenstapels (10) wenigstens teilkompensiert wird.
Resumen de: DE102023208644A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage (1) zur Herstellung von Wasserstoff, umfassend mindestens einen Stack (2), der über eine Stromversorgung (3) mit Strom und über einen Wasserkreislauf (4) mit Wasser versorgt wird, wobei das Wasser als Edukt und als Kühlmittel verwendet wird. Erfindungsgemäß wird ein Lastsprung mittels Prädiktionsinformationen prädiziert und vor Eintritt des prädizierten Lastsprungs wird der dem mindestens einen Stack über den Wasserkreislauf zugeführte Volumenstrom an den prädizierten Lastsprung angepasst.Die Erfindung betrifft ferner eine Steuereinheit zur Ausführung von Verfahrensschritten.
Resumen de: WO2025052215A1
An apparatus and a method for production of green hydrogen using steam generated during the production of green ammonia controls: (i) a supply of steam from an ammonia reactor unit to a heat exchange unit at a first timestamp; (ii) the heat exchange unit to extract a pre-determined amount of heat from steam, and to transfer a pre-determined amount of heat to a water supply unit. The apparatus also controls the water supply unit to increase the water temperature from a first temperature value to a second temperature value using a transferred, pre-determined amount of heat. The apparatus also controls the water supply to an electrolyzer unit. The apparatus also controls the ammonia reactor unit to produce green ammonia and steam at a second timestamp using produced green hydrogen. The apparatus also controls an ammonia storage unit to store produced green ammonia at the first and second timestamps.
Resumen de: WO2025051333A1
The invention relates to a plate-like element (10) of a cell stack (2) of an electrochemical system (1), having a first plate side (26), a second plate side (27), a plurality of openings (13, 21, 22, 23, 23') and a first structure (14) for forming a flow field for coolant and several further structures (14') for forming distributors for operating media on the first plate side (26). The structure (14) comprises a coolant conducting structure (15, 16) through which a first coolant path (15) and a second coolant path (16) arranged mirror-symmetrically thereto are formed, each of which have, starting from one of the openings (21), an elongate inflow portion (17), a centre portion (18) which starts from the inflow portion (17), fans out and describes at least one meandering bend (19), and an elongate outflow portion (20) which adjoins the centre potion (18) and is narrower than the centre portion (18). A longitudinal axis (30) of the inflow portion (17) of the first coolant path (15) matches a longitudinal axis (30) of the outflow portion (20) of the second coolant path (16), and a longitudinal axis (30') of the inflow portion (17) of the second coolant path (16) matches a longitudinal axis (30') of the outflow portion (20) of the first coolant path (15). The invention also relates to a cell stack (2) comprising a plurality of such plate-like elements (10) which are parallel to one another.
Resumen de: WO2025053761A1
The present invention relates to a water electrolyser system for production of compressed hydrogen, comprising a water electrolyser stack, a multiphase pump arranged downstream of the electrolyser stack and a hydrogen gas/liquid separator. The multiphase pump is arranged between the water electrolyser stack and the hydrogen gas/liquid separator. The present invention also relates to a method for production of compressed hydrogen in a water electrolyser system including: supplying deionized water or liquid electrolyte to a water electrolyser stack; producing hydrogen in a water electrolyser stack; compressing a mixture of produced hydrogen and entrained deionized water or liquid electrolyte in a multiphase pump; and separating the compressed mixture of produced hydrogen and entrained deionized water or liquid electrolyte in a hydrogen gas/liquid separator.
Resumen de: WO2025051652A1
The invention relates to a method for operating an electrolysis plant (1), comprising a stack (2) having an anode (3) and a cathode (4), wherein in normal operation of the electrolysis plant (1), water is supplied to the anode (3) via a water circuit (5) with an integrated pump (6), said water being split in the stack (2) by electrolysis into hydrogen and oxygen, and wherein the hydrogen produced by electrolysis is supplied to a gas-liquid separator (8) via a cathode outlet (10) of the stack (2) and a media line (7) connected thereto. According to the invention, when the electrolysis plant (1) is switched off, the current density is reduced to 0 A/cm² and the media line (7) is shut off with the aid of a valve (9), while the anode (3) continues to be supplied with water via the water circuit (5) with the aid of the pump (6). The invention further relates to an electrolysis plant (1) that is suitable for carrying out the method or can be operated according to the method.
Resumen de: CN118871622A
The invention relates to a method for operating an electrolysis device (10) for producing hydrogen and oxygen, having a membrane (22) which is permeable to OH ions and which separates an anode chamber (14) and a cathode chamber (16) from one another, comprising at least the following method steps: a) temporarily dry operating the cathode chamber (16), b) a diffusion of water molecules through the membrane (22) from the anode chamber (14) into the cathode chamber (16) occurs temporarily, c) a differential pressure (42) between the cathode chamber (16) and the anode chamber (14) is varied by means of a throttle valve (46), and d) the humidification/wetting of the cathode chamber (16) is adjusted by adjusting the defined differential pressure (42).
Resumen de: CN118843597A
The present invention relates to a process for reforming ammonia wherein the process comprises (i) providing a reactor containing a catalyst comprising Ru supported on one or more support materials wherein the one or more support materials show a BET surface area of 20 m2/g or greater, and wherein the catalyst contains 1 wt.-% or less Ni and Co; (ii) preparing a feed gas stream comprising NH3; (iii) feeding the feed gas stream prepared in (ii) into the reactor and contacting the feed gas stream with the catalyst at a pressure greater than 10 abar and a temperature in the range of 200 DEG C to 750 DEG C; (iv) removing an effluent gas stream comprising H2 and N2 from the reactor.
Resumen de: CN119156465A
In a process for producing a metal borohydride M (BH4) n from a metal metaborate M (BO2) n, where M is a metal, such as a metallic metal, an alkali metal, an alkaline earth metal, a transition metal or a chemical compound exhibiting metallic properties, and n is the valence of the metal, the metal borohydride is formed by reacting a metal hydride MHn with trimethyl borate B (OMe) 3, and the metal trimethyl borate is formed by the reaction of boric acid H3BO3 and methanol MeOH under the removal of water H2O. In an electrochemical cell, the electrochemical cell is used to convert metal metaborate and water H2O into boric acid. An electrochemical cell has an anode half-cell and a cathode half-cell separated by a cation exchange membrane, and both the anode half-cell and the cathode half-cell are provided with a solvent and water. The metal metaborate is provided to the anode half-cell wherein acid ions H + and electrons e-are generated at the anode by electrolysis of water, and H + reacts with the metal metaborate and water. The cation exchange membrane may transfer the metal ion Mn + from the anode half-cell to the cathode half-cell and form a metal hydroxide M (OH) n in the cathode half-cell.
Resumen de: JP2025035258A
【課題】水電解セルの異常検知と、検知した異常の判別が可能な水電解システムを提供する。【解決手段】水電解セルを備える水電解システムと、水電解システムの異常モードを判別する異常判別システムとを備える水素製造システムを構成する。異常判別システムは、水電解セルの温度、水供給量、電流、及び、電圧の少なくとも1つ以上の時間変化のデータを取得するデータ取得部を備える。また、異常判別システムは、データ取得部が取得したデータを基に、水電解セルの異常を検知する異常検知部と、異常が発生した水電解セルの異常モードを判別する異常モード判別部とを備える。異常モード判別部は、複数の異常モードにおける電流又は電圧の挙動を学習させて得られた機械学習モデルと、データ取得部が取得したデータとから異常モードを判別する。【選択図】図1
Resumen de: JP2025033890A
【課題】本発明は、アルカリ水を電気分解することで水素を製造する方法において、陽極反応を酸素発生反応からヨウ素酸イオン生成反応へ転換し、アルカリ水電解方法を高効率かつ省電力で行うことを目的とする。【解決手段】本発明は、ヨウ化物イオンを含み、濃度が1mol/L以上のアルカリ金属水酸化物水溶液を電気分解し、陰極で水素ガスを生成し、陽極でヨウ素酸イオンを生成する、無隔膜式アルカリ水電解方法及び無隔膜式アルカリ水電解装置に関する。【選択図】図9
Resumen de: US2025075353A1
An electrode according to an embodiment including a support and a catalyst layer provided on the support and alternately stacked with sheet layers and gap layers. The catalyst layer is for electrolysis. The catalyst layer comprises a first metal which is one or more elements selected from the group consisting of Ir, Ru, Pt, Pd, Hf, V, Au, Ta, W, Nb, Zr, Mo, and Cr, and a second metal which is one or more elements selected from the group consisting of Ni, Co, Mn, Fe, Cu, Al, and Zn. The catalyst layer comprises a first region and a second region. The first metal in the first region is more oxidized than the first metal in the second region. A ratio of the second metal in the first region is greater than the ratio of the second metal in the second region.
Resumen de: JP2025033746A
【課題】水蒸気電解装置の安全性を向上させる。【解決手段】水蒸気電解装置は、水蒸気を電解して水素および酸素を生成する電解セルスタックと、電解セルスタックを収容する空間を有し、電解セルスタックを加熱する加熱炉と、空間の電解セルスタックの外側の領域における酸素濃度を測定する酸素濃度計と、測定された酸素濃度に応じて電解セルスタックの運転を制御する制御装置と、を含む。【選択図】図1
Resumen de: WO2025054276A1
Solid oxide electrochemical cells (SOECs) stand out as a highly promising clean energy technology that offers several benefits, showing significant potential to play a pivotal role in the transition towards a sustainable and low-carbon energy future. SOECs can efficiently convert the chemical energy stored in fuels to electricity in fuel cell mode, and produce various chemicals from abundant feedstocks (e.g., CO2, H2O, N2) and intermittent solar/wind-based renewable electricity. In-situ formed hybrid oxygen electrode materials have been developed from solid composite materials comprising a double perovskite phase and a single perovskite phase, which significantly improve the surface oxygen exchange coefficient and bulk oxygen-ion diffusion coefficient, enhancing the OER and ORR electrocatalytic activities. The SOECs equipped with these newly-developed oxygen electrode materials achieve exceptional performance for power generation using both hydrogen and propane as fuels. Additionally, the SOECs attain unprecedented performance in steam electrolysis mode. The SOECs also deliver remarkable stability during the accelerated stability testing, highlighting the great potential the solid composite materials as a high-performance oxygen electrode for next generation SOECs.
Resumen de: WO2025053690A1
The present invention relates to an electrode for hydrogen evolution and a manufacturing method therefor, the electrode comprising a molybdenum-ruthenium-titanium composite oxide layer formed on a porous titanium metal substrate.
Resumen de: WO2025052013A1
The present invention relates to a method for producing hydrogen by means of thermochemical water dissociation cycles under (quasi-)isothermal conditions, wherein said method comprises arranging a large amount of active material (104) inside a reaction volume (109) of a reactor (103); heating the active material (104), reducing the active material (104) and generating oxygen in the reaction volume; evacuating the oxygen produced via a first evacuation path (111) of the outlet (106) of the reactor (103); injecting water into the reaction volume (109) of the reactor, oxidating the active material (104) and producing hydrogen; evacuating the hydrogen produced via a second evacuation path (112) of the outlet (106) of the device (100); and separating the evacuated hydrogen and remaining water. The invention further relates to a device for producing hydrogen.
Resumen de: WO2025052016A1
The present invention relates to a method for obtaining hydrogen through water molecule dissociation using thermochemical reactions under (quasi-)isothermal conditions, which comprises the following steps: placing active material (103) in the reaction chamber (109) of a reactor (101); reducing the active material (103) by supplying heat; evacuating the oxygen produced through a first outlet (106); injecting water into the reaction chamber (109); oxidising the active material (103), thereby producing hydrogen; filtering the hydrogen produced through a selective filter (104) during the oxidisation of the active material (103); and evacuating the filtered hydrogen through a second outlet (107), thereby obtaining a flow of high-purity hydrogen. The invention also relates to a device for carrying out the method.
Resumen de: WO2025050699A1
The present application provides a method for improving the surface energy of nickel metal, and a nickel-copper binary metal material and a use thereof. The method comprises: depositing a modified metal layer composed of second metal on the surface of a metal matrix composed of first metal, wherein one of the first metal and the second metal is nickel metal, and the first metal can form a solid solution with the second metal; then performing short-time heat treatment in a protective atmosphere, so that the atoms of the first metal and the atoms of the second metal are uniformly mixed without segregation and phase separation of elements, thereby obtaining a nickel-based binary metal material having surface energy ranging from 30 mJ/m2 to 80 mJ/m2. The method for improving the surface energy of a nickel metal matrix of the present application is simple and is easy to popularize; and the prepared nickel-based binary metal material has high surface energy and good hydrophilicity, and has wide prospects of application in the fields of hydrogen production by water electrolysis and the like.
Resumen de: US2025083097A1
A method and system for capturing carbon dioxide from the air with a carbon contactor (also referred as to a carbon capture device), using an carbonate lean/poor alkaline solution to produce a carbonate rich alkaline rich solution, sending the resulting carbonate rich solution to an electrolyzer to generate hydrogen gas, and using the hydrogen gas to power a power plant, the hydrogen gas either used alone, or blended with natural gas or ammonia, and at least some of the power generated by the power plant is used to power the contactor and the electrolyzer.
Resumen de: US2025083134A1
The present invention relates to a Ni—Fe-based catalyst for OER doped with a metal having lower electronegativity than Ni and Fe, and a method for manufacturing the same. More specifically, the present invention offers the advantage of using nickel, a non-noble metal-based active catalyst, which has high economic value without the need for noble metals. The present invention provides a method for manufacturing a Ni—Fe-based catalyst for OER that exhibits excellent activity in oxygen generation reaction by maximizing the surface area compared to existing noble metal-based catalysts, thereby contributing significantly to the cost reduction of hydrogen production.
Resumen de: US2025083118A1
Systems and methods for eliminating carbon dioxide and capturing solid carbon are disclosed. By eliminating carbon dioxide gas, e.g., from an effluent exhaust stream of a fossil fuel fired electric power production facility, the inventive concepts presented herein represent an environmentally-clean solution that permanently eliminates greenhouse gases while at the same time producing captured solid carbon products that are useful in various applications including advanced composite material synthesis (e.g., carbon fiber, 3D graphene) and energy storage (e.g., battery technology). Capture of solid carbon during the disclosed process for eliminating greenhouse gasses avoids the inefficiencies and risks associated with conventional carbon dioxide sequestration. Colocation of the disclosed reactor with a fossil fuel fired power production facility brings to bear an environmentally beneficial, and financially viable approach for permanently capturing vast amounts of solid carbon from carbon dioxide gas and other greenhouse gases that would otherwise be released into Earth's biosphere.
Resumen de: US2025084828A1
The present invention relates to an electric power and hydrogen generation system comprising a tower having an internal structure and an external structure, said internal and external structures being interconnected; a plurality of helical turbines each coupled to an electric generator, said turbines being arranged vertically one above the other inside the internal structure; a plurality of humidity and water collectors arranged in the interconnection spaces of said internal and external structures; the external structure presents outer surfaces, which are covered using solar cells; a tower base holds within it a system for the production, storage and supply of hydrogen and electricity.
Resumen de: US2025084540A1
The present invention discloses a method for preparing glycollate by electro-catalyzing ethylene glycol or electro-catalytically reforming waste plastic polyethylene terephthalate (PET). The method for preparing glycollate by electro-catalytically reforming waste plastic PET includes: 1) dissolving the waste plastic PET into an alkali liquid, and carrying out solid-liquid separation after hydrolysis reaction to obtain an alkaline electrolyte containing ethylene glycol; and 2) assembling an anode catalyst, a cathode catalyst and the alkaline electrolyte containing the ethylene glycol into an electrolytic cell, and applying voltage for electrocatalytic reaction, where the ethylene glycol is oxidized at an anode to generate glycollate, and water is reduced at a cathode to generate hydrogen. The present invention firstly provides conversion of the waste plastic PET into the glycollate by means of an electrocatalysis technology in the art, and the method not only utilizes resources and energy of the waste plastic PET, but also provides a new idea for low-cost and large-scale production of glycolic acid.
Resumen de: US2025084746A1
A method of generating hydrogen in a subsurface formation, the method comprising injecting oxidizable metal particles into a subsurface formation comprising subsurface water and a geologic trap, wherein the subsurface water has a temperature of from 18° C. to 400° C. and a pressure of from 500 psi to 10,000 psi, the geologic trap comprises one or both of a structural trap or a stratigraphic trap, the geologic trap substantially prevents vertical migration of the subsurface water out of the subsurface formation, and the oxidizable metal particles react with the subsurface water to form hydrogen, metal oxides, metal hydroxides, or combinations thereof.
Resumen de: US2025084552A1
The invention relates to an electrolysis system having a plurality of electrolytic cells for water electrolysis. An anode-side water circuit leads from an anode-side outlet, via an oxygen separator, a main pump and a cooling device, to an anode-side inlet of an anode chamber. A cathode-side water circuit leads, similarly, from a cathode-side outlet, via an oxygen separator, a main pump and a cooling device, to a cathode-side inlet of a cathode chamber. Cleaning of the water during non-operation of the electrolysis system is achieved by adding an anode-side partial-flow branch, which leads from a branch-off point, via an auxiliary ion exchanger, to a collection point in the anode-side water circuit.
Resumen de: US2025084539A1
Large scale harvesting of renewable energy is proposed by using floating devices which use solar, wind, ocean current, and wave energy to produce compressed hydrogen by electrolysis of deep sea water. Natural ocean currents and winds are used to allow the devices to gather energy from over a large area with minimum transportation cost. The present approach uses a combination of well understood technologies in an optimized manner and at scale. Hydrogen produced in this manner would pave the way for carbon free energy economy.
Resumen de: US2025084545A1
A titanium substrate material includes: a substrate main body made of a sintered titanium particle body; and a titanium oxide film formed on the substrate main body, wherein a proportion of anatase titanium oxide among titanium oxide constituting the titanium oxide film is 90% or more. It may have a porosity of the substrate main body is within a range of 30% or more and 92% or less. It may have a compressive strength of the titanium substrate is 0.5 MPa or more.
Resumen de: US2025084550A1
Provided is an operation support apparatus including: a calculation unit which calculates, based on an electricity cost or an amount of power consumption for each of predetermined times associated with operation of a plurality of electrolyzers operating in parallel, an amount of production by time unit which is an amount of production of a product for each of the times that satisfies a target amount of production of the product, the product being produced by the plurality of electrolyzers over a predetermined period of time; and a specification unit which specifies an electrolyzer to be operated among the plurality of electrolyzers, based on the amount of production by time unit calculated by the calculation unit.
Resumen de: US2025084547A1
An electrode 10 includes, as a catalyst, an alloy including three or more base metal elements, in which the three or more base metal elements are nearly equal in atomic composition proportion, and form a solid solution. Also, an electrode 12 includes: a carbon fiber; and a catalyst including a base metal, at least a part of elements of the catalyst being chemically bonded to the carbon fiber. Further, the water electrolyzer includes an anode, a cathode, and a solid polymer electrolyte membrane provided between the anode and the cathode. The anode is the electrode 10, and/or the cathode is the electrode 12.
Resumen de: US2025083783A1
Described herein are inflatable wearable devices comprising: a reaction container having an expandable bladder, a dry powder compartment and a liquid compartment with a removable barrier between the compartments, the expandable bladder being connected to at least one of the dry powder compartment or the liquid compartment, and wherein the dry powder compartment comprises a mixture of an ionic hydride and a borohydride, and wherein the liquid compartment comprises an aqueous solution comprising a foam forming agent, and wherein upon removal of the barrier between the compartments, the aqueous solution contacts the mixture of an ionic hydride and a borohydride, thereby forming hydrogen gas foam.
Resumen de: US2025083966A1
A plant including a reverse water gas shift (RWGS) section including a first feed including hydrogen to the RWGS section, and a second feed including carbon dioxide to the RWGS section, or a combined feed comprising hydrogen and carbon dioxide to the e-RWGS section, a water removal section downstream the RWGS section, a compressor downstream the water removal section, and a cryogenic CO2 separation section downstream the compressor, wherein the plant has means for recycling at least a portion of a CO2 rich condensate to the RWGS section or to a feed to the RWGS section, and wherein the RWGS section is an electrically heated RWGS (e-RWGS) section.
Resumen de: US2025087734A1
One embodiment is directed to an integrated energy storage and distribution system, comprising: an electrolysis module configured to utilize intake electricity and intake water to output hydrogen gas, oxygen, and surplus water; a metal hydride hydrogen storage module configured to controllably store, or alternatively release, hydrogen gas; a fuel cell module configured to controllably intake hydrogen gas and output electricity and water vapor; and a computing system operatively coupled to the electrolysis module, storage module, and fuel cell module and configured to coordinate operation of these modules relative to each other; wherein the electrolysis, storage, and fuel cell modules are thermally coupled such that heat energy released from one or more modules which may be at least transiently exothermic may be utilized by one or modules which may be at least transiently endothermic.
Resumen de: AU2023327787A1
The invention provides an electrolytic cell, comprising: a working electrode; a counter electrode; a liquid electrolyte in contact with a working surface of the working electrode; an acoustically transmissive substrate comprising at least a piezoelectric substrate portion; one or more conductive electrodes coupled to the piezoelectric substrate portion and configured to propagate a high frequency acoustic wave having a frequency of at least 1 MHz across the acoustically transmissive substrate when electrically actuated; and one or more power supplies configured (i) to apply a potential between the working electrode and the counter electrode sufficient to electrolytically react a species in the liquid electrolyte, thereby producing an electrolytic reaction product proximate the working electrode, and (ii) to electrically actuate the one or more conductive electrodes, wherein the working electrode is either located on the acoustically transmissive substrate or spaced apart from the acoustically transmissive substrate by the liquid electrolyte, and wherein propagation of the high frequency acoustic wave across the acoustically transmissive substrate in operation of the electrolytic cell stimulates the liquid electrolyte, thereby increasing the production efficiency of the electrolytic reaction product.
Resumen de: DE102023124126A1
Ein plattenförmiges Element (10) eines Zellenstapels (2) eines elektrochemischen Systems (1) weist eine Mehrzahl an Durchbrechungen (13, 21, 22, 23, 25) sowie eine zumindest einseitige Strukturierung (14) auf. Die Strukturierung (14) umfasst eine Kühlmittelleitstruktur (15, 16), durch welche ein erster Kühlmittelpfad (15) und ein zweiter Kühlmittelpfad (16) gebildet sind, welche jeweils einen Einströmabschnitt (17), einen vom Einströmabschnitt (17) ausgehenden, sich auffächernden und mindestens einen Mäanderbogen (19) beschreibenden Mittelabschnitt (18) und einen an den Mittelabschnitt (18) anschließenden, im Vergleich zum Mittelabschnitt (18) verengten Ausströmabschnitt (20) aufweisen.
Resumen de: EP4521045A2
An apparatus and process for pre-liquefaction processing of a fluid (e.g., hydrogen) can permit a reduction in capital costs and also an improvement in operational efficiency in flexibility. Embodiments can be configured to account for large variations in feed to be provided for liquefaction and also permit capital cost reductions associated with pre-liquefaction processing so the overall capital cost for liquefaction can be greatly reduced while also providing improved operational flexibility. For instance, embodiments can be configured to utilize one or more common pre-liquefaction processing elements to treat a fluid for precooling of a fluid to a pre-selected liquefaction feed temperature.
Resumen de: WO2024241056A1
The specification describes a process for preparing an oxygen evolution reaction catalyst, comprising the steps of: (i) combining iridium powder and a peroxide salt to produce a powder mixture; (ii) carrying out thermal treatment on the powder mixture; (iii) dissolving the product from (ii) in water to produce a solution; (iv) reducing the pH of the solution from (iii) to affect a precipitation and form a solid and a supernatant; (v) separating the solid from the supernatant; and (vi) drying the solid. An oxygen evolution catalyst obtainable by the process is also described.
Resumen de: GB2633496A
A passive dual modulating regulator that responds to a pressure differential between a hydrogen-side and an oxygen-side of one or more proton-exchange membrane (PEM) cells is provided. The passive dual modulating regulator includes a flexible diaphragm that is clamped along its periphery between hemispherical chambers. A bi-directional valve assembly extends through the flexible diaphragm and includes opposing valve plugs for selectively closing the output ports of the respective hemispherical chambers. Large or sustained pressure imbalances between the hydrogen-side and the oxygen-side of a hydrogen generation system are avoided without active control inputs of any kind, and consequently a rupture of the PEM is entirely avoided.
Resumen de: WO2025047069A1
Provided are: a water electrolysis system capable of providing an adjustment force solely by the water electrolysis system; and a method for operating the water electrolysis system. This water electrolysis system generates hydrogen gas and oxygen gas as generated gases from water by applying grid power to a plurality of water electrolysis stacks through a rectifier, and adjusts power consumption in accordance with an instruction to provide adjustment force, and is characterized in that, when the instruction to provide the adjustment force is received within a contract time zone in which provision of the adjustment force is contracted, the amount of water supplied to the water electrolysis stacks, the temperature of the water electrolysis stacks, and pressure can be controlled according to the amount of power obtained by adding, to the amount of power consumption of the water electrolysis stacks, the amount of power of the adjustment force to be provided.
Resumen de: WO2023214401A1
The present disclosure provides a catalyst, its preparation and uses thereof, the catalyst comprising a conductive substrate coated by at least two layers including a proximal layer and a distal layer wherein said proximal layer comprises a proximal metal composition and said distal layer comprise a distal metal composition, the proximal metal composition being different from the distal metal composition; wherein said proximal metal composition comprises a metallic M and said distal metal composition comprise a combination of two or more different metal complexes, each having a formula MxLy, wherein M, which may be the same or different in said two or more metal complexes, represents a metal atom; L, which may be the same or different in said two or more metal complexes, represents a moiety comprising at least one atom selected from the group consisting of oxygen (O), phosphorous (P), boron (B) and nitrogen (N); x represents any value between (1) and (6); and y represents any value between (1) and (6); and wherein said metal atom of metallic M and said metal atom in MxLy may be the same or different metal atom.
Resumen de: WO2023213370A1
Aspects of the present invention relate to a renewable energy power plant for connection to a power network. The renewable energy power plant comprises: a wind turbine generator (WTG); a hydrogen generating system comprising: a hydrogen electrolysis system operable to generate hydrogen through electrolysis using power generated by the WTG; and a DC-link for electrically coupling the WTG to the hydrogen electrolysis system; a connecting network for selectively connecting the power plant to the power network; a power balancing system comprising one or more energy sources and one or more energy loads for balancing electrical power differences between the power generated by the WTG and the power consumed by the hydrogen electrolysis system; and a control system for controlling the WTG, the connecting network, the power balancing system, and the hydrogen electrolysis system to control the voltage on the DC-link to remain within a predetermined range.
Resumen de: CN119156365A
A process for manufacturing methanol having a deuterium content of less than 90 ppm based on the total hydrogen content, the process comprising the steps of: (a) providing hydrogen having a deuterium content of less than 90 ppm based on the total hydrogen content by water electrolysis using power generated at least in part from non-fossil renewable resources; (b) providing carbon dioxide; (c) reacting hydrogen and carbon dioxide in the presence of a catalyst to form methanol.
Resumen de: AU2023264575A1
Provided herein are systems and methods for generating hydrogen and ammonia. The hydrogen is generated in an anion exchange membrane-based electrochemical stack. The hydrogen generated in the stack may be used to generate ammonia or may be used for other applications requiring hydrogen. The feedstock for the anion exchange membrane-based electrochemical stack may be saline water, such as seawater. A desalination module or a chlor-alkali stack may be used to treat the saline water prior to electrolysis in the anion exchange membrane-based electrochemical stack.
Resumen de: KR20250034633A
본 발명에 의하면, 액체 상태의 물을 가열하여 수증기를 발생시키는 제1, 제2 증기 발생기와, 상기 수증기를 전기분해하여 수소와 산소를 분리시켜서 생성하는 수전해기를 구비하는 고온 수전해 설비; 탈수소화된 LOHC(Liquid Organic Hydrogen Carrier)에 대한 수소화 반응을 수행하여 수소화된 LOHC를 생성하는 LOHC 수소화 설비; 및 순환 유동하는 작동 유체를 가열하는 원자로와, 상기 작동 유체의 유동에 의해 회전하는 터빈과, 상기 터빈의 회전력에 의해 구동되어서 전기 에너지를 생산하는 발전기를 구비하는 원자력 발전 설비를 포함하며, 상기 작동 유체 중 일부는 상기 제1 증기 발생기의 열원으로 공급되며, 상기 제2 증기 발생기는 상기 수소화 반응에 의해 발생하는 반응열의 적어도 일부를 열원으로 사용하며, 상기 고온 수전해 설비는 상기 원자력 발전 설비로부터 전력을 공급받는 수소 에너지 복합 관리 시스템이 제공된다.
Resumen de: CN119592991A
本发明公开了一种复合型阴极析氢催化剂的制备方法及应用,包括:将硝酸锌,2‑甲基咪唑,甲醇以及不同的过渡金属盐混合超声静置24h,醇洗、离心分离、烘箱干燥后制备得到金属有机前驱体‑沸石咪唑骨架(M‑ZIF‑8);将M‑ZIF‑8与盐模板均匀混合,在惰性气氛下高温熔融热解,将得到的产物进行酸洗、去离子水洗涤并离心分离后进行冷冻干燥,制备得到二维过渡金属‑氮‑碳单原子载体材料(M‑N‑C);将钌源与M‑N‑C在水溶液中进行搅拌、吸附,将混合均匀后的溶液冷冻、干燥后,在氢‑氩混合气氛中进行高温热处理,得到钌团簇均匀负载二维过渡金属‑氮‑碳复合型催化剂材料。利用该方法制备的催化剂减少了贵金属的用量,降低了催化剂的成本,具有极好的HER活性和稳定性。
Resumen de: CN119592973A
本申请提供一种LOHC耦合PEM电解槽制氢‑储氢一体化系统及控制方法,通过设置背压阀,控制系统控制其在进行加氢反应时启动,使电解槽阳极压力增大,以增加阴极贫氢有机载体和氢气向阳极渗透的阻力,从而减少氢气、贫氢有机载体在质子交换膜处的渗透量,降低对加氢效率的影响,也能够避免增加PEM加氢系统内的电阻,减少对加氢过程中的电流密度的影响,更有利于提升有机液态储氢载体的加氢效率。
Resumen de: CN119593008A
本申请涉及多相复合材料、其制备方法及其在电解水中的应用。该多相复合材料,包括:泡沫镍,及生长于所述泡沫镍上的NiMoO4、Mo3Se4和Ni3Se2。在碱性介质中,该复合材料对HER具有出色的催化活性,能够显著降低HER过程的过电位,提高电解水制氢效率,同时,多相复合材料在高电流密度下表现出长期稳定性,有望实现工业化应用。
Resumen de: TW202408656A
The present invention relates to a method for the combined electrolytic and thermal production of hydrogen gas, the method comprising: (i) providing a plasma treatment unit having a plasma treatment chamber comprising first and second electrodes, and a first gas outlet in fluid communication with said plasma treatment chamber; wherein a base portion of the plasma treatment chamber forms a reservoir of an aqueous electrolyte; wherein the first electrode is comprised within a plasma torch whereby the plasma torch is arranged at a distance above a surface of the reservoir; and wherein the second electrode is submerged in the aqueous electrolyte; (ii) establishing a DC electric potential between the first and second electrodes whilst providing a flow of non-oxidising ionisable gas between the first electrode and the surface of the reservoir to generate and sustain a plasma arc therebetween, thereby producing hydrogen gas in the plasma treatment chamber; and (iii) recovering the hydrogen gas via the first gas outlet. The present invention also relates to a plasma treatment unit.
Resumen de: DK202300543A1
Disclosed is an apparatus for generating electricity onboard a vehicle. The apparatus comprises an electricity generation system comprising a fuel inlet, an electrolyser system for receiving the fuel via the fuel inlet and for generating a hydrogen stream and a carbon dioxide stream. The electrolyser system comprises a gaseous carbon dioxide outlet for discharging the carbon dioxide stream and a hydrogen outlet for discharging the hydrogen stream. The apparatus further comprises an electricity generator for electrochemically generating electricity using the hydrogen stream. The electricity generator comprises a hydrogen inlet fluidically connectable or connected to the hydrogen outlet, an electrical outlet for supplying the electricity to the device, and a waste fluid outlet for discharging waste fluid. The apparatus comprises a carbon dioxide capture system including a gaseous carbon dioxide inlet fluidically connectable or connected to the gaseous carbon dioxide outlet, whereby the carbon dioxide capture system is adapted to receive and store the carbon dioxide.
Resumen de: US2025059657A1
A catalyst coated membrane for a water electrolyser, the catalyst coated membrane comprising: an ionomer membrane having a first surface and a second surface; an anode catalyst layer on the first surface of the ionomer membrane; and a cathode catalyst layer on the second surface of the ionomer membrane, wherein the ionomer membrane comprises reinforcement material, and wherein the reinforcement material is distributed asymmetrically relative to a central plane of the ionomer membrane such that its average location is closer to the anode catalyst layer than the cathode catalyst layer.
Resumen de: CN118742674A
An SOC stack system includes one or more solid oxide cell stacks and a multi-stream solid oxide cell stack heat exchanger.
Resumen de: US2025059657A1
A catalyst coated membrane for a water electrolyser, the catalyst coated membrane comprising: an ionomer membrane having a first surface and a second surface; an anode catalyst layer on the first surface of the ionomer membrane; and a cathode catalyst layer on the second surface of the ionomer membrane, wherein the ionomer membrane comprises reinforcement material, and wherein the reinforcement material is distributed asymmetrically relative to a central plane of the ionomer membrane such that its average location is closer to the anode catalyst layer than the cathode catalyst layer.
Resumen de: WO2024172438A1
The present invention relates to a catalyst for the decomposition of ammonia, and a method for the decomposition of ammonia.
Resumen de: CN119593735A
本发明提供了一种利用化学生氢多级燃爆形成复杂裂缝网络的方法,其包括:(1)制备产气颗粒;(2)组装电火花装置并将其井下电火花模块悬挂到第二可钻桥塞上;(3)向预先打好的垂直井筒指定位置的后端放入第一可钻桥塞;(4)向垂直井筒内指定位置放入产气颗粒,然后注入水;(5)向垂直井筒指定位置的前端放入第二可钻桥塞;(6)利用电火花装置点火;(7)使用钻头钻掉第一、第二可钻桥塞;(8)向预先打好的水平井筒内重复前述步骤(3)‑(7);(9)静置等待储层中氢气和氧气混合物被充分引爆,在储层内形成新的裂缝网络。本发明能够造出更多的分支裂缝,增强储层导流效果,提高导流能力,有效增加储层采收率,适合在低渗透储层中使用。
Resumen de: CN119588251A
本发明提供一种加压氨分解反应器及氨分解方法,涉及氨分解领域。反应器本体包括反应器内筒和反应器外筒,反应器外筒套设于反应器内筒外并与反应器内筒之间具有预热空间;反应器内筒内设有电加热棒,电加热棒的接线端穿过反应器内筒向反应器本体外部延伸;反应器内筒内部填充有催化剂;反应器内筒的一端设有向反应器本体外部延伸的反应气体入口,另一端设有生成气体出口;反应器外筒的一端设有与预热空间连通的冷氨气进气口,另一端设有与预热空间连通的冷氨气出气口,冷氨气出气口接入反应气体入口。能够解决传统氨分解反应器不能承受高压的问题,提高了能量利用效率以及时空产率,能够有效产出高压氨氢混合气以匹配后端各应用场景的需求。
Resumen de: CN119593003A
本发明属于电催化水解技术领域,具体涉及一种高活性NiCe(OH)n/NF的制备方法及其应用。本发明未使用贵金属催化剂,极大降低了使用成本。阳极以电氧化方式获得葡萄糖二酸,同时可使活性中心NiOOH以循环的方式在碱性环境下稳定存在,阴极制氢。由于Ni(OH)2/NiOOH之间的氧化还原循环,可以有效降低过电位,减少电能损耗。且由于少量铈的协同作用,该体系可以在获得高附加值的葡萄糖二酸的同时实现高效制氢。本发明使用循环体系催化葡萄糖获得葡萄糖二酸,同时阳极葡萄糖产率达到70%,阴极析氢效率接近100%。与传统电解水制氢工艺相比,葡萄糖氧化辅助低电位电对循环耦合制氢的方法符合“绿色化学”且成本更低,没有苛刻的反应条件和复杂的分离步骤。
Resumen de: CN119592987A
本发明涉及水电解装置、双极板及涂层材料技术领域,具体涉及一种金属化合物涂层及其制备方法和改性双极板。金属化合物涂层用于覆设在水电解装置双极板表面,金属化合物涂层的制备方法包括以下步骤:以水电解装置双极板为基板,采用脉冲激光沉积工艺在基板表面沉积氮化钛涂层;然后采用等离子体表面渗氧工艺,对氮化钛涂层进行渗氧,形成氧含量梯度变化的氮氧化钛涂层。本发明主要是采用脉冲激光沉积技术和等离子体渗氧技术在钛双极板表面生成一层氧含量梯度变化的氮氧化钛涂层,兼具耐蚀性和导电性,解决现有的复合涂层制备方法由于不同涂层之间因界面缺陷和应力集中的问题导致涂层的防护性能下降,影响涂层长期稳定性的问题。
Resumen de: CN119593009A
本发明公开了一种晶态‑非晶态复合自支撑材料,以泡沫镍NF为基底,以五水硫酸铜、尿素和氟化铵为水热反应的原料,经过水热法得到NF/Cu‑Cu2O,再以六水硫酸镍、七水硫酸钴、柠檬酸钠及硫脲为电沉积的原料,经过电化学沉积法制得NF/Cu‑CuS2/NiCoS;NF作为自支撑骨架;Cu‑CuS2为片状绣球花结构,直径为10μm,NiCoS为纳米球状结构,直径为10nm;绣球花结构的片层上生长NiCoS纳米球;Cu和CuS2为晶态,NiCoS为非晶态。其制备方法包括以下步骤:1,NF/Cu‑Cu2O的制备;2,NF/Cu‑CuS2/NiCoS的制备。作为析氢催化剂材料的应用时,在0‑‑1.2V范围内,在电流密度为10mA·cm‑2时,过电位为39‑42mV,Tafel斜率为130‑136mV·dec‑1;在电流密度为10mA·cm‑2,循环时间为24h的条件下,电流保持率为95‑98%。
Resumen de: CN119593007A
本申请涉及钴掺杂的Ni基硫化物复合体、其制备方法及其应用,其中,该钴掺杂的Ni基硫化物复合体的制备方法包括:使包含尿素、氟化铵和钴源的第一水溶液与泡沫镍接触并进行第一水热反应,得到复合体前体,所述第一水溶液中钴源的摩尔量为所述泡沫镍的摩尔量的2.4‑7.2%,优选为4‑5%,使所述复合体前体与含硫源的第二水溶液接触并进行第二水热反应,得到所述钴掺杂的Ni基硫化物复合体。所制备的钴掺杂的Ni基硫化物复合体的析氧反应电催化稳定性得到显著的提升,大大提升了Ni基硫化物复合体的工业化应用前景。
Resumen de: CN119593011A
本发明公开了一种铱‑钴氧化物纳米颗粒及其制备方法和应用。本发明的铱‑钴氧化物纳米颗粒的组成包括四氧化三钴载体和负载的氧化铱,其制备方法包括以下步骤:1)配制铱盐‑钴盐水溶液;2)制备含有铱的铵盐和钴的配合物的反应液;3)制备氢氧化铱‑钴的配合物复合物;4)将氢氧化铱‑钴的配合物复合物进行研磨,再置于含氧气氛中进行热处理,再进行水洗和干燥。本发明的铱‑钴氧化物纳米颗粒的铱含量低、粒径小且均一,且其制备方法简单,用作OER反应催化剂具有电化学活性高、电化学稳定性好等优点,适合在电解水制氢领域进行大规模工业化应用。
Resumen de: CN119591816A
本发明公开了一种三蝶烯改性β‑酮烯胺共价有机框架、其制备方法及其用途,三蝶烯改性β‑酮烯胺共价有机框架,由多氨基三蝶烯单体、1,3,5‑三醛基间苯三酚单体和烯胺单体缩聚,制得。本发明三蝶烯改性β‑酮烯胺共价有机框架,具有优异的光催化分解水产氢性能,可重复使用。本发明提供的制备方法过程简单、条件温和、耗时短、环境友好,易于工业化生产。
Resumen de: CN119588341A
本发明属于氨分解工艺技术领域,具体涉及一种氨分解催化剂及其制备方法。其制备方法包括如下步骤:S1、将生物模板与试剂A混合浸渍,得到优化生物模板;S2、将所述优化生物模板与试剂B混合浸渍,干燥后焙烧得到催化剂载体;S3、将所述催化剂载体与试剂C混合浸渍,得到催化剂前驱体;S4、将所述催化剂前驱体活化处理,得到所述氨分解催化剂。试剂A中包含羧酸和氢离子,浸渍时长为1~24h、浸渍温度为20~80℃。试剂A浸渍处理后的生物模板能更好地吸附金属离子,所制备的金属氧化物催化剂载体具有更加均匀且完整的微观形貌和更大的比表面积,从而提升氨分解催化剂的催化效率与稳定性。
Resumen de: CN119588349A
本发明涉及一种氧化铱‑二氧化锰催化剂的制备方法,包括以下步骤:S1、将锰源和铵盐,充分溶解在去离子水中,所得溶液转移到高压釜中加热反应,经洗涤、干燥,即得载体MnO2;S2、将所述载体MnO2分散在pH=10~14的碱性溶液中,加入铱源并使其溶解,即得分散液;S3、将所述分散液在高压釜中加热反应,经洗涤、干燥,即得氧化铱‑二氧化锰(IrO2/MnO2)催化剂。同时,本发明还公开了该催化剂的应用。本发明在提高本征催化活性和金属利用率的同时不损失稳定性,所得催化剂可作为析氧反应催化剂应用于酸性电解水析氧反应中。
Resumen de: CN119593006A
本发明提供了一种动态排斥氯离子的电解海水制氢催化剂及其制备方法与应用,属于电催化材料技术领域。本发明提供的电解海水制氢催化剂的制备方法包括以下步骤:将硒粉、水合肼、硫脲、氟化铵、混合溶剂、钼源和硼氢化钠混合均匀,待溶解完全后,得到反应液Ⅰ;将泡沫镍加入所述反应液Ⅰ中进行溶剂热反应Ⅰ;所述溶剂热反应Ⅰ结束后,向反应体系中加入GQDs分散液和水,进行溶剂热反应Ⅱ,得到所述电解海水制氢催化剂。本发明提供的制备方法简单,所得催化剂具有卓越的OER活性、高效的电荷转移能力及出色的稳定性,在电解海水制氢领域展现出巨大的应用潜力。
Resumen de: CN119591894A
本发明公开一种芘基金属有机框架二维超薄纳米片的制备方法及应用,属于催化材料技术领域。本发明的制备过程为将1,3,6,8‑四(4‑羧基苯)芘配体和金属盐分别分散于有机溶剂中或者有机溶剂和去离子水的混合溶液中,搅拌均匀,将所得的配体溶液在搅拌状态下滴加到金属盐溶液中,搅拌均匀,将得到的混合溶液装入含有聚四氟乙烯内衬的不锈钢反应釜中进行溶剂热处理,冷却后离心,洗涤,冷冻干燥后得到一系列芘基MOF二维超薄纳米片。该方法无需调节剂、制备过程温和简单且具有高度的重复性和普适性。制备的超薄二维MOF纳米片厚度小于3nm,具有微米尺寸和大比表面特性,可作为光催化分解水制氢光催化剂的优异候选者。
Resumen de: CN119593012A
本发明属于电解水制氢技术领域,特别涉及一种菠萝蜜壳纹状碱性电解水制氢电极及其制备方法与应用;碱性电解水制氢电极包含镍支撑体及其表面均匀分布的微米级颗粒状氢氧化镍,微米级颗粒状氢氧化镍表面原位生长有铂催化剂;碱性电解水制氢电极的制备方法,通过将镍支撑体浸入第一电解液中进行第一电化学沉积得到镍支撑的氢氧化镍电极,再将镍支撑的氢氧化镍电极浸入第二电解液中进行第二电化学沉积,得到镍支撑的铂负载氢氧化镍电极;该制备方法通过选择第一、第二电解液配方及电沉积参数,制备的制氢电极能提升催化层整体导电性,其限位空间促进了氢物种在铂/氢氧化镍不同活性位点上的有序迁移,该制氢电极产氢能耗更低,适应工况环境稳定运行。
Resumen de: CN119595835A
本发明提供一种氢氧传感器的标定系统,氢氧传感器的标定系统包括氢电解槽、氧电解槽、氧气处理单元、电源单元、氢氧混合罐和控制器;控制器的输出端与电源单元的受控端电连接,控制器的输入端用于与待标定的目标氢氧传感器的输出端电连接,氢电解槽的电源端与电源单元的第一输出端电连接,氧电解槽的电源端与电源单元的第二输出端电连接,氢电解槽设置在氢氧混合罐中,氧电解槽通过氧气处理单元与氢氧混合罐连通。标定氢气和标定氧气通过电解实时产生,无需预先存储,不会因长时间的存储而影响精度;此外,氢电解槽直接设置在氢氧混合罐中,电解产生的标定氢气直接存放在氢氧混合罐中,降低了混气难度以及提高了混气效率。
Resumen de: CN119592972A
本发明公开了一种高效稳定电解槽结构。高效稳定电解槽结构,包括:塑料材质的外壳,所述外壳上安装有进水管和出水管,所述外壳内设有电解机构;所述电解机构包括第一电极、第二电极以及隔膜,所述第一电极、所述第二电极上开设有透气孔。本发明提供的高效稳定电解槽结构通过设置塑料材质的外壳、进水管和出水管,利用接线螺丝对金属盖板进行紧固,使铜柱将钛柱紧压在电极上,将第一电极和第二电极固定在外壳的中部,使第一电极、第二电极将隔膜夹紧在两者之间,该电解槽结构的电极的固定方式简单、稳定,无需使用焊接,即可实现惰性金属电极的接电,成本低,抗氧化,适合推广使用。
Resumen de: CN119592986A
本发明属于电催化技术领域,具体涉及一种钴基析氧催化剂及其制备方法和应用。本发明的钴基析氧催化剂,在钴基前驱体材料上包覆一层均匀的钴基硼化物纳米片层,形成花瓣结构。该催化剂具有良好的电解水析氧反应催化性能。
Resumen de: CN119592999A
一种激光诱导原位还原金属铋纳米团簇修饰钒酸铋复合光阳极、其制备方法及应用,该方法首先,采用电沉积法在导电基底上沉积BiOI纳米颗粒得到BiOI电极;其次,通过高温焙烧法引入钒生成钒酸铋纳米结构光阳极;最后,通过激光诱导原位合成的方法在钒酸铋上原位析出金属铋纳米团簇制备铋纳米团簇修饰的钒酸铋(Bi/BiVO4)复合光阳极。本发明能够制备粒径均匀的金属铋纳米团簇,且紧密附着在钒酸铋光电极表面,铋纳米团簇的存在诱导电子‑空穴对的有效分离,抑制了体相电荷载流子的复合,显著提升BiVO4的光电分解水性能;本发明合成工艺简单、重复性好,所用材料没有使用任何贵金属,大大降低了成本,对今后大规模投入商业应用有重要的指导意义。
Resumen de: CN119593005A
本发明公开了一种双金属位点氧耦合电解酸性介质析氧催化剂自支撑电解水阳极的制备方法,属于电催化电极制备及电化学技术领域。本发明方法先制备2.0M硝酸盐水溶液并按非贵金属等摩尔比例混合,取混合溶液加入PE球磨罐球磨,球磨后的溶液与乙醇混合超声得到催化溶液,将催化溶液涂抹于载体上并在红外灯下干燥,最后在马弗炉中退火即可。本发明方法无需贵金属,制得的催化剂自支撑电解水阳极在酸性环境下OER性能、耐久性、能源转换效率等方面表现优异,制备流程简单、原料易得、产物稳定,具有工业化应用潜力。
Resumen de: CN119594396A
本发明提出一种氨分解电磁加热燃烧快速启动装置,所述启动装置以电磁加热反应器(R02)对输入的氨气进行加热以加快其裂解速度,所述电磁加热反应器包括电磁加热线圈(11),还包括置于电磁加热线圈中轴区域处平行设置的多根电磁感应加热氨分解列管(4);所述电磁感应加热氨分解列管的输入端与氨气输入口相通,采用小管径的微通道结构来加大电磁感应热效,并加大管壁与氨气的接触面积来优化加热裂解效果;本发明能将氨快速分解为氢和氮进行燃烧。
Resumen de: CN119593001A
本发明涉及一种CdSe@Ti3C2TxMXene异质结材料在半导体器件中的应用,所述半导体器件包括场效应晶体管、光电探测器、超级电容器和电解水催化器件中的一种。本发明通过利用CdSe@Ti3C2TxMXene异质结材料的优异电学和光学特性,制备出具有高性能的场效应晶体管、光电探测器、超级电容器和电解水器件,方法简单易行,成本低廉,适合大规模生产应用。
Resumen de: CN119592980A
本发明涉及空气制氢领域,具体涉及一种基于金属有机框架的制氢阴极材料、质子膜电解制氢系统及方法。一种基于金属有机框架的制氢阴极材料,通过在铂基体上涂MOF‑PVA溶液后制得,包括铂基体,所述铂基体表面涂覆有MOF层,所述MOF层用于从空气中吸收水蒸汽,实现持续的水供给,并在质子膜电解制氢过程中实现表面原位制氢。一种基于金属有机框架的质子膜电解制氢系统,包括电力装置、阴极材料、阳极材料、质子交换膜、电解液、电解槽,该系统通过制氢阴极材料的MOF层在宽湿度范围(10%‑100%RH)内能够有效吸附水蒸气,确保了系统在不同环境下的持续性氢气产生。该系统空气制氢技术不仅突破了对淡水资源的依赖,还能够充分利用太阳能、风能等可再生能源,达成绿色、低碳的氢气生产目标,且对环境的影响较小,有利于推动氢能产业的可持续发展。
Resumen de: CN119592998A
一种不同Mn掺杂的镍基复合电催化剂的制备方法,属于电化学领域。其中包括Mn掺杂氢氧化镍前驱体的制备、Mn掺杂的镍基复合电催化剂的制备;方法包括:(1)用水热的方法制备了不同含量的Mn掺杂Ni(OH)2前驱体;(2)使用三乙醇胺作为碳源利用气相沉积方法合成Mn掺杂的镍基复合电催化剂,增加导电性;(3)三乙醇胺在催化剂表面挥发出的一氧化氮、二氧化碳等气体形成孔洞增加其活性位点;(4)使用电化学工作站测试该电催化剂在碱性条件下的电化学析氢性能。制备的Mn0.2‑NiC/NiO催化剂在10mA/cm2的电流密度下仅需要56mV的过电位,稳定性超过20h。本发明制备的析氢异质结构电催化剂高效,方法简便。
Resumen de: CN119592996A
本发明涉及一种原位掺碳的钴基催化剂的制备方法,其包括将金属源和有机配体混合得到固体混合物,将固体混合物溶解于混合溶剂中得到混合溶液,其中,金属源包括钴盐,有机配体为5‑氨基间苯二甲酸,混合溶剂由去离子水、乙醇和氮氮二甲基甲酰胺组成;混合溶液在70℃‑90℃下通过水热法制备有机金属框架前驱体;在800℃‑1000℃下煅烧有机金属框架前驱体,自然冷却降温后得到原位掺碳的钴基催化剂。本发明还涉及原位掺碳的钴基催化剂及其应用。本发明的制备方法简单,有机配体引入的有机物煅烧为碳并原位掺杂到钴基材料中以解决导电性差的问题。
Resumen de: CN119593000A
本发明属于催化剂技术领域,涉及一种基于碳纳米片负载Cu单原子Pt亚纳米团簇催化剂及其制备方法和应用。所述制备方法包括以下步骤:将含氮前驱体、苯三甲酸加入水中,搅匀得到混悬液;将含铜化合物和含铂化合物添加至上述混悬液中并搅匀,干燥,得到前驱体粉末;将前驱体粉末在保护气体下进行热处理,即得所述催化剂。本发明提出在超薄碳纳米片上锚定Cu单原子和Pt原子团簇,使得制备得到的催化剂能够作为析氢催化剂应用于产氢,且在碱性条件下具有优异的电化学性能。
Resumen de: CN119588387A
本发明公开了一种自支撑型CoNiC/CoNibc催化剂、制备方法及其在高效电催化水解与可充电锌‑空气电池方面的应用。本发明通过水热法与煅烧法结合进行材料制备,水热法生成自支撑基底上负载CoNibc,煅烧时表面的CoNibc发生分解‑再合成,最终实现CoNiC/CoNibc的原位合成;该合成模式不仅克服了非自支撑型材料表面负载物易于脱落、稳定性差的缺点,而且保证了复合材料整体的稳定性。此外,所合成的CoNiC超薄纳米片形貌极大地增加了活性位点的暴露量,提升了复合材料整体的催化活性。与此同时,耐碱耐热的廉价不锈钢网自支撑基底的引入不仅提升了复合材料的导电性,而且保证了锌‑空气电池高浓度电解液环境下的稳定工作。该催化剂具有高效催化水解活性和长时间的可充放电循环性能。
Resumen de: WO2024027968A1
The invention relates to a process of manufacturing an electrocatalyst for alkaline water electrolysis, the method comprising the steps of: (i) producing an aqueous electrolyte comprising suspended graphene and graphite nanoplatelet structures having a thickness of <100 nm in an electrochemical cell, wherein the cell comprises: (a) a negative electrode which is graphitic, (b) a positive electrode which is graphitic, (c) an aqueous electrolyte which comprises ions in a solvent, said ions comprising cations and anions, wherein said anions comprise sulphate anions; and wherein the method comprises the step of passing a current through the cell to obtain exfoliated graphene and graphite nanoplatelet structures in the aqueous electrolyte in an amount of more than 5 g/l; (ii) composing an electroplating bath (2) comprising suspended graphene and graphite nanoplatelet structures in an amount of more than 2 g/l, the acidic electroplating bath comprising of an aqueous solution of nickel sulphate and the aqueous electrolyte comprising the suspended graphene and graphite nanoplatelet structures having a thickness of <100 nm in an amount of more than 5 g/l of step (i); and (iii) electrodepositing from the electroplating bath a combined layer of Ni or Ni-alloy and graphene and graphite particles on a carrier to form an electrocatalyst.
Resumen de: WO2024022768A1
A hydrogen production system (1) comprising: a first renewable power source (3-1), a first electrolyser (7-1), and a single stage power converter (5) having an input side (5a) and an output side (5b), wherein the input side (5a) is connected to the first renewable power source (3-1) and the output side (5b) is connected to the first electrolyser (7-1).
Resumen de: CN119592994A
本发明公开了一种Ir基金属间化合物电催化剂及其制备方法与应用,所述催化剂包括载体和负载在载体上的金属间化合物,所述金属间化合物的化学式为IrMo1‑xCex,x=0.1~0.3;其制备方法为:(1)将铱盐溶液、钼盐溶液和铈盐混合均匀,加入水和碳黑,混合均匀得到金属盐前驱体混合液,将混合液干燥后得到金属盐前驱体负载的碳黑;(2)将前驱体负载的碳黑在氩气的环境下对其进行焦耳加热处理,结束后取出洗涤、干燥,得到最终产物。本发明引入Ce元素,显著优化了Ir,Mo的电子结构,增强了电催化析氢反应活性,展现出了巨大的能源应用前景。
Resumen de: CN119592974A
本发明公开了一种原位制备聚苯硫醚基膜电极的方法,包括:将聚苯硫醚布进行等离子体处理,再浸泡于酸性溶液或碱性溶液中,然后清洗后干燥,得到亲水聚苯硫醚隔膜;然后在亲水聚苯硫醚隔膜表面浇筑一层掺有稀土离子或铁系元素离子的PAN或PVP溶液,干燥后,得到复合聚苯硫醚隔膜;利用二氧化碳激光雕刻对复合聚苯硫醚隔膜中含有稀土离子或铁系元素离子的PAN或PVP聚合物层进行激光雕刻,形成稀土离子或铁系元素离子掺杂的石墨烯,得到碱性电解水用聚苯硫醚基膜电极。本发明对温度的要求较为宽松,简单可行,安全可控,能耗低,在膜表面原位生成电极材料,减少了后期使用过程中电极脱落的可能。
Resumen de: CN119588277A
本发明公开了一种光催化锥形光纤、其制备方法及应用,包括输入部和光纤直径逐渐减小的锥形部,所述锥形部设有光催化剂涂层,锥形部作为光催化反应端,光从输入部进入光纤并在光纤内部传播,在锥形部反射至光纤表面时,激发反射点附近的光催化剂发生光催化反应,在制备过程中,先对光纤进行热拉伸的拉锥处理,获得具有输入部和锥形部的锥形光纤;再配制光催化剂悬浮液,通过物理浸渍法将锥形光纤的锥形部负载光催化剂涂层,即可得到光催化锥形光纤。本发明的锥形光纤结构能够有效增加锥形部的光反射次数,光能分布更集中,改善光催化剂接收的光能分布不均匀问题,从而提高单位质量光催化剂的产氢性能。
Resumen de: CN119593016A
本发明涉及一种碱水电解槽电解性能及内部温度测量整合实验台系统,包括环境箱、实验用碱水电解槽、直流电源、氢侧及氧侧气液分离瓶、测温线、无纸记录仪、恒温水浴池。实验用碱水电解槽可改变流场设计、小室规模、散热及槽体环境温度控制部件,以满足多样化实验需求。碱液循环泵连接气液分离瓶与电解槽实现碱液循环。计算机终端与直流电源、无纸记录仪、碱液循环泵通信连接,用于数据收集与部件控制。氢侧和氧侧气液分离瓶有特定结构用于气液分离与碱液处理。与现有技术相比,本发明中实验台系统拆装简单、运行稳定,能解耦关键参数,获取电解槽内部动态温度数据,自由度大,可指导工业制氢策略制定,助力碱水电解槽相关研究与产品研发。
Resumen de: CN119593004A
本发明公开了一种含微量贵金属耐酸析氧催化剂的自支撑电解水阳极的制备方法,属于电催化电极制备及电化学技术领域。本发明方法先制备硝酸盐水溶液和贵金属氯化溶液,硝酸盐水溶液和贵金属氯化溶液按贵金属与非贵金属1:100原子摩尔比混合,取混合溶液加入PE球磨罐球磨,球磨后的溶液与乙醇混合超声得到催化溶液,将催化溶液涂抹于载体上并在红外灯下干燥,最后在马弗炉中退火即可。本发明不仅能够显著提高电解水制氢的经济效益,还能促进可再生能源技术的商业化进程,通过对材料成分、结构和制备条件的精细调控,打破了传统OER催化剂的局限,为酸性环境中的析氧反应提供了更佳的解决方案,实现了绿色、低碳、可持续发展的能源体系。
Resumen de: CN119592976A
本申请属于电解水制氢领域。提供一种电解槽的定位工装及电解槽。电解槽的定位工装包括底座;第一靠件,所述第一靠件位于所述底座上,所述第一靠件上设置有第一定位件,所述第一定位件用于固定所述电解槽中的极板;第二靠件,所述第二靠件位于所述底座的上,所述第二靠件上设置有第二定位件,所述第二定位件用于固定所述电解槽中的第一端板,所述第一端板用于放置所述极板。本申请实施例的电解槽的定位工装,可以对电解槽中的极板进行精准的定位,且可以适用于不同尺寸的电解槽。
Resumen de: CN119588426A
本发明属于光催化材料制备技术领域,提供了一种新型PtCu20/hcp‑UiO复合材料及其制备方法和应用,利用溶剂热法合成含有Cu光敏剂配体LCuPSs,通过溶剂热合成不同光敏剂含量的hcp‑UiO,其中反应温度在120~150℃,在高温高压反应釜中加热24小时完成,获得Cux/hcp‑UiO光催化剂,通过浸渍法利用配体上吡啶环上的N将Pt单原子锚定在Cux/hcp‑UiO上得到系列催化剂,同样利用相同的方法获得Cux/hcp‑UiO上锚定Cu、Co、Ni、Fe单原子催化剂,记为:CuCux/hcp‑UiO、CoCux/hcp‑UiO、NiCux/hcp‑UiO、FeCux/hcp‑UiO);本发明通过利用两步溶剂热一步浸渍法合成的PtCu20/hcp‑UiO复合材料,具有优异的光催化活性及稳定性,能够实现高效的光催化产氢,同时该制备方法操作简单,成本低廉,对环境友好,没有苛刻的操作环境要求,有利于大规模推广。
Resumen de: CN119591061A
本申请提供一种光催化分解磷化氢新技术及光催化剂制备新方法,创新性地引入了光引发复合光催化剂催化分解磷化氢的新技术,复合光催化剂中光催化活性中心是四氧化三铁,化学催化活性中心为一维纳米材料表面的化学镀镍层,二者协同催化分解磷化氢;催化剂制备方法简单,成本低廉,镍利用率进一步大幅提高。该技术高效催化分解含磷化氢废气生成单质磷和氢气,为磷工业尾气资源化提供理想途径。
Resumen de: CN119593002A
本发明公开了一种Co9S8/CoOOH@NF自支撑电极及其制备方法,所述方法包括以下步骤:通过水热反应在NF基底上生长Co9S8前驱体,然后浸泡双氧水溶液,通过化学氧化重构的方式制备Co9S8/CoOOH@NF自支撑电极。本发明的工艺流程简单迅速,制备的电极比表面积大、电导率高,电化学活性位点多,相对比传统结构的电极,具有简单高效,性能优良,有效地克服了传统催化剂制备工艺流程复杂而性能一般的缺点,解决了水氧化过程中OER具有较高的热力学势垒,需要高电位来驱动整体水分解的问题,在电化学催化领域具有极大的应用价值。
Resumen de: CN119592963A
本申请公开了一种制氢方法、装置、电子设备和存储介质,该方案构建系统储能配置模型后,采集离线制氢系统的第一数据并根据第一数据,通过系统储能配置模型进行储能容量优化,得到优化结果,最后根据优化结果控制离线制氢系统进行制氢操作。其中,离网制氢系统包括:供电单元、储能单元、变压器整流器、中压直流母线、电解槽和逆变器;本申请通过供电单元和变压器整流器,将可再生能源风能和太阳能转换为直流电后,通过中压直流母线与电解槽,以使电解槽进行电解海水产生氢气,在离网条件下,能够保证制氢过程不受电网波动影响;同时在可再生能源微电网条件下,结合中压直流母线的使用,能够提高制氢过程的运行稳定性。
Resumen de: KR20250033820A
니켈 및 니켈 위에 순환전류전압법을 통해 증착된 니켈 인화물을 포함하고, 순환전류전압법의 선택적 니켈 산화 반응과 니켈 인화물 증착인 환원 반응을 통한 제조 방법 그리고 상기 순환전류전압법을 통해 제작된 전극 촉매와 니켈 포일을 비교하여 반응 활성이 증가된 물 전기분해용 전극 촉매가 제공된다. 이를 통해 만들어진 결정질/비결정질 이종 접합 구조의 촉매는 순환전류전압법의 반복 횟수를 통해 비결정질 두께 조절이 용이하며, 결정질과 비결정질 구조 사이의 시너지 효과로 인해 우수한 수소 발생 반응 활성을 가진다.
Resumen de: ES3003632A2
The present invention relates to an energy harnessing system using hydrogen generated in anodising electrolytic industrial processes (1) that incorporate an anodising electrolytic tank (0). The system is characterised in that it comprises a gas collecting system (10) for collecting gas in electrodes in a left cathode chamber (101a) and a right cathode chamber (101b), said electrodes being made up of a plurality of hollow elements (101a3, 101b3) assembled with hollow T-shaped elements (101a2, 101b2). The free end of the latter element (101a3, 101b3) is coupled to a hollow power supply element and linked to a tube (101a4, 101b4) connected on the outside thereof to a cathode-connecting conductor and the free end of which is coupled to a pipeline (T1). All the elements inside the same are made of metal (104) and all the elements outside the same are made of an electrical insulating material (102).
Resumen de: KR20250033537A
본 발명에 의하면, 액체 상태의 물을 가열하여 수증기를 발생시키는 증기 발생기와, 상기 수증기를 전기분해하여 수소와 산소를 분리하여 생성하는 수전해기를 구비하는 고온 수전해 설비; 수소화된 LOHC(Liquid Organic Hydrogen Carrier)에 대한 탈수소화 반응을 수행하여 수소를 생성하는 LOHC 탈수소화 설비; 및 순환 유동하는 작동 유체를 가열하는 원자로와, 상기 작동 유체의 유동에 의해 회전하는 터빈과, 상기 터빈의 회전력에 의해 구동되어서 전기 에너지를 생산하는 발전기를 구비하는 원자력 발전 설비를 포함하며, 상기 작동 유체 중 일부는 상기 증기 발생기의 열원과 상기 탈수소화 반응의 열원으로 각각 공급되며, 상기 고온 수전해 설비는 상기 원자력 발전 설비로부터 전력을 공급받는 복합 수소 생산 시스템이 제공된다.
Resumen de: FR3152519A1
Cellule élémentaire pour électrolyse, l’anode élémentaire présentant une conduite de bulles d’un premier gaz, la cathode élémentaire présentant une conduite de bulles d’un deuxième gaz, dans laquelle l’anode élémentaire et/ou la cathode élémentaire déborde localement dans le conduit principal élémentaire, au niveau de l’embouchure, sur une portion aval de l’embouchure dans une direction moyenne du conduit principal élémentaire. Figure de l’abrégé : Figure 1
Resumen de: CN119571365A
本发明公开了一种催化剂及其制备方法与应用。所述催化剂包括纳米结构的Mo2C载体以及负载在所述Mo2C载体的PtO纳米团簇。所述方法包括如下步骤:将纳米结构的Mo2C载体与含铂金属化合物溶液混合,得到混合液;将所述混合液在50℃‑95℃进行搅拌反应0.5h‑5h,并持续通入反应气氛;反应完后,在经过过滤、洗涤和干燥后得到所述催化剂。本发明能够精准控制PtO的合成,同时利用Mo2C纳米结构的大比表面积和表面丰富悬垂键,为PtO纳米团簇提供充足的锚定位点,极大提升了PtO纳米团簇在Mo2C材料表面负载的均一性、分散性、稳定性、表现出良好的电催化析氢性能,大大提高了Pt的有效负载率并减少了Pt的用量,降低了催化剂成本。
Resumen de: KR20250031386A
복수의 수전해시스템의 수소정제시스템은 복수의 수전해시스템 각각의 수소배출라인에 배치되며, 복수의 수전해시스템 각각으로부터 배출되는 수소를 포함하는 기액혼합액의 압력이 조절되어 배출되도록 하는 복수의 레귤레이터, 복수의 레귤레이터로부터 동일한 압력으로 배출되는 기액혼합액 중 수소를 정제하는 수소정제기, 복수의 레귤레이터와 수소정제기를 연결하여 기액혼합액이 이동되는 연결부를 포함한다.
Resumen de: KR20250031653A
본 발명에 따른 수소 발생 반응 전극의 제조 방법은, 기판을 준비하는 단계, 베이스 전이금속을 포함하는 베이스 전구체, 제1 도핑 금속을 포함하는 제1 전구체, 제2 도핑 금속을 포함하는 제2 전구체, 및 칼코겐 전구체를 준비하는 단계, 상기 베이스 전구체, 상기 제1 전구체, 및 상기 제2 전구체를 혼합하여, 소스 용액을 제조하는 단계, 상기 기판 상에 상기 소스 용액을 코팅하여, 예비 촉매층을 제조하는 단계, 및 상기 기판 상의 상기 예비 촉매층 상에 상기 칼코겐 전구체를 제공하여 상기 베이스 금속, 상기 제1 도핑 금속, 상기 제2 도핑 금속, 및 칼코겐 원소를 포함하는 수소 발생 촉매층을 제조하는 단계를 포함할 수 있다.
Resumen de: AU2023254123A1
Embodiments of the invention relate to producing hydrogen from a subsurface formation by injecting a reactant into the subsurface formation and reacting the reactant with the subsurface formation to form at least one of hydrogen gas or a mineralized product within the subsurface formation. The hydrogen produced is collected or one or more components of the reactant is sequestered to form a mineralized product in the subsurface formation. Other embodiments of the invention relate to producing hydrogen by injecting a thermal fluid into the subsurface rock formation, where the thermal fluid includes a reactant. The reactant is reacted with components in the subsurface formation to form at least one of hydrogen gas mineralized sulfur, or mineralized carbon.
Resumen de: CN119566459A
本申请公开了一种氢氧切割系统,氢氧制备单元,水封阻火单元,水气分离单元、安全能控及断火单元以及切割单元,氢氧制备单元产生的氢氧混合气可依次经过水封阻火单元、水气分离单元、安全能控及断火单元流至切割单元,水封阻火单元可协同安全能控及断火单元一起阻隔管路中的回火火焰,避免回火火焰在管路中流窜导致回火火焰烧毁系统中的各元器件,安全能控及断火单元还可以实现氢氧混合气的导通与关断,实现定量输送或定时输送,避免切割枪头一直处于喷火燃烧的状态,切割单元包括火焰切割机和切割小车,切割小车上装配有切割枪头,进而方便工作人员更换、检修切割枪头,切割小车上还设置有冷却器,冷却器适于对切割枪头进行冷却。
Resumen de: CN119571383A
本发明属于电化学制氢技术领域,提供了一种镍钼催化材料及其制备方法、以及在电解水制氢方面的应用。本发明提供的镍钼催化材料,其表面片状晶体与基底紧密结合,显著解决了OER催化剂合成过程中催化剂结构不稳定、易脱落等问题。
Resumen de: CN119565625A
本发明公开了一种NiO‑CuO‑Mo催化剂及其制备方法和应用,首先将镍盐、铜盐和钼盐加入去离子水混合均匀,在100‑300℃进行水热反应;然后将水热反应得到的沉淀离心、洗涤、干燥过夜,最后,300‑600℃下焙烧,得到NiO‑CuO‑Mo催化剂,催化剂中NiO、CuO和Mo的摩尔比为10:10:1‑4。该催化剂在催化氨硼烷醇解产氢反应中表现出优良的催化活性和稳定性,且催化剂循环使用寿命长,循环使用10次活性才稍有下降,很大程度提高了此催化剂的催化效率,催化剂制备工艺简单,对设备要求低,成本低,易量产,便于以后大规模工业化产业化应用。
Resumen de: CN119569192A
本发明属于复合材料领域,提供了一种用于自驱动海水制氢的自愈合材料及其制备方法,此自愈合材料包括以下成分材料组成:石墨烯衍生物、有机物水溶液和硼酸盐溶液;本发明的制备方法简单,成本可控,制备出的材料在受到机械损伤后具有很高的修复效率和速度,能够在受损后迅速恢复至原有机械性能;同时具有良好的可塑性和耐久性,稳定性较好,能够适应复杂的应力和环境变化,且自愈合的过程不需要额外的热、压力等特殊条件,在常温下自行修复断裂等机械损伤,便于实际应用,具有很好的工程应用前景,同时,将该3D打印自愈合材料应用至电容式去离子装置,在通电条件下可以实现水的淡化与即时制氢的功能。
Resumen de: CN119571339A
本发明提供一种有效抑制沉淀的直接电解海水制氢的方法。在本发明中以天然海水为电解液,对电极施加交流电,利用交流电电压的周期性变化,使电极的极性在阴极状态和阳极状态之间周期性交替转换,当电极处于阳极状态时,消耗在阴极状态下通过析氢反应产生的OH‑以抑制沉淀析出和电极催化活性下降。本发明还提供了一种在碱性条件下生成沉淀的溶液电解制氢的方法。
Resumen de: CN119571357A
一种碳基阳极材料的制备方法和应用,它涉及电解制氢领域。方法:一、制备碳粉材料;二、高温活化碳材料;三、清洗、过筛;四、配制悬浊液;五、将悬浊液分次均匀滴涂在亲水碳布上,烘干,得到碳基阳极材料。本发明提高了煤粉的利用率并同时降低溶液电阻,本发明将碳粉均匀固定在阳极表面,避免颗粒沉降问题;增加阳极的比表面积,改善界面催化性能;提高碳粉与电极材料之间的结合强度,从而降低电解过程中溶液电阻的影响。本发明结合铁基循环(Fe2+/Fe3+)体系,显著降低阳极氧化电位,改善氧化动力学,提高电解水制氢的效率;通过铁基循环辅助和改良阳极设计,降低了电解水的能耗,使其在酸性体系下表现出优良的催化活性。
Resumen de: WO2025041428A1
Provided is a water electrolysis system that alters power consumption by sensing a system frequency to rapidly change power consumption, wherein a suitable adjustment margin that can be accommodated instantaneously by an electrolytic cell is calculated so as to suppress deterioration or failure of the electrolytic cell. This water electrolysis system is configured by including: a rectifier that converts alternating-current power of a power system to direct-current power; an electrolysis tank that performs water electrolysis using the direct-current power from the rectifier; a gas-liquid separator that performs gas-liquid separation of oxygen and hydrogen from a fluid that is a mixture of oxygen and water from the electrolytic cell; and a cooling system that supplies water to the electrolytic cell. The water electrolysis system is characterized in that: the rectifier is controlled so as to adjust power consumption in accordance with the frequency of the power system; the power consumption is adjusted so that the power consumption in the electrolytic cell is within a limited range for power consumption; and the limited range for power consumption is determined on the basis of the temperature and deterioration rate of the electrolytic cell, the pressure of water at an exit of the electrolytic cell, and the flow rate of the supplied water.
Resumen de: JP2025030883A
【課題】シール部材に枠内から枠外に向かう力を付与したときにおける、シール性の劣化を抑制すること。【解決手段】積層方向に直交する平面に沿うシート状の膜層と、前記膜層と隣接して対向する板状部材であって、前記板状部材の縁側に設けられ、前記膜層に対向する縁面を有する縁部と、前記縁面対して凹である取付面と、前記取付面から前記縁面に向けて傾斜している傾斜面と、を有する取付部であって、前記傾斜面と前記膜層との間に間隙を有する取付部と、を有する板状部材と、前記傾斜面に対して前記縁部とは反対側に配置され、前記膜層側から見て前記傾斜面に隣接する枠状であり、前記膜層と前記板状部材との間を密封するシール部材であって、枠内から枠外に向かう力を付与されたときに前記間隙に向けて変形可能であるシール部材と、を有する密封構造。【選択図】図4
Resumen de: JP2025031226A
【課題】簡単な構成で、急激な水素の生成を抑制できる水素生成燃料体を提供する。【解決手段】水素生成燃料体は、水素発生装置の水素燃料収容室に収納され、反応液と反応して水素ガスを発生させる水素発生剤を備えた水素生成燃料体であって、水素発生剤が層状とされた水素発生剤層と、水素発生剤層と交互に積層され反応液を浸透拡散させる拡散部材と、を備えている。【選択図】図1
Resumen de: JP2025030960A
【課題】強アルカリ溶液を使用せず、安全でかつ効率的に水素ガスと酸素ガスを発生する水素・酸素発生装置、及びこの水素・酸素発生装置で生成された水素ガスと酸素ガスを使用し、空気中の酸素を使用せず、二酸化炭素や窒素酸化物を排出しない水素・酸素燃焼の熱を利用した暖房装置を提供する。【解決手段】水素・酸素発生装置は、固体高分子電解質膜と該固体電解質膜の両面側にそれぞれ配された陰極側電極板及び陽極側電極板とを有し、陽極側電極板に供給された原料水を電気分解して、水素ガスと酸素ガスを発生する水電解セルを備え、陽極側電極板は、固体高分子電解質膜が配置される面に所定パターン形状の複数の溝が形成され、複数の溝が陽極側電極板上の原料水の流入口と流出口とを連結する複数の通路を形成する。暖房装置は、外気空気中の酸素を使用せず、水素・酸素発生装置で発生した水素ガスと酸素ガスのみを利用して燃焼させ、発生した燃焼熱を利用する。【選択図】図1
Resumen de: CN119571360A
本申请公开了一种自支撑结构的氧析出电极及其制备方法和应用。属于电催化技术领域。包括基体和负载于基体表面的多孔催化层;方法无需使用有机沉淀剂,避免了对环境的污染;不采用强碱性沉淀剂,利用瞬态高温过程使金属盐快速附着于金属骨架表面,确保所得金属活性组分分布均匀;无需高温高压设备,工艺安全、成本低廉,适于大规模生产。所制备的催化剂通过原位负载在泡沫金属上,结合力强,催化剂不易脱落,接触电阻小。该方法制备的氧析出电极具有低过电位、长寿命、催化剂稳定性强、成本低等优点,具备良好的工业化应用前景。
Resumen de: CN119571373A
本发明提供了三维结构NiCoP/CoMoO4复合材料纳米棒及其制备方法和应用,先将钴源和钼源混合在水中,加入泡沫镍,水热反应,得到钼酸钴;通过碱蚀刻和离子交换得到NiCo(OH)2/CoMoO4;再磷化,制得NiCoP/CoMoO4。与现有技术相比,本发明三维结构的NiCoP/CoMoO4复合材料的纳米棒具备比表面级面积大、导电性好的性能,可作为性能优异的析氢电催化剂。同时磷化钴镍与钼酸钴的复合结构提升了钼酸钴本身的导电性,从而实现更高的催化效能。
Resumen de: CN119571343A
本申请提供了一种制氢系统,包括:至少一台电解水制氢设备,用于电解水产生氢气和氧气,每台电解水制氢设备包括氢碱混合物出口和氧碱混合物出口;每一台电解水制氢设备的氢碱混合物出口或者氧碱混合物出口独立设置气体分析设备和碱液补给调节设备,气体分析设备用于分析电解水制氢设备的氢碱混合物出口的氢气纯度或者氧碱混合物出口的氧气纯度,碱液补给调节设备用于对电解水制氢设备的碱液进行补给和调节,解决了现有电解槽产出的气体都是经过同一个分离器进行分离分析,无法诊断出系统中气体产物纯度变差的电解槽,进而无法实现故障电解槽的快速定位和隔离,也无法对电解槽碱液进行独立补给和调节,导致制氢系统中电解槽的制氢效率低下的问题。
Resumen de: CN119569187A
本发明公开了一种高压电解超高浓度氢水机,属于水处理设备技术领域,该高压电解超高浓度氢水机,包括机架,还包括利用电解液制备氢气的电解箱,所述电解箱包括空心的主体,与电解液直接接触产生氢气的阴极片,产生氧气的阳极片,以及位于阴极片和阳极片之间的固体氧化物电解质,阴极片和阳极片顶部安装有将氧气和氢气分隔的隔板。本发明在电解箱中设置隔板,将阳极片和阴极片分隔在不同空间,进而将制备的氧气和氢气单独引出,避免氧气混入氢气中影响在水中的溶解,保证制备的富氢水中氢气的有效含量,还可以利用单独收集的氧气制备富氧水,对副产品氧气进行直接利用,增加经济效益。
Resumen de: CN119571347A
本发明公开了一种磁场辅助阴离子膜电解制氢装置及制氢方法。本发明的磁场辅助阴离子膜电解制氢装置,包括阴离子交换膜、析氧反应的阳极、析氢反应的阴极和端板,所述阴极和阳极材料均为磁性镍级催化剂;所述阴离子交换膜的两侧分别与阴极和阳极组装成气体扩散层和膜电极;在膜电极的两侧分别放置两个端板,在两个端板的外侧平行设置两个永磁体,分别对阴、阳极施加磁场。本发明分别以成熟的磁性镍级催化剂和阴离子交换膜作为工作电极和隔膜,通过在高电流密度情况下施加磁场,一方面优化了带电气体在洛伦兹力作用下加速高电流密度下气泡的成核脱附速率,另一面优化了磁性镍基催化剂的自旋极化,从而提高了能量转化效率,降低制氢能耗。
Resumen de: CN119571500A
本发明涉及本发明涉及碱性电解水制氢隔膜技术领域,具体涉及一种改性聚苯硫醚纤维、其纤维织物及制备方法和用途。该改性聚苯硫醚纤维采用亲水性无机纳米颗粒和、含恶唑啉基的非晶态反应性聚合物对线型聚苯硫醚进行改性。所得改性聚苯硫醚纤维织造的聚苯硫醚织物具有良好的亲水性,且制成电解水制氢用隔膜具有良好的导电性和气体隔绝作用。
Resumen de: CN119571361A
本发明涉及氢用的电极催化剂技术领域,且公开了一种具有高效传质三相界面的电解水制氢催化剂的制备方法,包括以下制备步骤:将催化剂与混合酸搅拌混合,经过滤、干燥,得到预处理催化剂;将预处理催化剂和多巴胺修饰氧化石墨烯加入到乙醇中,搅拌,经过滤、洗涤、干燥,得到改性催化剂;将改性催化剂、聚乙二醇和复合材料加入到乙醇中,搅拌反应后,超声处理,经过滤、洗涤、干燥,得到复配催化剂;将复配催化剂、纤维素和交联剂加入到乙醇混合,搅拌反应,经冷冻干燥,得到电解水制氢催化剂。电解水制氢催化剂中层状材料使得反应物能够渗透至夹层结构中,提供了更多的反应位点,有效降低氢氧反应的活化能。
Resumen de: CN119571385A
本发明公开了一种自支撑镍钼硫化物多级纳米片异质结构催化剂,涉及析氧析氢电催化剂技术领域,制备方法为:(1)将硝酸镍溶液和对苯二甲酸溶液混合均匀后得到透明溶液,将泡沫镍加入所述透明溶液中加热反应得到前驱物;(2)将所述前驱物加入硫代钼酸铵溶液中加热反应后即得到原位生长于泡沫镍上的Ni3S2‑MoS2/NF多级纳米片异质结构催化剂。本发明得到的原位生长在泡沫镍上的金属有机框架衍生镍钼硫化物多级纳米片异质结构催化剂,很好地继承了金属‑苯二羧酸框架的形貌,利用二硫化三镍和二硫化钼的协同作用,在碱性环境具有较低的全水解电位,较好的稳定性,在大规模制备全水解催化剂具有广阔的应用前景。
Resumen de: CN119571386A
本申请涉及一种稀土掺杂硼化钼复合材料及其制备方法与在电催化分解水中的应用。所述复合材料中,稀土元素为La,稀土元素与钼的摩尔比为0.03‑0.1∶0.97‑0.9。本申请首次提出了稀土元素掺杂的MoBx复合材料,制备方法简单,通过简单的固相法和热处理即可得到,所制备的La‑MoBx电极在酸性介质中的过电位182mV(10 mA cm‑2),具有良好的电催化分解水析氢性能。
Resumen de: CN119571352A
本发明公开了一种碱性电解水制氢用聚合物极框电解槽的制备方法;包括:加工出极框、密封垫片、极板密封垫和凹凸极板;顺序放置隔膜、电极、密封垫片、凹凸极板、极板密封垫和极框,作为一个小室;在达到所需的小室数量后,安装通电圈后通过螺栓安装两端板并锁紧;对螺栓进行多次紧固完成电解槽的组装。本发明中针对极板凸点、密封垫片厚度、密封垫压缩量的关系设定以及极板边缘固定卡点的设定,使得聚合物电解槽内极板凸点与电极实现了间距最小化,提高了电解槽内电能的传输效率,降低了能耗,使制氢效果得到了有效提高。
Resumen de: CN119571372A
本发明公开了自支撑FeCo合金磷化物电催化剂、制备方法及应用,电催化剂制备的方法步骤如下:S1:导电基底的预处理;S2:以导电基底、铁源和钴源经水热法制备铁钴氢氧化物堆积的FeCo前驱体;S3:以磷源对催化基层进行化学气相沉积,制得自支撑FeCo合金磷化物电催化剂;其中,所述自支撑FeCo合金磷化物电催化剂为纳米片状或松针状。本发明的催化剂具有过电位低、稳定性好、成本低和制备方法简单等优点。
Resumen de: CN119571380A
本发明公开了一种掺杂的氧化镍基材料、制备方法及其应用,掺杂的氧化镍基材料的合成方法,包括以下步骤:将镍盐和铁盐添加到乙醇和油胺溶液中,充分搅拌后,将溶液转移至反应釜中加热反应,随后离心分析并冲洗,然后进行煅烧,将得到的粉末与硫脲放置于管式炉中加热,最后得到掺杂的氧化镍基材料。本发明中的合成方法反应条件温和易操作,掺杂的金属铁和非金属硫原子改变了氧化镍的电子和结构性质,提升了体系的电导率,进而使得掺杂的氧化镍基材料可以高效地在碱性条件下电解水,可应用于碱性电解水的阳极材料中。
Resumen de: CN119571358A
本发明公开了一种用于阴离子交换膜水电解制氢的膜电极及其制备方法,包括阴离子交换膜,阴离子交换膜的两侧分别设置有阴极催化层和阳极催化层;阴极催化层中的催化剂载量为0.2‑1.0mg/cm2,包括铂碳催化剂、铂钌碳催化剂,和/或;阳极催化层中的催化剂载量为1.0‑10mg/cm2,包括镍铁氧化物催化剂、氧化铱催化剂、四氧化三钴催化剂、钴铁合金催化剂、钴镍催化剂,和/或;通过精确控制催化剂层的厚度和颗粒分布,优化了催化剂与膜材料的界面接触,减少了电解过程中电阻损失,同时提高了催化活性。
Resumen de: CN119571362A
本发明涉及一种氧析出催化剂活化用电解液和活化方法、活化氧析出催化剂及其应用,所述氧析出催化剂活化用电解液包括碱性溶剂和添加剂;所述添加剂包括含有同种阴离子的钾盐和钠盐的混合物。本发明中通过将过渡金属基氧析出催化剂在含有同种阴离子的钾盐和钠盐混合物的活化电极液中进行活化,活化电解液活化后的活化氧析出催化剂结构重建,可以暴露更多的活性位点,形成有利形态和优化的电子结构,进而增强氧析出催化剂活性,降低过渡金属基氧析出催化剂的过电位,提高催化效率,实现优异的催化性能。
Resumen de: CN119571379A
本发明适用于电催化技术领域,提供了氮掺杂碳纳米管(NCNT)封装CoCu双金属电催化剂的制备方法,包括以下步骤:清洁碳布(CC);将Co(NO3)2·6H2O和CuCl2·2H2O溶解在去离子水中,将2‑甲基咪唑溶解在去离子水中,将两个溶液混合,将CC基底浸入混合溶液中,室温下静置;清洗得到的产物,烘干后得到CoCu‑MOF/CC;将CoCu‑MOF/CC放入瓷舟中,前面放入盛有三聚氰胺乙醇溶液的瓷舟,加热煅烧,得到CoCu@NCNT/CC。本发明还提供了氮掺杂碳纳米管封装CoCu双金属电催化剂及其应用。本发明选取MOF为模板,以CC基底上原位生长CoCu‑MOF为前驱体,通过包覆作用将合金颗粒封装在碳层里有效避免合金催化剂的团聚和腐蚀,在三聚氰胺辅助下热解原位转化,调节电子结构,降低反应能垒,实现优异的活性和耐久性,高效促进OER催化活性。
Resumen de: CN119571381A
本发明涉及一种钌纳米簇/二硫化三镍异质结复合材料及其制备方法与应用。本发明所述复合材料以泡沫镍为基底材料,所述基底材料的表面原位生长Ni3S2纳米片阵列,所述Ni3S2纳米片阵列表面锚定钌纳米簇形成异质结复合材料。本发明在泡沫镍基底上原位生长Ni3S2纳米片阵列,再通过化学刻蚀的方法制备了Ni3S2表面锚定钌纳米簇的复合材料,制备方法简单,成本相对较低,适用于大规模生产;且制备得到的异质结复合材料形成的纳米片阵列结构并展现出蜂巢的结构,使催化剂具有较大的比表面积,为催化反应的发生提供了更多的活性位点,且催化活性高,可作为催化剂应用于电催化中电解水反应的析氢和析氧催化剂。
Resumen de: CN119571394A
本发明涉及碱液自动循环技术领域,具体的说是一种碱液自动循环装置,包括安装底座,所述安装底座的上端固定连接有多组支撑支架,其中两个所述支撑支架的内侧分别安装有氢气‑碱液分离器与氧气‑碱液分离器,另外一个支撑支架的内侧安装有电解槽,所述电解槽的上表面两侧均固定连接有第一输送弯管与第二输送弯管,所述第一输送弯管与氧气‑碱液分离器相连通,所述第二输送弯管与氢气‑碱液分离器相连通,有利于碱液回流循环时,能够调整碱液流体的流速,避免流速过高或过低,以减少涡流的产生,防止杂质沉积,方便对其定时清理后自动过滤,提高碱液自动循环的效率与质量。
Resumen de: CN119568992A
本申请涉及一种用于金属铝储能和制氢的铝循环方法,属于铝材料生产技术领域。所述方法包括:将氧化铝送电解铝厂进行电解,得到金属铝液;将金属铝液进行加工,得到具有大比表面积的铝基制氢材料;在含氮的强碱性有机物催化剂作用下,将铝基制氢材料与水进行化学反应,得到氢气和氧化铝水合物浆液;将氧化铝水合物浆液进行固液分离,得到氧化铝水合物和含所述催化剂的水溶液;将氧化铝水合物进行焙烧,得到高活性冶金级氧化铝;将高活性冶金级氧化铝循环用于电解制备金属铝液,以及将含催化剂的水溶液循环用于铝基制氢材料与水反应制氢,形成闭环循环。本申请解决了金属铝制备及铝循环利用过程能耗高、碳排放强度大以及成本高等缺陷。
Resumen de: CN119565681A
本发明涉及光催化技术领域,具体涉及一种ZIF‑8包裹异质结光催化剂的制备方法及其应用,以四水合硝酸镉、硫脲、乙二胺和高锰酸钾为原料,采用水热法制备硫锰镉固溶体;通过低温原位生长的方法将上述线状催化剂加入到硝酸锌和二甲基咪唑甲醇溶液中;本发明的优点在于所制备的ZIF‑8包裹的MnxCd1‑xS异质结光催化剂具有更大的比表面积,且由于能带的差异可以使得两种材料之间存在电势差,从而构建出界面电场,达到加速载流子迁移速率的目的,进一步延长载流子寿命,提高光催化活性。且整个制备过程对设备无特殊要求,具有极高的产量,操作简单,易于控制,重复性好,有利于工业化的大规模生产。
Resumen de: CN119565458A
本发明公开了利用原位杂化制取氢气速溶片的加工设备及生产工艺,包括原位杂化反应壳和伺服电机,以及设置在原位杂化反应壳顶部可移动的顶板,所述原位杂化反应壳的内部设置有两个可移动的筛网槽,通过伺服电机带动筛网槽左右运动,用于对粉体进行筛选,所述原位杂化反应壳的内部设置有可移动的凹板。本发明通过伺服电机带动凹板左右两侧,使得凹板可以带动筛网槽左右运动,从而方便对粉体进行筛分,避免颗粒较大的原料影响混合效果,同时因筛网槽可以左右运动,从而提高了筛选的效果,通过伺服电机带动搅拌电机左右运动,使得搅拌电机可以带动搅拌杆旋转和左右运动,提高了对材料混合的效果,进而提高了原位杂化的效果。
Resumen de: CN119571368A
本申请公开了一种电沉积镍锌合金制备雷尼镍电极的方法及应用,方法包括:对镍基基底进行预处理;将经过预处理后的镍基基底作为阴极,在装有电镀液的电解槽中进行电化学沉积反应,其中,所述电镀液包括镍盐和锌盐;对经过电化学沉积的镍基基底进行热处理;对经过热处理的镍基基底进行活化以去除锌元素,得到雷尼镍电极。本申请的雷尼镍电极通过在镍基底上沉积镍锌合金相,可以实现重新分配价电子,从而加快电子传输及提高电极的电导率;由于镍锌合金在活化过程中反应较慢且均匀,镍锌晶核可以均匀形核长大,活化后可以形成均一的孔结构,大大增加催化剂活性面积,提高氢气反应速率。
Resumen de: CN119571384A
本发明公开了一种高效双功能碱性电解水电极,包括镍网,所述镍网表面沉积有N i沉积层,所述N i沉积层表面沉积有NiFeW合金层;还公开了一种电解水电极的制备方法,对镍网基底进行预处理;将镍盐、导电盐、添加剂溶于水,得到镍电沉积溶液;将镍盐、铁盐、钨盐、添加剂溶于水,得到镍铁钨电沉积溶液;随后将镍网基底置于镍电沉积溶液中进行恒电流沉积,得到负载在所述镍网基底上的N i沉积层的第一电极,将第一电极置于镍铁钨电沉积溶液中进行恒电流沉积,得到负载在所述N i沉积层的N iFeW合金层,得到成品电极。本发明具有低的析氢过电位和低的析氧过电位且稳定性好,室温下短时间沉积,方法简单易控制,低成本,可以扩展到实际工业应用中。
Resumen de: KR20250032091A
본 발명은 이중관 타입 수소수기에 관한 것으로, 본 발명은 내부관체, 외부관체, 입수안내조립체 및 출수안내조립체를 포함함으로써 수도로부터 연결되는 입수안내조립체를 통해 원수가 입수되어 상호 다른 극성의 전극이 인가되는 내부관체 및 외부관체의 사이를 통해 상향 이동하면서 이동중에 전기분해를 통해 수소를 생성시켜 간단한 이중관 구조로서의 일정거리 이동중에 수소가 이동중인 원수에 혼합되도록 하면서 원수에 대해 수소수로 변환되도록 하여 출수안내조립체를 통해 수소수가 배출되도록 할 수 있으며, 출수안내조립체에 정수기 등을 연결하여 정수처리를 거쳐 음용수로 사용하거나 출수안내조립체로부터 직접 출수시켜 세척수 등으로 간편하게 사용할 수 있도록 하는 한편, 내부관체 및 외부관체의 마주하는 면 중 적어도 어느 하나의 면상에 상향 나선 타입으로 와류홈을 더 형성함으로써 원수 내에 수소의 생성 혼합이 더욱 원활하게 이루어짐과 동시에 수소수의 수소농도를 현격히 증대시킬 수 있는 것이다.
Resumen de: DE102023208424A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage mit mindestens einem Stack, bei dem eine maximale Stackspannung (Umax) vorgegeben wird, die den Beginn einer ersten Phase (I) am Lebenszeitende des Stacks definiert, und mit Erreichen der maximalen Stackspannung (Umax) der Betriebsparameter Temperatur (T) bei konstanter Stromdichte (iDens) in dem Maße erhöht wird, dass die maximale Stackspannung (Umax) zumindest über die erste Phase (I) des Lebenszeitendes gehalten wird.Die Erfindung betrifft ferner ein Prozessleitsystem zur Ausführung von Schritten des erfindungsgemäßen Verfahrens.
Resumen de: WO2025043295A1
An oxygen evolution reaction electrocatalyst and a method for preparing said oxygen evolution reaction electrocatalyst are disclosed. The method comprises the steps of contacting a porous zeolite with a solution containing a noble metal precursor to form a noble metal doped zeolite, pyrolyzing the noble metal doped zeolite to form nanocrystals comprising at least the noble metal and a second metal, said nanocrystals being confined within a layer of carbon-based material, wherein the second metal and the carbon-based material are derived from the pyrolyzed zeolite, and annealing said layer of carbon-based material confined nanocrystals to form isolated noble metal atoms singly dispersed within a metal oxide lattice of the second metal as an oxygen evolution reaction electrocatalyst.
Resumen de: DE102023208576A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage (1), umfassend einen Stack (2) mit einer Anode (3) und einer Kathode (4), wobei im Normalbetrieb der Elektrolyseanlage (1) der Anode (3) über einen Wasserkreislauf (5) mit integrierter Pumpe (6) Wasser zugeführt wird, das im Stack (2) durch Elektrolyse in Wasserstoff und Sauerstoff aufgespalten wird, und wobei der durch Elektrolyse erzeugte Wasserstoff über einen Kathodenauslass (10) des Stacks (2) und eine hieran angeschlossene Medienleitung (7) einem Gas-Flüssigkeit-Separator (8) zugeführt wird. Erfindungsgemäß wird beim Abschalten der Elektrolyseanlage (1) die Stromdichte auf 0 A/cm2reduziert und die Medienleitung (7) mit Hilfe eines Ventils (9) gesperrt, während der Anode (3) über den Wasserkreislauf (5) mit Hilfe der Pumpe (6) weiterhin Wasser zugeführt wird.Die Erfindung betrifft ferner eine Elektrolyseanlage (1), die zur Durchführung des Verfahrens geeignet bzw. nach dem Verfahren betreibbar ist.
Resumen de: DE102023117644A1
Die vorliegende Erfindung beschreibt ein Verfahren zur Herstellung von Wassersoff und Magnetit aus Wasser und Eisen in der Gegenwart eines Eisen(II)-salz-Katalysators. Ferner beschreibt das Verfahren die Verwendung von dem gewonnen Eisen als indirekten Wasserstoffspeicher.
Resumen de: WO2025049725A1
An enhanced control of hydrogen injection for internal combustion engine system and method providing greater real-time control of injection of hydrogen from a hydrogen generator, providing a further increase in performance and decrease in emissions of the engine of the motor vehicle. Initial values for parameters defining the optimal percentage amount or pressure of oxyhydrogen to be injected when the engine load is equal to one of several defined levels are entered and then interpolated to produce a curve specifying the amount of oxyhydrogen to be injected at any given engine-load level. Further adjustments to the load-related oxyhydrogen amounts are made for different engine operating temperatures in relation to different engine loads, and for different ambient air pressures related to altitude in relation to different engine loads. The initial values and adjusted values will be different for different engine types and sizes, different fuel types and grades, and other characteristics. The enhanced control of hydrogen injection for internal combustion engine system and method takes account of these engine-specific and operation-specific differences to provide an optimum amount of oxyhydrogen injection across a range of operating and ambient conditions. The operating conditions of engine load, rotational speed, vacuum, and engine temperature, and the ambient conditions of ambient temperature and ambient air pressure related to altitude are monitored in real time by a controll
Resumen de: WO2025045345A1
The invention relates to a device for generation and storage of hydrogen, which device comprises: - a tube or drill-steel-tube pile for insertion into the ground, which tube or drill-steel-tube pile is provided with a closure on one end and wherein a compartment wall is arranged in the tube or drill-steel-tube pile adjacent the other end of the tube or drill-steel-tube pile to provide a storage space between the compartment wall and the closure; - electrolyser means arranged in the tube or drill- steel-tube pile between the other end of the tube or drill- steel-tube pile and the compartment wall, which electrolyser means have an inflow opening for receiving ground water from the drill hole and at least an hydrogen outflow opening, which is connected to the storage space; - a power supply line running from at least the one end of the tube to the electrolyser means.
Resumen de: WO2025046048A1
The invention relates to a system 1 for providing hydrogen, said system 1 having: a vehicle 2, a receiving unit 3 which is designed to receive water, snow 4, and/or ice, in particular from an underlying surface 5 and/or from the surrounding air, a collecting unit 6 which is designed to collect water, snow 4, and/or ice received by the receiving unit 3, wherein the collecting unit 6 is designed such that collected snow 4 and/or ice can be converted into water 7 in the collecting unit 6, and a splitting unit 8, in particular an electrolysis chamber, is designed to split the water 7 which can be provided by the collecting unit 6 into oxygen 9 and hydrogen 10.
Resumen de: WO2025045387A1
The invention relates to a method and a system (100) for producing a hydrogen-containing product, wherein ammonia (2) is reacted in an ammonia cracker (20) to which heat is supplied, wherein the ammonia cracker (20) has a catalyst bed with at least two catalyst segments (20a, 20b, 20c), wherein in a first catalyst segment (20a) a fraction of the ammonia (2) is reacted at a first minimum temperature (T1) using a first catalyst and in a second catalyst segment (20b), which is downstream of the first catalyst segment (20a), a further fraction of the ammonia (2) is reacted at a second minimum temperature (T2) using a second catalyst. The invention is characterised in that the first minimum temperature (T1) is lower than the second minimum temperature (T2).
Resumen de: WO2025045669A1
Elementary cell for electrolysis, the elementary anode having a channel for bubbles of a first gas, the elementary cathode having a channel for bubbles of a second gas, wherein the elementary anode and/or the elementary cathode extend locally into the elementary main channel near the mouth, along a downstream portion of the mouth in an average direction of the elementary main channel.
Resumen de: WO2025045641A1
The present invention refers to an electrolyser (1) for the production of hydrogen from an alkaline electrolyte. The electrolyser (1) comprises a first header (2) and a second header (3) between which a plurality of elementary cells (4) and a plurality of bipolar plates (5) are stacked. Each bipolar plate (5) separates two adjacent elementary cells. The electrolyser (1) further comprises a plurality of clamping elements (20) that mechanically connect said headers (2, 3). Each of the elementary cells (4) comprises a frame (6) defining a chamber (6A), having an anodic section and a cathodic section, in which an anodic electrode (7) and a cathodic electrode (8) are at least in part housed. Each of the elementary cells (4) further comprise a separator element (10) that separates the anodic section from the cathodic section. According to the invention, each of the frames (6) comprises first through holes (61) and each of the bipolar plates (5) comprises second through holes (51), wherein each of said first through holes (61) of one frame (6) is mutually aligned with a corresponding first through holes (61) of each of the another frames (6) and with one of said second through holes (51) of each bipolar plate (5), wherein each one of said clamping means (20) extends through said through holes (51, 61) mutually aligned.
Resumen de: US2025066938A1
Provided are a porous transport layer for water electrolysis including a first layer containing first particles of a titanium group element, and a second layer containing second particles of a titanium group element. An average diameter of the first particles is larger than an average diameter of the second particles, and a surface of the first layer abutting the second layer is planarized. A method for manufacturing the same is also provided.
Resumen de: US2025075675A1
An enhanced control of hydrogen injection for internal combustion engine system and method providing greater real-time control of injection of hydrogen from a hydrogen generator, providing a further increase in performance and decrease in emissions of the engine of the motor vehicle. Initial values for parameters defining the optimal percentage amount or pressure of oxyhydrogen to be injected when the engine load is equal to one of several defined levels are entered and then interpolated to produce a curve specifying the amount of oxyhydrogen to be injected at any given engine-load level. Further adjustments to the load-related oxyhydrogen amounts are made for different engine operating temperatures in relation to different engine loads, and for different ambient air pressures related to altitude in relation to different engine loads. The initial values and adjusted values will be different for different engine types and sizes, different fuel types and grades, and other characteristics. The enhanced control of hydrogen injection for internal combustion engine system and method takes account of these engine-specific and operation-specific differences to provide an optimum amount of oxyhydrogen injection across a range of operating and ambient conditions. The operating conditions of engine load, rotational speed, vacuum, and engine temperature, and the ambient conditions of ambient temperature and ambient air pressure related to altitude are monitored in real time by a controll
Resumen de: US2025075339A1
An apparatus and a method for production of green hydrogen using steam generated during the production of green ammonia controls: (i) a supply of steam from an ammonia reactor unit to a heat exchange unit at a first timestamp; (ii) the heat exchange unit to extract a pre-determined amount of heat from steam, and to transfer a pre-determined amount of heat to a water supply unit. The apparatus also controls the water supply unit to increase the water temperature from a first temperature value to a second temperature value using a transferred, pre-determined amount of heat. The apparatus also controls the water supply to an electrolyzer unit. The apparatus also controls the ammonia reactor unit to produce green ammonia and steam at a second timestamp using produced green hydrogen. The apparatus also controls an ammonia storage unit to store produced green ammonia at the first and second timestamps.
Resumen de: US2025075344A1
A compression apparatus according to an aspect of the present disclosure includes: a compressor that generates compressed hydrogen at a cathode by an electrolysis of water or by oxidation and reduction of hydrogen generated by applying a voltage between an anode and the cathode having flexural rigidity lower than flexural rigidity of the anode; and a controller that, in startup or in shutdown, determines an abnormality based on a gas flow rate at an exit of the anode or a pressure at the cathode after supplying a testing gas from a testing gas supplier to the cathode.
Resumen de: US2025075342A1
Provided is an electrolysis apparatus. The electrolysis apparatus includes: an anode module configured to electrochemically oxidize water (H2O) to generate an oxide including oxygen (O2) and hydrogen ions (protons); a cathode module arranged opposite to the anode module, and configured to electrochemically reduce carbon dioxide (CO2) to generate a reduced material including ethanol and acetone; and a separation module configured to receive the reduced material from the cathode module, and separate the ethanol or the acetone from the reduced material.
Resumen de: AU2024205669A1
A controller, process, and apparatus can be configured to provide backup electrical power to various equipment used in hydrogen and/or ammonia production in response to a loss of power condition being detected. The loss of power can be due to unavailable power from renewable sources (e.g. cloudy day, non-windy conditions) or due to other power transmission problems. The backup electrical power can be provided in a way that can reduce the carbon intensity associated with the providing of the backup power. The backup power can also be provided to help avoid degradation of equipment that can occur from sudden losses of electrical power. In some embodiments, hydrogen powered turbines, hydrogen fuel cells, biofuel generators, and/or hydrogen powered engines can be utilized for providing the backup power. Si Monitor power availability from standard electricity providing resource(s) for detecting a loss of power condition that meets a pre-selected power loss threshold. S2 In response to detected loss of power, provide supplemental emergency backup power from battery energy storage system and/or initiate startup of one or more backup emergency electricity generation devices G in accordance with pre-selected priority power scheme. S3 After one or more backup emergency electricity generation devices G are brought on-line, I ramp down supplemental emergency backup power from battery energy storage system to I zero output. S4 Monitor power availability from the standard electricity provi
Resumen de: AU2024205678A1
An apparatus and process for pre-liquefaction processing of a fluid (e.g. hydrogen) can permit a reduction in capital costs and also an improvement in operational efficiency in flexibility. Embodiments can be configured to account for large variations in feed to be provided for liquefaction and also permit capital cost reductions associated with pre liquefaction processing so the overall capital cost for liquefaction can be greatly reduced while also providing improved operational flexibility. For instance, embodiments can be configured to utilize one or more common pre-liquefaction processing elements to treat a fluid for pre-cooling of a fluid to a pre-selected liquefaction feed temperature.
Resumen de: US2025075343A1
A wastewater stream is flowed from a separator to an anode side of a microbial electrolysis cell (MEC). The wastewater stream includes water and hydrocarbons. The separator is positioned in a gas-oil separation plant. The MEC electrolyzes the hydrocarbons to produce hydrogen ions. A membrane separates the MEC into the anode side and a cathode side. The membrane allows the hydrogen ions and water molecules to pass through the membrane from the anode side to the cathode side, thereby forming a treated wastewater stream at the cathode side. The MEC combines the hydrogen ions at the cathode side to produce hydrogen gas. The treated wastewater stream and a hydrogen gas stream is discharged from the cathode side. The hydrogen gas stream includes the hydrogen gas produced by the MEC. The hydrogen gas stream is oxidized into water. Electrical power is generated in response to oxidizing the hydrogen gas into water.
Resumen de: US2025075351A1
Nickel-cobalt-oxide materials of formula NixCo3-xO4-α, in which 0.5≤x≤2.0 and 0≤α≤1.0. The nickel-cobalt-oxide materials have a cobalt-enriched surface composition and the ratio of Co to Ni at the surface is greater than or equal to 3.0 as determined by XPS measurement. Such materials have utility as oxygen evolution catalysts, for example for water electrolysis.
Resumen de: US2025075353A1
An electrode according to an embodiment including a support and a catalyst layer provided on the support and alternately stacked with sheet layers and gap layers. The catalyst layer is for electrolysis. The catalyst layer comprises a first metal which is one or more elements selected from the group consisting of Ir, Ru, Pt, Pd, Hf, V, Au, Ta, W, Nb, Zr, Mo, and Cr, and a second metal which is one or more elements selected from the group consisting of Ni, Co, Mn, Fe, Cu, Al, and Zn. The catalyst layer comprises a first region and a second region. The first metal in the first region is more oxidized than the first metal in the second region. A ratio of the second metal in the first region is greater than the ratio of the second metal in the second region.
Resumen de: AU2023326035A1
The invention relates to an electrolysis device (1) for producing hydrogen through electrochemical reaction from an aqueous alkali solution, wherein the electrolysis device (1) comprises an anodic half cell (2) and a cathodic half cell (3). The anodic half cell (2) and the cathodic half cell (3) are separated by means of a membrane (4) and the alkali solution can flow through the cathodic half cell (3). The anodic half cell (2) comprises an anodic electrode (5) and the cathodic half cell (3) comprises a cathodic electrode (6), wherein the anodic electrode (5), the cathodic electrode (6) and the membrane (4) form a membrane-electrode unit (7). Furthermore, in normal operation of the electrolysis device, an initial fill quantity of alkali solution in the cathodic half cell (3) can be changed only by diffusion processes through the membrane-electrode unit (7) and/or by electrochemical reaction of the alkali solution in the membrane-electrode unit (7).
Resumen de: US2025074784A1
A preparation method and application of spindle-shaped W@CuO material with adjustable included angle includes the steps of: preparing a copper source solution and adding to a mixture of anionic surfactant and n-butanol; adding a tungsten source solution and dripping an alkali solution, then carrying out hydrothermal reaction, centrifugation, washing and drying. By controlling the growth rate of the high-energy surface at the water-oil interface with the salt concentration, surfactant concentration, supersaturation of water and n-butanol solutions, the monodispersed spindle-shaped structure with unique microstructure and an included angle of 27-74° can be prepared. The surface of W@CuO materials with different included angles shows different electric field strengths, which can effectively modulate the charge transfer during the catalytic process and improve the catalytic reaction activity. The unique spindle-shaped structure makes it have excellent hydrogen evolution performance in alkaline electrolysis of water.
Resumen de: US2025075345A1
A heat recovery system for hydrogen production with a solid oxide electrolysis cell, including a water storage tank, a solar cell panel, a low-temperature metal hydrogen storage tank, an evaporator, a high-temperature metal hydrogen storage tank, a heat exchanger, a solid oxide electrolysis cell, a separator, and a reactor is provided. After water in the water storage tank sequentially passes through the solar cell panel, the low-temperature metal hydrogen storage tank, the evaporator, the high-temperature metal hydrogen storage tank, and the heat exchanger for multi-stage heat exchange, water vapor reaching the working temperature enters the solid oxide electrolysis cell. The hydrogen generated after electrochemical reaction and unused water vapor flow out from the solid oxide electrolysis cell, firstly exchange heat with to-be-reacted water vapor through the heat exchanger and then enter the separator.
Resumen de: WO2025048953A1
Herein discussed is a method of producing hydrogen or carbon monoxide or both comprising: (a) providing an electrochemical reactor comprising an anode, a cathode, and a mixed-conducting electrolyte between the anode and the cathode, (b) introducing a first fluid to the anode, wherein the first fluid provides a reducing atmosphere for the anode, and (c) introducing a second fluid to the cathode, wherein the second fluid provides a reducing atmosphere for the cathode, wherein the direction of the bulk flow of the first fluid is opposite that of the second fluid at every location along the length of the anode, and wherein the direction of the bulk flow of the first fluid changes in the reactor.
Resumen de: WO2025047881A1
The present invention efficiently generates appropriate amounts of helium 3 and oxygen 18. This generation device (1) for generating helium 3 and oxygen 18 by reacting hydrogen and water comprises: a first electrode (3) composed of a first metal having a face-centered cubic lattice structure having crystal grain boundaries in which hydrogen is occluded; a second electrode (4) provided so as to face the first electrode (3); a chamber (2) for holding the first electrode (3) and the second electrode (4) so that an aqueous solution is present between the first electrode (3) and the second electrode (4); and a control unit (10) for vibrating the first electrode (3) and the second electrode (4) or vibrating the aqueous solution in a direction perpendicular to the orbital direction of a femto hydrogen molecule generated at the first electrode (3).
Resumen de: WO2025047548A1
An objective of the present invention is to provide at least one among: an electrode containing a manganese oxide which suppresses the elution of manganese during water electrolysis without reducing hydrogen productivity; and a method for manufacturing the electrode. The electrode includes a conductive substrate, and an oxygen generating electrode catalyst containing iridium-manganese oxide. The content of iridium per geometric area of the conductive substrate is less than 10 μg/cm2.
Resumen de: WO2025047069A1
Provided are: a water electrolysis system capable of providing an adjustment force solely by the water electrolysis system; and a method for operating the water electrolysis system. This water electrolysis system generates hydrogen gas and oxygen gas as generated gases from water by applying grid power to a plurality of water electrolysis stacks through a rectifier, and adjusts power consumption in accordance with an instruction to provide adjustment force, and is characterized in that, when the instruction to provide the adjustment force is received within a contract time zone in which provision of the adjustment force is contracted, the amount of water supplied to the water electrolysis stacks, the temperature of the water electrolysis stacks, and pressure can be controlled according to the amount of power obtained by adding, to the amount of power consumption of the water electrolysis stacks, the amount of power of the adjustment force to be provided.
Resumen de: WO2025049801A1
The systems and methods disclosed herein relate to facilities having hydrogenation reactors that may receive hydrogen from multiple sources. Systems and methods where a portion of the hydrogen is produced in a local power electrolysis system facility are also disclosed.
Resumen de: US2025074800A1
The present disclosure describes a process for producing a reducing liquid comprising providing a liquid; providing a reducing gas and/or a metasilicate; and infusing the reducing gas and/or the metasilicate to the liquid, for the reducing gas and/or metasilicate to react with the liquid to produce a reducing liquid that has an oxidation reduction potential (ORP) value of about −100 mV or more negative. Further described is the process for preparing a reducing gas, which includes the steps of preparing an activator, introducing the activator into an electrolytic reactor, adding water, and applying a direct current to produce the reducing gas. Also described is a system for producing a reducing liquid.
Resumen de: US2025075029A1
Embodiments in accordance with the present invention encompass a variety of polymers derived from polycyclic olefin monomers, such as hydrocarbon functionalized norbornenes. The polymers so formed function as ionomers and are suitable as anion exchange membrane for fabricating a variety of electrochemical devices, among others. More specifically, the ionomeric polymers used herein are derived from a variety of quaternized amino functionalized norbornene monomers and are lightly crosslinked (less than ten mol %). The membranes made therefrom exhibit very high ionic conductivity of up to 198 mS/cm at 80° C. This invention also relates to using an anion conducting solid polymer electrolyte as the ion conducting medium between the two electrodes and the ion conducting medium within the electrodes acting as the ionic conduit between electroactive material and electrolyte. The electrochemical devices made in accordance of this invention are useful as fuel cells, gas separators, and the like.
Resumen de: US2025075139A1
A plant for the production of synthetic fuels, in particular jet fuel (kerosene), crude petrol and/or diesel, includes:a) a synthesis gas production unit for the production of a raw synthesis gas from methane, water and carbon dioxide, the synthesis gas production unit having at least one reaction section in which methane, water and carbon dioxide react to form the raw synthesis gas, and at least one heat generation section in which the heat necessary for the reaction of methane and carbon dioxide to produce the raw synthesis gas is generated by burning fuel to form flue gas,b) a separation unit for separating carbon dioxide from the raw synthesis gas produced in the synthesis gas production unit,c) a Fischer-Tropsch unit for the production of hydrocarbons by a Fischer-Tropsch process from the synthesis gas from which carbon dioxide has been separated in the separation unit, andd) a refining unit for refining the hydrocarbons produced in the Fischer-Tropsch unit into synthetic fuels,the plant further comprising e 1) a separation unit for separating carbon dioxide from the flue gas discharged from the synthesis gas production unit via the flue gas discharge line and/or e 2) a flue gas return line which is connected to the heat generation section of the synthesis gas production unit, wherein i) the carbon dioxide separated from flue gas or the flue gas itself via the flue gas return line and ii) the carbon dioxide separated from the raw synthesis gas are either fed directly to
Resumen de: US2025081802A1
A package structure, a preparation method for the package structure, and a display panel are provided. The package structure includes a first inorganic layer, a photocatalytic layer, and a second inorganic layer that are sequentially stacked, where the photocatalytic layer includes a photocatalytic material and a co-catalyst. The photocatalytic material and the co-catalyst are used cooperatively to catalyze the decomposition of water vapor, the photocatalytic material includes graphitic carbon nitride (g-C3N4) particles, and the co-catalyst includes perylene tetracarboxylic acid (PTA). The photocatalytic layer possesses high catalytic efficiency and excellent stability. In the case where cracks are generated at the package structure, water vapor invading through the cracks is decomposed and consumed through an oxidation-reduction reaction, and then decomposition products are respectively discharged.
Resumen de: WO2025045025A1
The present application provides a bipolar plate, an end plate and an alkaline electrolyzer. The positions of a first alkali liquor inlet through hole group and a second alkali liquor inlet through hole group are rationally arranged at the bottom of an electrode frame, such that when the bipolar plate is applied to the alkaline electrolyzer, alkali liquor firstly enters a first alkali liquor inlet channel formed by first through holes of the first alkali liquor inlet through hole group and a second alkali liquor inlet channel formed by first through holes of the second alkali liquor inlet through hole group from one end of the alkaline electrolyzer. After arriving at the other end of the alkaline electrolyzer, the alkali liquor enters individual electrolysis cells from second through holes of the first alkali liquor inlet through hole group and second through holes of the second alkali liquor inlet through hole group, so as to realize uniform distribution of the alkali liquor, and solves the problem of the uneven distribution of the alkali liquor caused by the excess length of an electrolyzer body of a large alkaline electrolyzer, thus preventing the operating conditions of the alkaline electrolyzer from getting worse, improving the efficiency of hydrogen production, and finally achieving the purpose of saving the electric energy consumption of the alkaline electrolyzer.
Resumen de: DE102023208469A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage mit mindestens einem Stack, bei dem eine maximale Stackspannung (Umax) vorgegeben wird, die den Beginn einer ersten Phase (I) am Lebenszeitende des Stacks definiert, und mit Erreichen der maximalen Stackspannung (Umax) der Betriebsparameter Temperatur (T) bei konstanter Stromdichte (iDens) in dem Maße erhöht wird, dass die maximale Stackspannung (Umax) zumindest über die erste Phase (I) des Lebenszeitendes gehalten wird.Die Erfindung betrifft ferner ein Prozessleitsystem zur Ausführung von Schritten des erfindungsgemäßen Verfahrens.
Resumen de: EP4516965A2
An electrode according to an embodiment including a support and a catalyst layer provided on the support and alternately stacked with sheet layers and gap layers. The catalyst layer is for electrolysis. The catalyst layer comprises a first metal which is one or more elements selected from the group consisting of Ir, Ru, Pt, Pd, Hf, V, Au, Ta, W, Nb, Zr, Mo, and Cr, and a second metal which is one or more elements selected from the group consisting of Ni, Co, Mn, Fe, Cu, Al, and Zn. The catalyst layer comprises a first region and a second region. The first metal in the first region is more oxidized than the first metal in the second region. A ratio of the second metal in the first region is greater than the ratio of the second metal in the second region.
Resumen de: AU2023262052A1
A water splitting system includes a hydrogen production chamber including a hydrogen production port, an oxygen production chamber including an oxygen collection port, an ion exchange membrane coupling the hydrogen production chamber and the oxygen production chamber, and a photocatalytic structure including a first catalytic portion disposed in the hydrogen production chamber and a second catalytic portion disposed in the oxygen production chamber. The first catalytic portion is configured for production of hydrogen via the hydrogen production port. The second catalytic portion is configured for production of oxygen via the oxygen production port.
Resumen de: EP4516383A1
The present invention relates to a system for capturing and recycling carbon dioxide and producing hydrogen for a cement manufacturing facility. An embodiment of the present invention is characterized by comprising: a preheater that has a plurality of stages of cyclones arranged in series in a vertical direction and receives and preheats a cement raw material; a calciner that calcines the cement raw material preheated by the preheater; a kiln that fires the cement raw material calcined in the calciner; an exhaust line, connected to the cyclones of the preheater, that discharges exhaust gas discharged from each of the calciner and the kiln to the outside; a reactor, disposed on the exhaust line, that receives the exhaust gas and reacts the exhaust gas with a basic alkali mixed solution to capture carbon dioxide in the exhaust gas, collect a reactant including the captured carbon dioxide, and separate a carbon dioxide reactant and a waste solution from the reactant; and a hydrogen generator that generates hydrogen gas by receiving the carbon dioxide reactant separated from the reactor.
Resumen de: EP4517889A1
A carbon dioxide capture and carbon resource utilization system, for a fuel cell, using boil-off gas (BOG) generated from liquefied natural gas (LNG) of the present invention comprises: a liquefied natural gas storage which stores liquefied natural gas therein; a hydrocarbon reformer which generates a gas mixture containing hydrogen and carbon dioxide by reacting boil-off gas generated from the liquefied natural gas storage with water introduced from the outside; a fuel cell which receives hydrogen generated from the hydrocarbon reformer to generate electric power; a reactor which receives carbon dioxide generated from the hydrocarbon reformer to react the carbon dioxide with a basic alkali mixture solution, thereby capturing carbon dioxide, collects a reaction product containing the captured carbon dioxide, and separates a carbon dioxide reaction product and a waste solution from the reaction product; and a hydrogen generator which generates hydrogen by using the carbon dioxide reaction product separated from the reactor and supplies the generated hydrogen to the fuel cell.
Resumen de: EP4516969A1
The present application provides a new energy hydrogen production system and a control method therefor. In the new energy hydrogen production system, a new energy input module supplies power to electrolytic cells by means of a power conversion module; and a control system of the new energy hydrogen production system is used for controlling, according to the power of the new energy input module, the power conversion module to work, such that among N electrolytic cells in an operation state, at least N-1 electrolytic cells work in a preset load range. The preset load range is a corresponding load range having the highest system efficiency in an electrolytic cell working range division result prestored in the control system, i.e., the present application can enable as many electrolytic cells as possible to respectively work in the preset load range having the highest system efficiency, and therefore, the system efficiency is improved and is optimized to the extent possible.
Resumen de: GB2633015A
A method for isolating the portion of a chemical product of a chemical reaction produced using energy from renewable sources is described. The chemical reaction requires an energy input derived from renewable sources, non-renewable sources, or a combination of such sources. The method comprises obtaining a total chemical product of the chemical reaction; providing (i) the amount of energy input into the chemical reaction derived from renewable sources and (ii) the amount of chemical product produced by the chemical reaction; using (i) and (ii) to determine the portion of the total chemical product produced using energy from renewable sources. The portion of chemical product produced using energy from renewable sources is separated from the total chemical product. Also provided is an apparatus to produce at least one chemical product able to separate the portion of the chemical product produced using energy from renewable sources from the chemical product output.
Resumen de: KR20250030279A
본 발명은 수전해 설비 장치로부터 생산된 수소로부터 산소 및 수분을 제거하는 고순도 수소를 생산하는 수소 저장탱크는, 수전해 설비 장치로부터 생산된 수소를 정화하는 수소 정화장치, 수소 저장탱크에 수소를 공급하는 수소 정화장치를 연결하는 수소 공급라인, 수소 공급라인의 단부에는 수소 저장탱크의 중심과는 벗어난 편심 위치로 배치되는 수소 공급라인(210)의 인입배관, 수소 저장탱크에 질소 퍼지라인을 통하여 질소(N2)를 유입시키는 질소 퍼지장치, 응축된 응축수를 수소 저장탱크의 하부에서 배수 밸브를 구비하는 배수 라인을 통하여 배출하는 배수구, 수소 저장탱크의 상부에는 가스 배출용 배출라인이 구비된 가스 배출구 및 수소 저장탱크 생산된 고순도 수소를 가압하여 저장하는 가압기 또는 연료전지 장치로 이송시키는 고순도 수소 이송라인을 포함하는 것을 특징으로 하는 수소 저장탱크에 관한 것이다.
Resumen de: EP4516964A1
The invention relates to a stack-type electrolyzer for obtaining hydrogen and oxygen, provided with lateral closure caps (2) and cells (3), each cell (3) comprising: a current collector anode plate (5a) and cathode plate (5b); one porous transport layer (7,8) comprising a conductive porous material that is a hard magnet, a semi-hard magnet or a soft magnet, a first catalysts for the anode plate (5a) and a second catalysts for the cathode (5b) plate; and a first arrangement of magnets (6), that are hard or semi-hard, attached to the current collector anode plate (5a), and/or to the current collector cathode plate (5b).
Resumen de: EP4516728A1
Die Erfindung betrifft Verfahren und eine Anlage (100) zur Herstellung eines Wasserstoff enthaltenden Produkts, wobei Ammoniak (2) in einem Ammoniakcracker (20), dem Wärme zugeführt wird, umgesetzt wird, wobei der Ammoniakcracker (20) ein Katalysatorbett mit mindestens zwei Katalysatorsegmenten (20a, 20b, 20c) aufweist, wobei in einem ersten Katalysatorsegment (20a) ein Teil des Ammoniaks (2) unter Verwendung eines ersten Katalysators bei einer ersten Mindesttemperatur umgesetzt wird und in einem zweiten Katalysatorsegment (20b), das stromabwärts des ersten Katalysatorsegments (20a) angeordnet ist, ein weiterer Teil des Ammoniaks (2) unter Verwendung eines zweiten Katalysators bei einer zweiten Mindesttemperatur umgesetzt wird.
Resumen de: EP4518077A1
The invention is about a wind-powered hydrogen plant (1) with a wind turbine (2) electrically coupled to an electrolysis system (3) with rows of electrolyser stacks (4), the wind turbine (2) comprising a generator (5) with a rotor (6) and a stator (7), the stator (7) being divided into winding segments (8) with an electrical insulation between individual winding segments (8), the number of which is a multiple of three, each group of three winding segments (8) forming a three-phase system connecting to one of individual rectifier circuits (9), and the electrolysis system (3) comprising individual DC/DC converters (10), each connected to a row of electrolyser stacks (4), wherein a DC output power of all individual rectifier circuits (9) is kept separated and the individual rectifier circuits (9) are each directly connected to one of the individual DC/DC converters (10). The invention also relates also to a method for converting wind energy into electrical energy for the operation of an electrolysis system (3).
Resumen de: GB2633197A
Producing hydrogen by catalytically cracking ammonia 14 comprises: a main ammonia cracking reactor 4 with catalyst 8 and a fuel combustion zone 10 surrounding the reaction tubes 6 to generate a main hydrogen containing gas stream 11, and an auxiliary ammonia cracking reactor 12 to generate an auxiliary hydrogen containing gas stream 16. A portion 18 of the auxiliary hydrogen containing gas stream 16 is directed to the ammonia cracking catalyst 8 of the main reactor 4 and a portion 20 of this gas stream 16 is directed to the combustion zone 10 of the main ammonia cracking reactor 4.
Resumen de: AU2023260588A1
A separator for alkaline electrolysis (1) comprising a porous support (10), a first porous layer (20b) provided on one side of the porous support and a second porous layer (30b) provided on the other side of the porous support, wherein the first and the second porous layer are partially impregnated into the porous support and each have an overlay thickness d1 and d2 respectively, said overlay thickness being defined as the part of each porous layer which is not impregnated into the porous support, characterized in that a) d1 is smaller than the overlay thickness of the second porous layer (d2), and b) d1 is at least 20 µm.
Resumen de: EP4512930A1
Disclosed are a microbial electrolysis cell suppressing methane generation and a method of producing hydrogen using the same, and more particularly microbial electrolysis cell technology, which prevents the growth of methanogens inside a reactor during operation of a microbial electrolysis cell by aerating a substrate for use in a microbial electrolysis cell with acetylene gas before supply of the substrate, thereby suppressing consumption of the hydrogen and substrate by methanogens, ultimately increasing the hydrogen yield and lifespan of the microbial electrolysis cell.
Resumen de: GB2633044A
A process for cracking ammonia (NH3) to produce hydrogen (H2), comprising feeding an ammonia gas input stream 4 to an ammonia cracking reactor 2 to crack the ammonia gas 4 to generate a hydrogen containing gas stream 8, wherein the cracking reactor 2 comprises one or more reaction tubes 6 containing ammonia cracking catalyst and one or more burners 12 for combusting a mixture of an oxidant-containing gas 18 and a fuel 10 in a fuel combustion zone 14 surrounding the one or more reaction tubes 6 to provide heat energy to support the cracking of ammonia, wherein the oxidant-containing gas 18 is pre-heated to at least 300°C prior to being fed to the one or more burners 12. Further defined are an ammonia cracking reactor for implementing the process, and a system comprising the reactor and a purification unit, wherein the purification unit is configured to generate a purified hydrogen stream and a waste gas stream which is directed to the combustion zone of the ammonia cracking reactor to at least partially fuel the reactor. The oxidant-containing gas may be air, oxygen-enriched air or oxygen, and may be pre-heated by a heat-exchanger within a flue duct of the reactor.
Resumen de: CN119553313A
本发明属于电解水制氢技术领域,具体涉及一种催化剂扩散电极及其制备方法和应用,催化剂扩散电极包括扩散材料,所述扩散材料表面依次沉积有碳化物预镀层,所述碳化物预镀层表面沉积有贵金属或其氧化物催化剂。相比于传统催化剂涂膜电极,本发明将催化剂通过碳化物负载于扩散材料表面,结合强度更高,贵金属元素的浸出率降低,达到相同催化效果时,所需的贵金属元素负载量显著降低,降低了质子交换膜电解水电极材料的制造成本。
Resumen de: KR20250028733A
본 발명의 수소의 폐열을 활용하는 수전해 스택 폐열 시스템의 수전해 스택은, 정화장치로부터 정화된 정화수가 공급되어 산소(O2)와 수소(H2)로 분리하고, 수전해 스택에서 분리 생산된 산소와 수분은 응축기를 거쳐서 응축수는 정화수로 공급되고, 산소는 배출구를 통하여 외부로 배출되고, 수전해 스택에서 분리 생산된 수소는 수소에 포함된 산소와 산소제거기에서 촉매반응으로 산소와 수소가 결합되어 수분(물)이 생성하고, 생성된 수분은 수소와 함께 드라이어에 공급되고, 수분은 드라이어에 구비된 흡착재에 흡착되고, 드라이어의 흡착재에 흡착된 수분은 가열 건조되어 제거되고, 순수 수소만 수소 저장탱크에 저장되며, 수소 공급 파이프라인이 산소제거기와 드라이어가 설치된 위치에 배치되는 것을 특징으로 하는 수소의 폐열을 활용하는 수전해 스택 폐열 시스템에 관한 것이다.
Resumen de: CN119549165A
本发明属于压电光催化领域,具体涉及一种Ag2S/Mn0.5Cd0.5S复合催化剂及其制备方法和应用。通过水热合成法制备Mn0.5Cd0.5S纳米颗粒和Ag2S,最后采用浸渍法使二者复合形成异质结,制备Ag2S/Mn0.5Cd0.5S复合催化剂。该催化剂在太阳光照射和超声波振动协同作用下用于压电光催化产H2和CO2还原。本发明催化剂合成方法简单,绿色无污染,操作性强。所制备的催化剂具有丰富的活性位点和优异的催化效果。
Resumen de: CN119554799A
本发明属于电解水制氢技术领域,涉及一种低压比的电解水制氢能量优化热泵系统及方法。包括氢氧气液分离单元、热泵压缩机和膨胀机,氢氧气液分离单元通过氢气冷却器连接氢气干燥器;氢氧气液分离单元通过循环冷却水管路连接热泵吸热器,氢气冷却器通过制冷剂管路连接制冷机,所述氢气干燥器分别通过热水管路和蒸汽管路连接蒸汽发生器;所述热泵压缩机的出口通过热热泵工质管路依次连接蒸汽发生器和膨胀机的入口,所述膨胀机的出口通过冷热泵工质管路依次连接制冷机、热泵吸热器和热泵压缩机的入口;所述热热泵工质管路和冷热泵工质管路均连接回热器。本发明有利于降低热泵压缩机的压比,有利于丰富热泵工质的选择范围,提高系统的能源利用率。
Resumen de: CN119553306A
本公开提供了一种析氧反应催化剂及其制备方法和应用,属于催化剂技术领域和电化学技术领域。该制备方法包括:将铱盐、钌盐、钨盐、碱金属硝酸盐和碳氮材料的混合物进行空气煅烧,得到析氧反应催化剂。
Resumen de: AU2023306752A1
Provided is an operation support device comprising: a calculation unit that calculates the production amount of products per hour, which satisfies the target production amount of products to be produced over a predetermined period of time by a plurality of electrolyzers, on the basis of predetermined hourly electricity costs or power consumption in the course of the operation of the plurality electrolyzers operating in parallel; and an identification section that identifies an operating electrolyzer among the plurality of electrolyzers on the basis of the production amount calculated by the calculation unit. The calculation unit may calculate a production amount that satisfies a target production amount of products over a period of time and minimizes electricity cost or power consumption over a period of time.
Resumen de: CN119553311A
本发明公开了一种Ag/MnO2碱性析氧催化剂及其制备方法和应用,属于催化剂技术领域。催化剂的制备方法包括:(1)将锰盐、银盐、阴离子表面活性剂共溶于溶剂中,经过水热反应制得Ag/MnO2前驱体;(2)对Ag/MnO2前驱体进行煅烧,制得Ag/MnO2碱性析氧催化剂。本发明催化剂采用非贵金属材料制成,原料来源丰富且成本低廉,可以降低催化剂的生产成本;另外,催化剂的制备方法操作简单,易于大规模生产。本发明催化剂中Ag纳米颗粒锚定在MnO2表面有助于提高复合催化剂的比表面积,有助于拓展电化学反应区域,其在碱性电解液中具有良好的OER催化活性和稳定性。
Resumen de: CN119551725A
本发明公开了一种1T相硫化钼的制备方法及其应用,所述方法包括以下步骤:在外加磁场作用下,以四水合钼酸铵、硫脲分别为钼源和硫源,六水合硝酸钴为引发剂,通过一步水热法在反应过程中生成1T相硫化钼。所述的1T相硫化钼用于制备析氧和析氢双功能电极。本发明利用磁场和Co原子,将水热合成产物从2H相硫化钼转变为1T相硫化钼,制备了具有高导电性和优异催化性能的HER和OER双功能催化剂。本发明方法简单经济,效果显著,解决了1T相硫化钼催化剂制备困难的问题,在电化学催化领域具有极大的应用价值。
Resumen de: CN119553296A
本发明公开了一种利用低温热源发生蒸汽的高温电解制氢方法及装置。所述方法包括:ⅰ)通过热泵系统将100℃以下的低温热源携带的低品位热能转化为热泵工质携带的100℃以上的热能;ⅱ)以所述高品位热能作为主要供热来源,将液态水加热气化成为水蒸汽;ⅲ)电解所述水蒸汽制取氢气。该方法解决了因高温电解制氢系统内部余热不足,无法独立产生蒸汽的问题。既能产生高温电解制氢需要的蒸汽,又能高效利用地热、工业余热等低品位热能,为地热、工业余热等低品位能源向氢能等高品位能源的高效转化和利用提供了一种新的解决思路。拓宽了高温电解制氢技术的应用场景,促进了高温电解制氢技术的发展,具有广阔的应用空间和节能增效的优势。
Resumen de: CN119553293A
本发明涉及电化学领域,尤其是水电解技术领域,具体涉及一种基于流动工程化三维电极的碱性水电解槽,其在保持低成本的同时有效提升电解效率,其包括电极和隔膜,其特征在于,所述电极为Ni基泡沫电极并直接与所述隔膜接触,所述电极的两端设置有上游电解液入口和下游电解液出口,所述下游电解液出口同时为氧气或氢气出口。
Resumen de: CN119551715A
一种由钛金属粉末制备的纳米级Ti3O、制备方法及其在制备酸性析氧电催化剂中的应用,属于金属粉末加工技术领域。本发明以纳米钛金属粉末为原料,在适当的气氛、反应温度和反应时间条件下将其可控地、选择性地氧化成纳米级Ti3O,制备的纳米级Ti3O具有良好的导电性和高的比表面积。本发明具有工艺简单、设备和操作要求低、产品纯度高、一致性高和易于批量制备的特点,所制备的纳米级Ti3O能够作为多种贵金属的载体,从而制备得到贵金属核壳结构的酸性析氧电催化剂M@Ti3O,M=Pt、Ir、Rh或Ru,所制备的电催化剂具有优异的酸性析氧反应活性和稳定性,在质子交换膜水电解槽中具有较大的应用潜力。
Resumen de: CN119549172A
本发明公开了一种Bi2MoO6/VC/C‑C复合光电催化剂及其制备方法,制备方法包括:分别制备Bi2MoO6前驱体和VC粉体,将Bi2MoO6前驱体和VC粉体分散在去离子水中加入聚乙烯醇得到前驱体溶液,将前驱体溶液置于坩埚中于140~180℃保温5~15min后,将清洗后的C‑C基底放入溶液中浸渍1~10min,取出C‑C基底,干燥后即可得到所需的Bi2MoO6/VC/C‑C光电催化剂;本发明所制备的Bi2MoO6/VC/C‑C复合光电催化剂其析氧效率得到了有效提升,且整个制备工艺流程简单、条件易控,生产成本较低,易于产业化生产,所制备的产物纯度较高,结晶性好。
Resumen de: CN119553314A
本发明属于电解制氢技术领域,具体涉及一种海水原位制氢方法。所述方法包括相变传质槽,相变传质槽包括海水区(1)、相变传质层(2)和电解质区(3);海水由海水槽出料,依次经预过滤器、一级换热器、二级换热器,进入海水区(1)进行相变传质;电解质由电解质混合槽进入电解质区(3);相变传质在相变传质层(2)处进行,相变传质层(2)为IPN膜;电解质区(3)出料至电解槽进行电解制氢。本发明中利用聚乙烯醇和聚酰亚胺制备IPN膜,通过一系列改性措施例如氟化等,确保IPN膜兼具高疏水性和良好的水蒸气透过性,以提高电解制氢的效率;另外IPN膜制备操作简便,良品率高。
Resumen de: CN119551634A
本发明公开了一种空间电荷分离型氮化碳纳米晶体的制备方法及其应用。利用聚合物氮化碳脱氨聚合的特点,设计了在半封闭条件下加速氮化碳脱氨聚合的合成工艺,制备得到了高结晶性的具有空间电荷分离的氮化碳纳米晶体,可促进光生载流子的分离与迁移,提高光生载流子的利用效率。该氮化碳纳米晶体可作为催化剂用于光催化分解水制氢的应用中。本发明氮化碳纳米晶体制备的步骤简单,反应条件温和,可重复性高,易合成,具有一定的工业化应用前景。
Resumen de: AU2025200640A1
ELECTRICAL POWER GENERATION SYSTEMS AND METHODS REGARDING SAME A solid or liquid fuel to plasma to electricity power source that provides at least; one of electrical and thermal power comprising (i) at least one reaction cell for the catalysis of atomic hydrogen to form hydrinos, (ii) a chemical feel mixture comprising at least two components chosen from: a source of H20 catalyst or H2 0 catalyst; a source of atomic hydrogen or atomic hydrogen; reactants to form the source of H20 catalyst or H20 catalyst and a source of atomic hydrogen or atomic hydrogen; one or more reactants to initiate the catalysis of atomic hydrogen; and a material to cause the feel to be highly conductive, (iii) a fuel injection system such as a railgun shot injector, (iv) at least one set of electrodes that confine the fuel and an electrical power source that provides repetitive short bursts of flow-voltage, high-current electrical energy to initiate rapid kinetics of the hydrino reaction and an energy gain due to forming hydrinos to form a brilliant-light emitting plasma, (v) a product recovery system such as at least one of an augmented plasma railgun recovery system and a gravity recovery system (vi) a fuel pelletizer or shot maker comprising as me Her. a source or hydrogen and a source of H20, a dripper and a water bath to form fuel pellets or shot, and an agitator to teed shot into the injector, and (vii) a power converter capable of converting the high-power light output of the cell into electric
Resumen de: US2025059027A1
The invention discloses a system for producing hydrogen by ammonia decomposition reaction and a hydrogen production method. The system comprises an ammonia storage device, a heat exchange device, an ammonia decomposition reaction device, a first compression device and a first adsorption device, and the ammonia storage device is in communication with a gas inlet of the ammonia decomposition reaction device through a cold liquid channel on the heat exchange device; and a gas outlet of the ammonia decomposition reaction device is in communication with the first adsorption device through a gas channel on the heat exchange device by means of the first compression device communicating with the first adsorption device; the first adsorption device comprises a plurality of adsorption columns arranged in parallel, the first compression device is in communication with inlets of a plurality of the adsorption columns at the same time, a control valve is arranged between the adsorption inlet of each adsorption column and the first compression device, and the adsorption outlets of a plurality of adsorption columns communicate with each other, a control valve is provided between adsorption outlets of two adjacent adsorption columns, and the adsorption inlet of each adsorption column is in communication with the ammonia decomposition reaction device. The system realizes cyclic utilization of tail gas after desorption of the adsorption column, and reduces the damage of ammonia gas and nitrogen
Resumen de: WO2024013459A1
The present invention relates to a method for producing dihydrogen by photodissociation of water, comprising at least a step of bringing an aqueous solution in contact with oxidized nanodiamonds under solar, natural or artificial illumination (or light).
Resumen de: MX2024010250A
The invention relates to a device for generating hydrogen gas and oxygen gas from water, comprising: a case, which forms a hydrolysis chamber designed to contain an amount of water; electrode means that act as a cathode and as an anode; and gas-separating means, disposed in the hydrolysis chamber between the cathode and the anode, which comprise a permeable membrane segment suitable for preventing the generated hydrogen gas and oxygen gas from passing through the permeable membrane segment and mixing together, the hydrolysis chamber being divided into a first portion that contains the cathode and a second portion that contains the anode, wherein the first and second chamber portions are in fluid communication with respective pipes for hydrogen gas and for oxygen gas. The invention also relates to a system for the same purpose, comprising at least one device as described above.
Resumen de: CN118786247A
The invention relates to an electrolytic cell for chlor-alkali electrolysis or alkaline water electrolysis, comprising two cell elements (2, 3), each cell element (2, 3) defining an electrode chamber (4, 5) by providing a rear wall (6) and a side wall (7) of the electrode chamber (4, 5); the invention relates to an electrolytic cell (1) comprising two cell elements (2, 3), a plurality of electrode chambers (4, 5), electrodes (8, 9) housed in each electrode chamber (4, 5), and a sheet-like separator (10) extending in the height direction (H) and width direction of the electrolytic cell (1), the separator (10) being mounted at a junction (11) between the two cell elements (2, 3) and providing a partition wall (17) between the electrode chambers (4, 5); wherein at least one of the electrodes (8, 9) is made of a metal mesh (16) supported by a plurality of webs (12) connected to the rear wall (6) of the respective electrode chamber (4, 5), the webs (12) extending in the height direction (H) of the electrolytic cell (1); a plurality of ribs (13) extending in the width direction (W) of the electrolytic cell (1), the plurality of ribs being carried by the web (12), the electrodes (8, 9) being arranged on the plurality of ribs (13).
Resumen de: US2024402112A1
A method for operating a plurality of electrolyzer-stacks includes determining a concentration of impurities, which is originated by a second reaction gas electrochemically produced at a second electrode type of each of the electrolyzer-stacks, within a first gas stream; generating a trigger signal if the concentration of the impurities of the second reaction gas within the merged first reaction gas exceeds a specific second reaction gas level; identifying at least one electrolyzer-stack out of the plurality of electrolyzer-stacks, which is low performing in respect to excessively feeding second reaction gas impurities into the first gas stream, by measuring a current density of at least one electrolyzer-stack of the plurality of electrolyzer-stacks, if the trigger signal is generated.
Resumen de: CN119524581A
本发明涉及一种用于电解水制氢的氢气纯化装置,旨在提供一种高效率、高纯度的氢气纯化解决方案。该装置包括氢气原气池、原气过滤池、提纯模块和氢气收集罐,其中提纯模块采用钯合金膜扩散技术,结合光谱检测模块实时监测钯合金膜的中毒情况和氢气浓度。通过傅里叶变换红外光谱(FTIR)分析和深度学习模型FTIR‑DeepNet,实现对氢气纯化过程的智能控制。该方法通过预处理、提纯、光谱数据采集与分析、数据处理与控制以及氢气收集等步骤,有效去除杂质,提高氢气纯度至99.99%以上,满足高端应用需求。本发明具有操作简便、环境友好、经济效益显著等优点,对推动氢能源的商业化应用具有重要意义。
Resumen de: CN118792678A
The invention belongs to the technical field of nano materials, and particularly discloses an electrode catalyst and a preparation method thereof.The electrode catalyst comprises a nano-particle cluster comprising at least three metal elements; and a dispersion layer formed between the nanoparticles of the nanoparticle cluster. The preparation method comprises the following steps: preparing a precursor mixed solution; and adding a reducing agent into the precursor mixed solution, stirring, reacting and drying to obtain the electrode catalyst. The active sites of the nano-particle cluster disclosed by the invention are highly exposed, and the nano-particle cluster has high conductivity.
Resumen de: CN119524726A
本发明涉及加氢反应技术领域,尤其涉及光催化水分解串联加氢反应系统及其应用。所述光催化水分解串联加氢反应系统包括依次连接的光催化水分解单元、分离纯化单元和加氢单元;所述光催化水分解单元用于光催化水分解制氢气,所述分离纯化单元用于对氢气进行分离纯化,所述加氢单元用于将二氧化碳加氢制甲烷或将氮气加氢制氨气。本发明通过将光催化水分解和加氢反应器系统串联设计,用于二氧化碳或氮气等加氢反应,最终制备的目标产物产率和选择性高,符合优等品标准。本发明在整个目标产物的生产过程中,无腐蚀性以及毒性的原料引入,绿色、经济、高效,适合工业放大生产。
Resumen de: CN119530856A
本发明提供了一种离子注入加载催化剂的方法及制备的催化剂和应用,属于电化学产氢技术领域。本发明在集流体或载体材料表面进行金属离子注入,带来两种不同的效应,包括能量效应和质量效应,能量效应指金属离子注入会在集流体或载体材料上引入缺陷位点等,辅助催化或者辅助锚定注入的离子;质量效应指通过金属离子注入的方式在集流体或载体材料上引入催化剂原子,加载的催化剂的存在形式为单原子或少原子团簇,该方法可以在减少催化剂加载量的同时增加催化剂的比表面积,来降低过电位,提高催化性能。同时,该方法是一种普适的催化剂加载方法。实施例的结果显示,本发明制备的催化剂在加载量为5wt%时可达到20wt%商业Pt/C才能够实现的过电位。
Resumen de: CN119530875A
本发明公开了一种锑元素掺杂氧化铱催化剂及其制备方法与析氧应用。首先水浴加热含SnCl2·2H2O、柠檬酸和SbCl3的乙醇液一段时间后,缓慢滴加NaOH乙醇溶液调节pH,然后蒸发得到白色粉末,再置于马弗炉中焙烧后洗涤、过滤、干燥所得粉末得到蓝色Sb掺杂SnO2载体粉末(Sb0.2Sn0.8O2);将不同比例的Sb0.2Sn0.8O2、IrCl3粉末置于乙醇中超声混合均匀后分别加入柠檬酸和SbCl3继续超声,然后将溶液pH调至为7再烘干后的前驱体粉末置于马弗炉内,快速加热至450℃并保持持续加热一段时间后自然降温,得到的黑色粉末经多次洗涤,最后得到SbmIr1‑mOx@TB‑IrOx/Sb0.2Sn0.8O2氧化物纳米颗粒。该颗粒可作为酸性析氧反应催化剂,催化质量活性高,耐久性好,在质子交换膜PEM电解水应用中具有巨大潜力。
Resumen de: CN119530832A
本发明涉及电解槽技术领域,公开了一种电解纯水制氢用的电解槽,包括电解槽主体,所述电解槽主体的内侧可拆卸连接有多个隔膜,所述隔膜的底部通孔处转动连接有驱动轴,所述驱动轴的外部固定连接有多个第二齿轮,所述隔膜的外部下侧滑动连接有第二齿条板,所述隔膜的外部下侧还滑动连接有连接板,所述连接板和所述第二齿条板的顶部一侧均固定连接有清洁板,所述清洁板的顶部通孔处滑动连接有导向杆。通过清洁板、连接板、第二齿轮、第二齿条板等结构之间的相互配合使用,从而可以自动清理隔膜外表面上的杂质,如此能够有效减少隔膜杂质的沉积,确保生产出的氢气具有更高的纯度,满足工业和化学反应对氢气质量的高要求。
Resumen de: CN119529347A
本发明公开了一种光催化产氢保鲜膜的制备方法及应用,本发明利用石墨碳氮化物为光催化剂,鱼鳞明胶和壳聚糖为薄膜基底,制得的FSG/CS/Pt/CN‑HT保鲜薄膜具有优异的抗氧化性、机械性能和屏障性能,能够在太阳光辐射下实现高效抗菌和食品保鲜。本发明将光催化技术拓展到食品保鲜领域,为光催化制氢开辟了新的应用领域,也为开发可生物降解的环保包装材料提供了新思路,该保鲜膜大大提高了食品保鲜的性能,有助于减少农产品收获后的损失和全球环境污染,具有较大的经济价值。
Resumen de: CN119530867A
本发明公开一种氮掺杂碳纳米管包覆CoP/Co2P异质结构电催化剂及其制备方法和应用,属于电催化材料技术领域。本发明以六水合硝酸钴作为钴源,以鸟嘌呤作为碳源和氮源,采用高温碳化法合成钴前驱体,然后对钴前驱体进行煅烧处理,得到四氧化三钴前驱体,对四氧化三钴前驱体进行磷化处理后,得到氮掺杂碳纳米管包覆CoP/Co2P异质结构电催化剂。该催化剂具有较大的比表面积,活性位点多,其比表面积为20~21m2/g,孔径分布呈微孔‑介孔‑大孔多级孔结构分布,孔结构主要分布在3~4nm。该催化剂的制备方法包括:(1)钴前驱体的制备;(2)四氧化三钴前驱体的制备;(3)磷化处理。该催化剂催化反应效率高,在HER和OER中表现出较好的双功能活性和较强的稳定性。
Resumen de: CN119524767A
本发明涉及制氢技术领域,且公开了一种雾化式光催化分解水制氢装置及其使用方法,包括制氢桶,所述制氢桶的顶部固定连接有出气管,所述制氢桶的表面固定连接有支撑脚,所述制氢桶的顶部固定连接有进水管,所述制氢桶的内壁固定连接有电机,所述电机的输出端固定连接有传动轴。本发明通过设置刮壁机构,首先将水排到进水管的内部,然后在通过水雾盘将水转换成水雾,然后在通过氙灯将水雾转换成气体,最后启动电机带动传动轴转动,当传动轴转动时会带动转动轴转动,转动轴转动的同时会带动卡杆转动,当卡杆转动时会带动滑动环转动,当转动轴转动时会通过转速的离心力使延伸架朝相互远离的方向延伸。
Resumen de: CN119530872A
本发明公开了一种具有多孔异质结构的HER电催化剂及其制备方法,属于HER电催化剂领域,制备方法如下:以六水合硝酸钴、尿素、泡沫镍和氯化钌为原料,采用溶剂热方法制备Ru掺杂的碱式碳酸钴纳米线阵列;将Ru掺杂的碱式碳酸钴纳米线阵列在马弗炉中加热,获得RuO2/Co3O4纳米线阵列;将RuO2/Co3O4纳米线阵列与NaH2PO2置于坩埚中,在氮气气流中进行退火和磷化,获得RuO2/CoxP/Co3O4纳米线阵列,之后进行酸洗去除Co3O4,获得RuO2/CoxP纳米线阵列,即具有多孔异质结构的HER电催化剂。
Resumen de: CN119530833A
本专利介绍了一种机柜式模块化电解槽系统及其制备方法,该系统专为大规模生产绿色氢气而设计。通过模块化设计,实现了高效组装、可扩展性强、维护简便的特点。电解槽单元组件通过可拆卸式连接结构稳固安置于特制机柜框架内部,形成畅顺的电解液循环通路与气体导出通路。每个电解槽单元组件由电极板组、离子交换隔膜以及稳固边框依次排列组合而成,确保电解反应高效施行。系统采用内置式管道布局,巧妙隐匿于机柜框架结构之中,规避了管路外露可能引发的各类隐患,使整体布局更为规整。同时,可拆卸式连接结构的设计使得各单元连接稳固且便于快速拆解、组装,大幅削减了运维耗时。
Resumen de: CN119530851A
本发明涉及一种中空纳米棒阵列析氧电极的制备方法和应用,属于碱性电解水制氢领域。本发明通过连续的电沉积法获得自支撑镍铁双金属氢氧化物纳米片包覆氢氧化钴中空纳米棒阵列析氧电极;以泡沫镍为基底,基底上负载催化活性组分为氢氧化钴和镍铁双金属氢氧化物;泡沫镍基底表面垂直生长中空纳米棒结构,中空纳米棒结构包括位于内部的中空纳米棒状的氢氧化钴层,以及包裹在中空纳米棒状氢氧化钴层表面的多片层的镍铁双金属氢氧化物纳米片;中空纳米棒直径为0.2~1μm,长2~3μm。本发明电极具有独特的形貌,具有较好的析氧催化活性。
Resumen de: CN119530701A
本发明公开了一种氮气替换氨气氮化的实施工艺,属于模具表面处理技术领域。包括以下步骤:S3.在模具完成氮化保温作业后,开始实施降温,再将通入炉内的气体由氨气切换为氮气,直至温度降低至预设值后,停止通入氮气并取出模具。模具在氮化炉完成氮化保温作业后,氮化炉进行降温,当温度降低至低于400℃时,将通入炉内的氨气切换为氮气,即可确保模具出炉时炉内原本的氨气分解完成,而氮气作为惰性气体,具有无色无味特性,具有高度的化学稳定性,因此,模具出炉时带出的氮气没有氨气成分存在,起到了保护环境以及保护人员身体健康的目的。
Resumen de: CN119530839A
本发明提供了一种电解制氢系统,包括:氧分离器的进口通过第一气液管路与电解槽的出口连通;第一罐体的进口通过第一气管与氧分离器的出气口连通;第一液管连通在第一罐体的出液口和氧分离器的进液口之间;氢分离器的进口通过第二气液管路与电解槽的出口连通;第二罐体的进口通过第二气管与氢分离器的出气口连通;第二液管连通在第二罐体的出液口和氢分离器的进液口之间;第二换热器设置在第二液管上;第三液管连通在氧分离器的出口和电解槽的进口之间;第四液管连通在氢分离器的出口和第三液管之间。电解槽的工作电压大于等于1.48V且小于等于1.56V之间。本申请的技术方案有效地解决了相关技术中的电解制氢的成本较高的问题。
Resumen de: CN119528314A
本发明属于富氢水制备技术领域,公开了一种富氢水制备工艺及设备,富氢水制备设备包括:氢气发生器用于将水电解后生成氢气;水箱与混合容器相连,用于向混合容器供给纯净水;稳压罐的第一入口通过第一单向阀与氢气发生器相连,稳压罐的第二入口通过第一电磁阀与暂存罐相连;稳压罐的第一出口通过第二电磁阀与微气泡发生器相连,稳压罐的第二出口通过第三电磁阀与外界相连;微气泡发生器与混合容器相连;出水管与混合容器相连;第一气压检测传感器设于稳压罐内;稳压装置设于混合容器上,稳压装置与暂存罐相连。本发明制备富氢水时提供氢气的稳压罐以及溶解氢气的混合容器均能够保持合适范围的气压,使得整个制备过程更可控。
Resumen de: CN119530849A
本发明涉及冷压法制备金属铜电极及应用。以金属纳米铜粉为原材料;采用高硬度不锈钢作为模具,将称取好的粉末倒入模具的套筒当中,并将模具的上压头放置进套筒当中,而后将氧气管通入到模具的侧方孔道处;将模具的上压头对准压机正中心,降低液压机的压头,当液压机与模具的上压头接触时,打开氧气阀门并通入氧气,而后继续施加压力并保持使得金属粉体成型;卸载压力的同时关闭氧气阀门,利用脱模器将压制成型的金属铜块取出,取出后的金属铜块直接用作催化电极。制备的金属铜块直接应用作为电解水制氢的阴极材料或用于电化学析氢反应;在10mA/cm2的电流密度下的过电势均可以降低50%以上,远超于未经过冷压加工的金属纳米铜颗粒。
Resumen de: CN119533091A
本发明提供一种利用可再生能源制氢及利用LNG冷能液化氢气的一体式系统,包括:海水淡化装置、电解制氢装置、氢气液化装置、电力装置、可再生能源发电装置,氢气液化装置具有LNG冷能利用单元、氢气液化单元和制冷剂循环单元;氢气液化单元具有与氢气罐依次连接的第二高温冷却器、第二空冷冷却器、第一换热器、第二换热器、第三换热器、第四换热器、第一正仲氢转化器、第五换热器、第二正仲氢转化器、第六换热器、第三正仲氢转化器、第七换热器、第四正仲氢转化器、膨胀阀及杜瓦瓶;本发明能够减少污染,降低能耗,提升对液化天然气在汽化过程中释放冷能的利用率。
Resumen de: CN119524906A
本发明提供了一种具有尖端结构的三维氮化碳光催化剂及其制备方法与应用,涉及光催化剂技术领域。本发明提供的制备方法,包括:热缩聚富氮前驱体制得石墨相氮化碳;将石墨相氮化碳在多酚溶液内混合后滴加Tris‑HCl溶液搅拌反应,使多酚在石墨相氮化碳表面原位聚合形成聚多酚涂层,分离干燥制得复合中间体;将复合中间体与熔盐混合研磨后,在400‑650℃保护气氛下煅烧后制得具有尖端结构的三维氮化碳光催化剂。本发明提供的制备方法绿色环保、原材料简便易得且价格低廉,同时反应条件温和、无需使用模版剂,所制得的催化剂具有尖端结构,在常温常压下即具有极高的光催化分解水产氢活性和优异的稳定性,有良好的应用前景和经济效益。
Resumen de: CN119524881A
本发明属于光催化剂的制备领域,具体涉及一种Ni‑CNZIS复合型光催化剂及其制备方法和应用。该复合型催化剂以ZIS纳米花为材料核心,通过柠檬酸和氢氧化钠调控形态和性能,合成CNZIS纳米片,再通过光沉积的方法将Ni沉积在CNZIS纳米片上,提高了Ni‑CNZIS复合型光催化剂的光催化性能。该光催化剂用于光催化转化HMF生成C12产物(DHMF和BHMF),在产氢的同时具有高催化活性和BHMF的高选择性。
Resumen de: CN119530873A
本公开涉及一种铱钌钛复合催化剂及其制备方法和应用,所述铱钌钛复合催化剂包含铱元素、钌元素和钛元素,所述铱钌钛复合催化剂的XRD谱图只在30~40°出现无定型峰包。本公开的铱钌钛复合催化剂作为质子交换膜电解水制氢的阳极催化剂时,具有比商业氧化铱催化剂更高的催化活性和较好的稳定性,并且贵金属用量显著降低,成本显著降低,具有较大的使用价值。
Resumen de: EP4516965A2
An electrode according to an embodiment including a support and a catalyst layer provided on the support and alternately stacked with sheet layers and gap layers. The catalyst layer is for electrolysis. The catalyst layer comprises a first metal which is one or more elements selected from the group consisting of Ir, Ru, Pt, Pd, Hf, V, Au, Ta, W, Nb, Zr, Mo, and Cr, and a second metal which is one or more elements selected from the group consisting of Ni, Co, Mn, Fe, Cu, Al, and Zn. The catalyst layer comprises a first region and a second region. The first metal in the first region is more oxidized than the first metal in the second region. A ratio of the second metal in the first region is greater than the ratio of the second metal in the second region.
Resumen de: CN119530871A
本发明公开了一种钴钇双金属氧/氮化物电催化材料及其制备方法和在电解水产氢产氧中的应用。制备方法包括:步骤一、使用介质阻挡放电等离子体亲水改性处理碳纤维布;步骤二、将步骤一处理后的碳纤维布加入到含硝酸钴(II)、硝酸钇(III)、氟化铵和尿素的混合液中,并一起置于高压反应釜中进行水热反应,得到Y2O3/YN‑Co3O4钴钇双金属氧/氮化物电催化材料。Y2O3/YN‑Co3O4钴钇双金属氧/氮化物电催化材料中Y2O3/YN‑Co3O4钴钇双金属氧/氮化物具有多面体微纳米颗粒结构。本发明的钴钇双金属氧/氮化物催化剂具有卓越的电化学稳定性和较低的生产成本,显著提升了电极材料的长期使用性能和稳定性。
Resumen de: CN119530836A
本发明属于冷凝液回收技术领域,具体涉及一种可进行冷凝液无损回收的水电解制氢系统及工艺。一种可进行冷凝液无损回收的水电解制氢系统,通过设置氧侧冷凝液集液器和氢侧冷凝液集液罐,并通过所增加的氢侧和氧侧冷凝液回收工艺,与制氢系统工艺相关联,所回收冷凝液最终经碱液工艺管道流回电解槽参与电解反应,氢气冷却器冷凝管和氧气冷却器冷凝管将所形成的冷凝液引入各自所连接的气液分离器,通过碱液工艺管道流回至电解槽参与电解反应,从而分别获得除水氧气和除水氢气,从而有效地回收冷凝液并实现了碱液的循环利用,减少了水资源的浪费,有助于进一步降低生产成本并提升系统整体的环保性。
Resumen de: CN119530829A
本发明提供一种用于电解水制氢的高性能全固态电解池及其制备方法,制备方法主要主要包括电极粉体的制备:采用液相合成法制备(La0.6Sr0.4)0.95Co0.2Fe0.8O3‑δ(LSCF)粉体,采用共沉淀法制备MxCe1‑xNyO2粉体,用于电极和隔离层;采用共流延工艺制备半电池;采用丝网印刷技术制备隔离层、氧电极,通入高含量水蒸气实现电解水制氢。本发明制得的高性能全固态电解池具有高效的电解水制氢催化活性和法拉第效率,可在650‑850℃中高温下运行,能有效降低电能消耗,提高能量转化效率。
Resumen de: CN119530868A
本发明涉及一种自支撑B掺杂NiFe LDHs析氧电极的制备方法和应用,属于碱性电解水制氢领域。本发明电极以泡沫镍为基底,基底上负载催化活性组分为B掺杂NiFe LDHs,所述B掺杂NiFe LDHs的形貌为在泡沫镍基底上生长多个由纳米片相互交错排列堆叠形成多孔的“纳米花球”结构组成,每个“纳米花球”的直径在500nm~2μm。本发明通过简单的一步浸渍法,获得直接垂直生长在泡沫镍基底上的B掺杂NiFe LDHs OER电极,在较温和条件下可以有效控制合成催化剂的形貌,具有较好的催化活性和稳定性。本发明可应用于可再生燃料电池、光电催化、碱性阴离子交换膜电解水、海水电解和电解氢气发生器装置中。
Resumen de: WO2024008270A1
Invention relates method of cracking ammonia comprising - feeding a first portion of ammonia into a burner (14) in arranged to a cracking vessel (12); - feeding gas containing oxygen to the burner (14); - combusting the first portion of ammonia forming a combustion zone (101) in the cracking vessel (12) producing heat; - feeding a second portion of ammonia into a cracking zone (102) of the cracking vessel (12) outside the combustion zone (101), and - cracking the second portion of ammonia by utilizing the heat produced by the combustion of the first portion of ammonia and producing product gas comprising hydrogen and nitrogen from the second portion of ammonia. Invention relates also to racking arrangement (10) for cracking ammonia.
Resumen de: CN119530855A
本发明属于高熵纳米材料和电解水催化剂可控制备技术领域,具体公开一种基于二维高熵氢氧化物模板可控制备二维高熵硫化物高效电解水催化剂的制备方法。将至少五种金属前驱体分别加入去离子水中,之后加入氟化铵及尿素,超声混合均匀,进行搅拌反应,得到模板二维高熵氢氧化物;将所得二维高熵氢氧化物模板置于单温区管式炉的中间位置,然后在石英管中持续通入氩气,在氩气气氛下进行硫化反应,得到目标产品二维高熵硫化物。利用本发明关于二维高熵硫化物的合成方法,能够解决二维高熵硫化物合成温度高、元素分布不均匀、二维结构不稳定等问题,避免高温合成出现物相分离和偏析等现象,降低生产成本和工艺难度,合成一系列高性能二维高熵硫化物电解水催化剂。
Resumen de: CN119530865A
本发明公开了一种钯催化剂、其制备方法及应用,涉及催化剂技术领域。本发明以具有纳米线网状结构的富氧空位的WOx_C复合材料为载体,利用其强吸附作用以及热还原作用,强化了原子级钯与WOx_C纳米线载体的协同作用。本发明所提供的钯催化剂具有原子尺寸可调、催化活性和稳定性优异等优点。
Resumen de: CN119530880A
本发明属于制氢系统运行优化技术领域,提供计及效率寿命的多堆电解制氢系统运行优化方法及系统,所述方法包括:对多电解堆电解制氢系统的输入功率按照功率大小,由小到大进行分段划分,分为启动功率、最优功率、额定功率和过载功率四段;在各分段内,基于电池健康状态SOH,在设定时间间隔内按照实时健康状态对电解堆进行重新排序;对排序后的电解堆按照启动功率、最优功率、额定功率和过载功率的顺序,依次在段内根据多电解堆电解制氢系统的输入功率计算得到电解堆的运行功率,根据电解堆的运行功率对电解堆进行功率分配。本发明提高了能源利用率,还降低了运行成本,对电解制氢系统的经济性具有重要影响。
Resumen de: CN119530835A
本申请是关于一种碱性电解水制氢系统及其控制方法。碱性电解水制氢系统包括:气液分离组件;碱性电解槽,碱性电解槽的出口与气液分离组件的入口连通;热碱液槽,热碱液槽与气液分离组件的第一出口连通;第一循环泵,第一循环泵连通于气液分离组件和热碱液槽之间;第一三通阀,第一三通阀连接至热碱液槽的出口、冷碱液槽的出口和碱性电解槽的第一入口;第二循环泵,第二循环泵连通于第一三通阀和碱性电解槽之间;控制器,控制器用于控制第一三通阀切换至第一工作状态或者第二工作状态,第一三通阀处于第一工作状态时,热碱液槽的出口与碱性电解槽的第一入口导通,第一三通阀处于第二工作状态时,冷碱液槽的出口与碱性电解槽的第一入口导通。
Resumen de: KR20250028012A
본 발명은 나노버블 생성 마찰키트 및 나노버블의 인공 폭발을 위한 플라즈마 충격장치를 이용하여 수소가스 생산성을 현저히 향상토록 하는 나노버블의 인공 폭발을 이용하는 수소가스 생성시스템에 관한 것이다. 이를 실현하는 본 발명은 기액 혼합 유체로 이루어지는 작동유체를 강제 유동시키는 펌프, 상기 펌프와 직간접 연결되고 상기 작동유체에 마찰을 가하여 수중에 포함된 기포를 나노버블화하는 나노버블 생성 마찰키트, 상기 작동유체가 상기 나노버블 생성 마찰키트를 경유하며 생성된 나노버블을 인공적으로 폭발시키기 위한 플라즈마 충격장치 및 상기 플라즈마 충격장치로부터 토출되며 수소가스 외 기체를 포함하는 작동유체가 유입되어 기체가 분리 배출되는 유체탱크;를 포함하고, 상기 나노버블 생성 마찰키트는 내부에 유체의 마찰면을 조밀하게 구비하고 임의의 길이를 갖는 하나 이상의 마찰 유로부재를 포함하여되고, 상기 플라즈마 충격장치는 유로에 선단부가 노출되는 고전압 방전극 및 상기 방전극에 대응하는 대향전극을 포함하여 됨을 특징으로 한다.
Resumen de: US2025018339A1
Disclosed are a method and an apparatus for carbon capture coupled hydrogen production. The method includes: capturing low-concentration CO2 by a solution of an alkali metal hydroxide to obtain a low-concentration CO2 absorption solution; capturing high-concentration CO2 by a first portion of the low-concentration CO2 absorption solution to obtain a high-concentration CO2 absorption solution; and performing electrolysis by a second portion of the low-concentration CO2 absorption solution as a catholyte solution, using the high-concentration CO2 absorption solution as an anolyte, and using a non-ionic diaphragm as a diaphragm. According to the method, capture of CO2 in a wide concentration range can be realized; electrolysis is performed by a non-ionic diaphragm, to implement regeneration of an absorption solution coupled hydrogen production; capture costs of CO2 in a wide concentration range can be reduced; additional products of H2 and O2 can be obtained; and hydrogen production costs can be reduced.
Resumen de: CN119530821A
本发明公开了一种智能硒氢壶的控制方法,涉及智能硒氢壶技术领域,针对硒氢壶在制氢耗时,从基础温度开始,观察氢气在该温度下从设定浓度降低到下限浓度所需时间,从而得到该基础温度下氢气的逃逸速度,连续进行若干次,并在不同温度下进行相同处理,得到一个温度与核逃速度的对照表;同时对含氢量和制氢耗时间进行相同分析,最终能够得到温度与核逃速度、含氢峰值、制氢耗时的映射表;通过对氢气在不同温度下的核逃速度、含氢峰值和制氢耗时进行分析,同时结合对用户饮水习惯的分析,能够按照用户的饮水习惯进行提前制氢,确保用户能够喝到含氢浓度最大的水,保证氢的摄入;同时能够根据加热时间来对硒氢壶的剩余水量进行分析,及时调整制氢的时间。
Resumen de: CN119530879A
本发明属于碱性电解水制氢领域,具体涉及一种双功能基碱性电解水复合隔膜及其制备方法和应用。所述双功能基碱性电解水复合隔膜的制备方法包括以下步骤:S1.将纳米陶瓷颗粒与改性液混合后进行改性反应后即得到氨基和巯基双功能基改性纳米陶瓷颗粒,改性液含有氨基硅烷偶联剂和巯基硅烷偶联剂;将聚合物支撑层置于磺化液中进行磺化改性反应后即得到磺化聚合物支撑层;S3.将双功能基改性纳米陶瓷颗粒、聚合物、制孔剂、第一有机溶剂混合得到铸膜液,铸膜液脱气后涂布于磺化聚合物支撑层上成膜,在凝固浴中进行相转化后,即得到双功能基碱性电解水复合隔膜。本发明提供的双功能基碱性电解水复合隔膜机械性能好、性能稳定且面电阻低、气密性好。
Resumen de: CN119524479A
本发明公开了一种电解液循环气泡处理装置,包括分离除湿罐体,在分离除湿罐体的底部设置气体出口,底部设置液体出口,罐体壁上设置进口,还包括有安装在分离除湿罐体内部下方的气泡处理装置,气泡处理装置包括有用于阻挡气泡的滤芯,使气泡在滤芯外流动并合并成大气泡上浮,滤芯前后两侧存在压差并驱使电解液穿过。气泡处理装置将微小气泡阻隔于滤芯外部,进行合理的气泡过滤器过滤粒径及结构设计,利用滤芯前后两侧存在压差并驱使电解液穿过,一方面滤芯可进行气泡的有效阻隔,另一方面滤芯外部电解槽流动产生的扰流,使阻隔在滤芯外部的气泡在滤芯外部随机流动,相互撞击合并,形成大气泡,并上浮至气腔,完成电解液中气泡分离及处理。
Resumen de: CN119530783A
本发明公开了一种制氢电解槽用双极板镀镍装置,涉及镀镍装置技术领域,包括镀镍处理池,所述镀镍处理池侧面安装有上料机构,且镀镍处理池一端分别固定连接有过滤机构和搅拌机构,所述搅拌机构位于过滤机构上方。本发明在使用过程中,通过镀液流动的动力带动一号连接轴和一号搅拌桨进行逆时针转动,此时一号叶轮和一号搅拌桨对镀镍处理池内部的镀液进行逆时针搅拌,同理,通过二号导流头对二号导流管内部的镀液再次加速,对二号叶轮进行冲击,带动二号连接轴和二号搅拌桨进行顺时针转动,此时二号叶轮和二号搅拌桨对镀镍处理池内部的镀液进行顺时针搅拌,提升镀镍处理池内部的镀液中物质的均匀性。
Resumen de: JP2025028289A
【課題】より容易に組み立てることのできる電解液体生成装置を得る。【解決手段】電解液体生成装置1は、互いに隣り合う電極84,85間に導電性膜86が介在するように積層された積層体81を有し、液体を電解処理する電解部80と、電解部80が内部に配置されるハウジング10と、を備えている。また、ハウジング10は、電解部80が挿通可能な開口部332aを有し電解部80が収容されるケース20と、ケース20の開口部332aを覆う蓋60と、を備えている。そして、ケース20には、積層体81の積層方向に延在し、電解部80の収容をガイドするガイド部353が設けられている。【選択図】図12
Resumen de: AU2023433484A1
The present invention discloses an electrode plate of an electrolysis apparatus and an electrolysis apparatus to which the electrode plate is applied. A direct current power supply is connected to the electrolysis apparatus and an electrolyte is injected into the electrolysis apparatus, to convert electric energy into chemical energy. The electrode plate includes a silicon-based electrode plate made of a doped conductive silicon material. The silicon-based electrode plate is electrically connected to the direct current power supply, and a flow channel is disposed on at least one surface of the silicon-based electrode plate, so that the electrolyte is input into the electrolysis apparatus through the silicon-based electrode plate, to implement an electrochemical reaction and output a reaction product. In the present invention, on a basis of maintaining good mechanical support and sealing function, material and process costs of the electrode plate of the electrolysis apparatus are significantly reduced, an overpotential of the electrochemical reaction for producing the reaction product is reduced, and an electrolysis reaction rate per unit area in the electrolysis apparatus is increased. Therefore, an operating voltage is effectively reduced at a same electrochemical reaction rate, and energy conversion efficiency of the electrochemical reaction is finally significantly improved.
Resumen de: AU2023379054A1
2. The invention relates to a filter for treating process fluid such as that which in particular arises during hydrogen electrolysis, preferably for separating hydrogen and/or oxygen from process water, having a first filter element (10) and a second filter element (12), which encloses the first filter element (10) with the formation of a flow space (14) with a predefinable radial spacing, wherein each filter element (10, 12) has a filter medium (16, 18) through which the process fluid can flow in a flow-through direction (24) from the outside to the inside or preferably from the inside to the outside, wherein, seen in the flow-through direction (24), the one filter medium (16) forms a first degassing stage, which is used to enlarge gas bubbles through coalescence and to remove same from the process fluid through separation caused by buoyancy, and the subsequent further filter medium (18) forms a second degassing stage, which is used to remove very finely distributed gas bubbles remaining in the process fluid, again through coalescence and the separation of same through rising caused by buoyancy.
Resumen de: US2025066716A1
Microorganisms and bioprocesses are provided that convert gaseous substrates, such as renewable H2 and waste CO2 producer gas, or syngas into high-protein biomass that may be used directly for human nutrition, or as a nutrient for plants, fungi, or other microorganisms, or as a source of soil carbon, nitrogen, and other mineral nutrients. Renewable H2 used in the processes described herein may be generated by electrolysis using solar or wind power. Producer gas used in the processes described herein may be derived from sources that include gasification of waste feedstock and/or biomass residue, waste gas from industrial processes, or natural gas, biogas, or landfill gas.
Resumen de: US2025066715A1
Microorganisms and bioprocesses are provided that convert gaseous substrates, such as renewable H2 and waste CO2 producer gas, or syngas into high-protein biomass that may be used directly for human nutrition, or as a nutrient for plants, fungi, or other microorganisms, or as a source of soil carbon, nitrogen, and other mineral nutrients. Renewable H2 used in the processes described herein may be generated by electrolysis using solar or wind power. Producer gas used in the processes described herein may be derived from sources that include gasification of waste feedstock and/or biomass residue, waste gas from industrial processes, or natural gas, biogas, or landfill gas.
Resumen de: US2025066274A1
Processes for converting ethane into ethylene include the steps of subjecting a water feed stream to electrolysis to form O2 and H2, subjecting a mixture of ethane and O2 to oxidative dehydrogenation to form a reaction product containing ethylene, acetic acid, water, and CO/CO2, separating the reaction product into an ethylene product stream, an acetic acid product stream, a water product stream, and a gas stream containing CO/CO2, and introducing the water product stream into the water feed stream for electrolysis. The ethylene product stream can be contacted with a suitable polymerization or oligomerization catalyst composition to produce ethylene polymers or ethylene oligomers.
Resumen de: US2025066932A1
The present disclosure provides a functional (photovoltaic) PV powered facilitated Water electrolyzer system for solar hydrogen generation having two components: a functional PV panel and a facilitated water electrolyzer. The present invention provides functional PV powered facilitated water electrolyzer (F-PV-WE) systems. The invention provides a process using integrated functional PV with facilitated water electrolysis for multiproduct generation including hydrogen, oxygen and hypochlorite with reduction in energy and environmental footprint.
Resumen de: US2025066934A1
A method of running a water electrolyzer that can operate on seawater without a significant voltage rise. In some embodiments, the method includes the use of specific ionomers in the catalyst layer. In some embodiments, the method involves using a Break-In Procedure. In some embodiments, the method can include periodic interruption of the voltage to the AEM electrolyzer.
Resumen de: US2025066938A1
Provided are a porous transport layer for water electrolysis including a first layer containing first particles of a titanium group element, and a second layer containing second particles of a titanium group element. An average diameter of the first particles is larger than an average diameter of the second particles, and a surface of the first layer abutting the second layer is planarized. A method for manufacturing the same is also provided.
Resumen de: US2025066927A1
A geothermally powered hydrogen production system includes a wellbore that heats a heat transfer fluid, thereby forming heated heat transfer fluid. A heat exchanger heats a feed stream using the heated heat transfer fluid, thereby forming a heated feed stream. An electrolyzer receives the heated feed stream and generates hydrogen from the heated feed stream.
Resumen de: US2025066933A1
A modular electrochemical system, said system comprising: one or more electrochemical blades, wherein each electrochemical blade comprises at least one electrochemical stack, and one or more balance of plant (BOP) blades, wherein each BOP blade comprises at least one BOP facility for at least one electrochemical stack, wherein the or each electrochemical blade(s) corresponds to any one or more of the BOP blades, and vice versa, and each electrochemical and/or BOP blade is provided with a framework, said framework comprising at least one port adapted to enable connection with one or more corresponding blades.
Resumen de: US2025066939A1
A system and method for thermal energy delivery for hydrogen (H2) gas production is disclosed. The method involves generating electricity via a solar plant and providing it to a hydrogen electrolyzer. Thermal energy from the solar plant is used to heat a primary working fluid, which transfers heat to a secondary working fluid in an evaporator, converting it into vapor. This vaporized secondary working fluid drives a turbine, generating electricity through a Rankine cycle system where the secondary working fluid circulates continuously, transmitting the secondary working fluid and a portion of the generated electricity to the hydrogen electrolyzer, which splits the secondary working fluid into H2 gas and oxygen, storing the H2 gas in a hydrogen gas storage tank. When solar power is unavailable, the stored electricity in the battery energy storage is supplied to the electrolyzer.
Resumen de: US2025066936A1
The present disclosure relates to a transition metal-doped nickel phosphide nanostructure, a method for preparing the same, and a catalyst for electrochemical water decomposition including the transition metal-doped nickel phosphide nanostructure. More specifically, a transition metal-doped nickel phosphide nanostructure can be prepared by converting a zinc oxide nanostructure grown on a substrate vertically by hydrothermal synthesis to a transition metal-doped nickel oxide nanostructure by cation exchange and then phosphorizing the nickel oxide. The transition metal-doped nickel phosphide nanostructure of the present disclosure is advantageous in that it has superior catalytic activity and conductivity due to large surface area. In addition, when used as a catalyst for water decomposition under an alkaline condition, it has a low overvoltage and can have excellent catalytic activity for hydrogen evolution reaction or oxygen evolution reaction.
Resumen de: AU2023313378A1
The present invention relates to a method and device for producing hydrogen by dissociating water molecules through thermochemical reactions, using a small amount of active material. The thermochemical reactions are induced by solar power with a moderate concentration of up to 50 suns, which can be achieved through linear or parabolic concentrators.
Resumen de: WO2025042807A1
Processes for converting ethane into ethylene include the steps of subjecting a water feed stream to electrolysis to form O2 and H2, subjecting a mixture of ethane and O2 to oxidative dehydrogenation to form a reaction product containing ethylene, acetic acid, water, and CO/CO2, separating the reaction product into an ethylene product stream, an acetic acid product stream, a water product stream, and a gas stream containing CO/CO2, and introducing the water product stream into the water feed stream for electrolysis. The ethylene product stream can be contacted with a suitable polymerization or oligomerization catalyst composition to produce ethylene polymers or ethylene oligomers.
Resumen de: WO2025040614A1
The present invention relates to a method for the preparation of a (meth)acrylate in which firstly, a first stream is provided. The first stream contains a hydrocarbon and/or hydrogen. The first stream is reacted with a CO2-containing stream, which is provided by thermal reaction, thereby obtaining a compound having 1 to 4 carbon atoms and 1 to 2 oxygen atoms. This compound is then further reacted to form (meth)acrylate, said reaction comprising the reaction of ethene and/or methanol with a CO-containing stream.
Resumen de: WO2025040493A1
The invention relates to a metal substrate (10-1, 10-2) for use as an electrode (206-1, 206-2) in an electrolytic cell (200), wherein: the substrate (10-1, 10-2) extends in a planar manner in a substrate plane; the substrate plane is spanned by a substrate longitudinal direction (12) and substrate transverse direction (14); the substrate (10-1, 10-2) has a front face (18) and an opposite rear face (20) and has a thickness in a thickness direction orthogonal to the substrate plane; in the substrate (10-1, 10-2) a plurality of through channels (26) are formed which are each delimited by a wall of the substrate (10-1, 10-2); the wall delimiting a respective through channel (26) has upper wall portions which delimit the through channel (26) towards the top; and at least some of the upper wall portions are inclined upwards at an angle in the direction towards the rear face in a respective guide region. The invention also relates to an electrolytic cell (200) comprising such a substrate (10-1, 10-2).
Resumen de: WO2025042447A1
A method for producing an olefin product, including the steps of converting a hydrocarbon feedstock to an unsaturated hydrocarbon stream through a steam cracking process in an olefins production plant; combusting hydrogen to provide at least some of the heating duty to the steam cracking process, wherein the hydrogen has a carbon intensity less than about 1.0 kg CO2e / kg H2, wherein the hydrogen is produced using a hydrogen production process; providing at least some of the required energy for the hydrogen production process from a biomass power plant; and processing the unsaturated hydrocarbon stream to recover the olefin product. The olefin product may comprise ethylene having a well-to-gate carbon intensity less than about 0.6 kg CO2e / kg C2H4, or may comprise propylene having a well-to-gate carbon intensity less than about 0.6 kg COCO2e / kg C3H6.
Resumen de: WO2025037484A1
Provided are a hydrogen gas production system and a hydrogen gas production method, with which it is possible to produce a high-purity hydrogen gas at a low cost by recovering a high-purity hydrogen gas at a high recovery rate without using a large-scale device. A hydrogen gas production system 100 according to the present invention comprises: a degassing device 20 that degasses raw water; an electrolysis device 30 that generates a hydrogen gas by electrolyzing the raw water degassed by the degassing device 20; piping 62 that connects the degassing device 20 and the electrolysis device 30 and that partitions a flow path through which the raw water is fed from the degassing device 20 to the electrolysis device 30; and a first oxygen gas supply device 40 that supplies an oxygen gas as a degassing gas to the degassing device 20.
Resumen de: WO2025043182A1
A geothermally powered hydrogen production system includes a wellbore that heats a heat transfer fluid, thereby forming heated heat transfer fluid. A heat exchanger heats a feed stream using the heated heat transfer fluid, thereby forming a heated feed stream. An electrolyzer receives the heated feed stream and generates hydrogen from the heated feed stream.
Resumen de: WO2025042413A1
A method of running a water electrolyzer that can operate on seawater without a significant voltage rise. In some embodiments, the method includes the use of specific ionomers in the catalyst layer. In some embodiments, the method involves using a Break-In Procedure. In some embodiments, the method can include periodic interruption of the voltage to the AEM electrolyzer.
Resumen de: WO2025041743A1
The purpose of the present invention is to provide a technology for efficiently generating hydrogen with a minute voltage. In this invention, two substrates having conductivity are electrically connected and arranged such that the conductive surfaces of the respective substrates face each other. At least one of the substrates is transparent and is a light incident side substrate. A silicon dioxide particle molded body which is treated with a hydrohalic acid is arranged between the two substrates. A semiconductor layer is arranged on the light incident side substrate, and the two substrates having conductivity and the silicon dioxide particle molded body are immersed in an electrolyte. Hydrogen can be efficiently generated by setting the particle diameter of the silicon dioxide particles to about 0.2 mm or less and bonding, with the semiconductor layer arranged on the light incident side substrate, a sensitizing dye having a hydrophilic group in part of a molecular skeleton not contributing to bonding with the semiconductor layer.
Resumen de: WO2025041428A1
Provided is a water electrolysis system that alters power consumption by sensing a system frequency to rapidly change power consumption, wherein a suitable adjustment margin that can be accommodated instantaneously by an electrolytic cell is calculated so as to suppress deterioration or failure of the electrolytic cell. This water electrolysis system is configured by including: a rectifier that converts alternating-current power of a power system to direct-current power; an electrolysis tank that performs water electrolysis using the direct-current power from the rectifier; a gas-liquid separator that performs gas-liquid separation of oxygen and hydrogen from a fluid that is a mixture of oxygen and water from the electrolytic cell; and a cooling system that supplies water to the electrolytic cell. The water electrolysis system is characterized in that: the rectifier is controlled so as to adjust power consumption in accordance with the frequency of the power system; the power consumption is adjusted so that the power consumption in the electrolytic cell is within a limited range for power consumption; and the limited range for power consumption is determined on the basis of the temperature and deterioration rate of the electrolytic cell, the pressure of water at an exit of the electrolytic cell, and the flow rate of the supplied water.
Resumen de: WO2025041021A1
The present invention relates generally to the production of a desalinated, filtrated or other way treated water simultaneously with generation of renewal energy source, in particular hydrogen, using osmotic and/or gauge pressure driven filtration processes and systems. The co-generation of hydrogen 11 from water 8 produced during pressure driven water desalination/filtration processes, such as reverse osmosis, forward osmosis, pressure retarded osmosis or ultrafiltration. A small part of feed, raw saline solution and/or permeate involved in a desalination/filtration processes is subjected to electrolysis thereby splitting the water to produce hydrogen. This is achieved by the provision of novel RO type semi- permeable membranes and UF type membrane that incorporate electrodes 9, 10 within the membrane to allow splitting of the water via electrolysis.
Resumen de: WO2025039409A1
The present invention belongs to the field of functional materials. Provided is a method for preparing a zinc-doped cobalt selenide catalyst. The method for preparing a zinc-doped cobalt selenide catalyst comprises: adding a selenium powder to a potassium hydroxide solution, stirring same until the selenium powder is dissolved, then adding deionized water, cobalt nitrate, zinc nitrate and ethylenediaminetetraacetic acid disodium salt to the resulting solution, continuing stirring, putting the finally obtained solution into a polytetrafluoroethylene reaction kettle for a hydrothermal reaction, and after the reaction is finished, cooling the resulting reaction product to room temperature and then washing, drying and grinding same, so as to obtain a zinc-doped cobalt selenide catalyst. In the method for preparing a zinc-doped cobalt selenide catalyst provided by the present invention, during the preparation process, the raw materials are readily available, the reaction conditions are mild, and a zinc-doped cobalt selenide catalyst can be obtained at a relatively low temperature, all of which are beneficial for reducing the production cost. The zinc-doped cobalt selenide catalyst prepared in the present invention has a unique rod-like structure and good electro-catalytic performance, and the obtained electrocatalyst is non-toxic and harmless, and has wide application prospects.
Resumen de: DE102023122838A1
System (30) zur Gewinnung von getrocknetem Wasserstoff, mit einer Elektrolysevorrichtung (31) zur Gewinnung von Wasserstoff aus Wasser, mit einer Trocknungsvorrichtung (35) zur Trocknung eines in der Elektrolysevorrichtung (31) gewonnenen Wasserstoff-Wasser-Gemischs, wobei die Trocknungsvorrichtung eine erste Trocknungseinrichtung (36) zum Entfernen flüssigen Wassers aus dem in der Elektrolysevorrichtung (31) gewonnenen Wasserstoff-Wasser-Gemisch aufweist, wobei die Trocknungsvorrichtung (35) einen ersten Wärmetauscher (38) zum Abkühlen des in der ersten Trocknungseinrichtung (36) teilgetrockneten Wasserstoff-Wasser-Gemischs unter Auskondensieren dampfförmigen Wassers aufweist, wobei die Trocknungsvorrichtung eine zweite Trocknungseinrichtung (42) zum Entfernen des auskondensierten Wassers aus dem abgekühlten Wasserstoff-Wasser-Gemisch aufweist, mit einem zweiten Wärmetauscher (40) zum weiteren Abkühlen des in dem ersten Wärmetauscher (38) abkühlten Wasserstoff-Wasser-Gemischs unter weiterem Auskondensieren dampfförmigen Wassers, wobei der erste Wärmetauscher (38) eingerichtet ist, zur Kühlung des die erste Trocknungseinrichtung (36) verlassenden Wasserstoff-Wasser-Gemischs das die zweite Trocknungseinrichtung (42) verlassende Wasserstoff-Wasser-Gemisch über den ersten Wärmetauscher zu führen, wobei der zweite Wärmetauscher (40) eingerichtet ist, zur Kühlung des den ersten Wärmetauscher (38) verlassenden Wasserstoff-Wasser-Gemischs ein Kühlmittel über den
Resumen de: DE102023122491A1
Eine elektrisch leitfähige Platte (3) eines Zellenstapels eines Elektrolyseurs zur Wasserstoffherstellung umfasst einen als 3D-Druck-Teil ausgebildeten metallischen Plattengrundkörper (4), welcher mindestens eine Nut (9) aufweist, in der sich eine als Spritzgusskomponente ausgebildete Dichtung (5) befindet.
Resumen de: DE102023122813A1
Die Erfindung betrifft ein metallisches Substrat (10) für den Einsatz als Elektrode (206-1) in einer Elektrolysezelle (200), wobei das Substrat in einer Substratebene flächig erstreckt ist, wobei die Substratebene durch eine Substratlängsrichtung (12) und eine Substratquerrichtung (14) aufgespannt ist, wobei das Substrat eine Vorderseite (18) und eine gegenüberliegende Rückseite (20) aufweist und eine Dicke in einer zu der Substratebene orthogonalen Dickenrichtung aufweist, wobei in dem Substrat eine Mehrzahl von Durchgangskanälen (26) ausgebildet sind, welche jeweils durch eine Wandung des Substrats begrenzt sind, wobei die einen jeweiligen Durchgangskanal begrenzende Wandung obere Wandungsabschnitte aufweist, welche den Durchgangskanal nach oben begrenzen, wobei zumindest eine Teilmenge der oberen Wandungsabschnitte in einem jeweiligen Führungsbereich in Richtung zur Rückseite hin schräg nach oben geneigt ist. Die Erfindung betrifft auch eine Elektrolysezelle (200) umfassend ein solches Substrat (10).
Resumen de: AR131252A2
En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.
Resumen de: EP4512930A1
Disclosed are a microbial electrolysis cell suppressing methane generation and a method of producing hydrogen using the same, and more particularly microbial electrolysis cell technology, which prevents the growth of methanogens inside a reactor during operation of a microbial electrolysis cell by aerating a substrate for use in a microbial electrolysis cell with acetylene gas before supply of the substrate, thereby suppressing consumption of the hydrogen and substrate by methanogens, ultimately increasing the hydrogen yield and lifespan of the microbial electrolysis cell.
Resumen de: AR131251A2
En esta divulgación, se introduce un proceso de reciclado de ácido, base y los reactivos de sal requeridos en el proceso de recuperación de Li. Se implementa una celda electrolítica de membrana que incorpora un cátodo de oxígeno despolarizado para generar los productos químicos requeridos en el sitio. El sistema puede utilizar una porción de la salmuera de salares u otra salmuera o residuo sólido que contiene litio para generar ácido clorhídrico o sulfúrico, hidróxido de sodio y sales de carbonato. La generación simultánea de ácido y base permite tomar ventaja de ambos productos químicos durante la recuperación convencional de Li de salmueras y rocas minerales. El agua desalinizada también se puede usar en los pasos de lavado en el proceso de recuperación o regresar a los estanques de evaporación. El método también se puede usar para la conversión directa de sales de litio en el producto LiOH con alto valor. El método no produce ningún efluente sólido lo cual lo torna de fácil adopción para su uso en las plantas industriales de recuperación de Li existentes.
Resumen de: CN119234030A
A process for producing a synthesis gas having an H2/CO ratio of 0.5 to 3.5 comprising: a) combusting hydrogen and oxygen in an H2 burner in the presence of steam to produce steam, b) quenching the effluent of step a); c) electrolyzing the steam of step b) in a solid oxide electrolysis cell (SOEC), thereby obtaining hydrogen and oxygen, d) cooling the wet hydrogen of step c) and removing moisture by condensation; e) performing a reverse water-gas shift reaction on the hydrogen in the step d) and CO2 from an external source to obtain synthesis gas; f) cooling the wet synthesis gas of step e) and removing moisture by condensation, thereby obtaining a dry synthesis gas.
Resumen de: AU2023300508A1
The main objective of the present invention is to provide an electrolyte membrane having good bondability with a catalyst layer, said electrolyte membrane comprising a polymer electrolyte-containing layer (A) and a layer (B) disposed on at least one surface of the layer (A), wherein the layer (B) has a higher porosity (X1) in an interface region thereof with the layer (A) than the porosity (X2) of the layer (B) in an interface region on the opposite side from the layer (A).
Resumen de: AU2023297106A1
An electrolyte membrane is provided comprising a recombination catalyst layer. The membrane has a thickness of less than or equal to 100 µm and is a single coherent polymer film comprising a plurality of ion conducting polymer layers. The recombination catalyst layer comprises particles of an unsupported recombination catalyst dispersed in an ion conducting polymer and the layer has a thickness in the range of and including 5 to 30 μm. Catalyst coated membranes (CCMs) incorporating the electrolyte membranes are also provided, together with methods of manufacturing the electrolyte membranes.
Resumen de: WO2024002797A1
The invention relates to a system combination (100), comprising: at least two electrolysis systems (1A, 1B); a power supply source (3) having a direct voltage output (7); and a central supply line (5); wherein the central supply line (5) is connected to the direct voltage output (7) of the power supply source (3), so that a direct current can be fed into the central supply line (5) and a central DC network designed for a high voltage is provided, to which DC network the electrolysis systems (1A, 1B) are connected by means of the central supply line (5). The power supply source (3) has, as a power generator, a wind turbine (19), to which a rectifier (13A) having a direct voltage output (7) is connected, the direct voltage output (7) being designed for the high voltage. At least one of the electrolysis systems (1A, 1B) is disposed at the base of the tower of the wind turbine (19) and is connected there directly to the central supply line (5). The invention also relates to a of a DC network in a system combination of this type, wherein a number of electrolysis systems (1A, 1B) is connected to a central supply line (5) for direct current, and wherein a direct current is fed, at a specified high voltage, into the central supply line (5) by means of a direct voltage output (7).
Resumen de: AU2023218595A1
There is provided a method and apparatus for producing hydrogen gas from biogenic material (210) within a pressure vessel (10). The method comprises heating a granular material (15) to greater than 500°C, adding a batch of biogenic material (210) into the pressure vessel with the heated granular material (15) at atmospheric pressure, closing the pressure vessel, and mixing the heated granular material (15) with the biogenic material (210) inside the closed pressure vessel (10) to raise the temperature of the biogenic material (210) and commence gasification, the gasification producing gas that increases the pressure inside the pressure vessel (10), the produced gas comprising hydrogen gas.
Resumen de: EP4467182A2
Ingestible devices capable of delivering a dispensable substance, such as, for example, a therapeutic agent, as well as related components, systems and methods, are disclosed. A removably attachable storage reservoir configured to be used with an ingestible device and capable of storing dispensable substance, such as, for example, a therapeutic agent, as well as related components, systems and methods, are also disclosed.
Resumen de: EP4512931A1
Es wird ein Verfahren (100, 200, 300, 400, 500) zur Herstellung von Wasserstoff (H) vorgeschlagen, bei dem ein kohlenwasserstoffhaltiger Einsatz (G) unter Erhalt eines ersten Anteils des Wasserstoffs (H) und Erhalt von Kohlenstoff (C) einer Pyrolyse (10) unterworfen wird. Hierbei ist vorgesehen, dass Dampf (S) unter Erhalt eines zweiten Anteils des Wasserstoffs (H) und unter Erhalt von Sauerstoff (O) einer Hochtemperaturelektrolyse (20, 40) unterworfen wird, wobei zumindest ein Teil des Dampfs (S) durch Abwärme der Pyrolyse (10) erzeugt wird. Eine entsprechende Anlage ist ebenfalls Gegenstand der vorliegenden Erfindung.
Resumen de: WO2023205126A1
The systems and methods described herein provide for control of hydrogen generation based on one or more characteristics of an input power signals, including a voltage of the input power signal and/or a frequency of the input power signal. The hydrogen generation system may be controlled in response to a reactive power consumption of the hydrogen generation system and/or a reactive power component of a power grid providing energy to the hydrogen generation system. In one embodiment, the hydrogen generation system may be controlled to generate reactive power in circumstances in which a voltage an input power signal is less than or more than a voltage range. In another embodiment, the hydrogen generation system may control hydrogen production based on a frequency of the input power signal.
Resumen de: EP4512932A1
A hydrogen production system and a hydrogen production method includes: a heat exchanger that heats steam by using a heating medium heated by thermal energy at 600°C or higher; a high-temperature steam electrolysis device that electrolyzes steam at 600°C or higher to produce hydrogen by applying, to a high-temperature steam electrolysis cell, a voltage lower than an electric potential at a thermal neutral point at which Joule heating caused by application of a current and heat absorption caused by electrolysis reaction are balanced; and a heating device that heats the high-temperature steam electrolysis device by the steam.
Resumen de: WO2023205154A1
A system and method of power management for a power generation system is disclosed. A method of power management for a hydrogen generation system including one or more electrochemical stacks, the one or more electrochemical stacks receiving power from an electrical grid including at least one power source, includes: receiving a frequency or voltage reference value for the hydrogen generation system; continually monitoring a frequency or voltage of the electrical grid; and varying a load of the hydrogen generation system in response to the frequency or voltage of the electrical grid differing from the frequency or voltage reference value to restore the frequency or voltage of the electrical grid to the frequency or voltage reference value.
Resumen de: WO2023217683A2
In order to provide a device (1) for providing hydrogen (H2) by means of an electrolysis unit (2) which allows the longest possible service life of the electrolysis unit (2) even in case of fluctuating energy supplies to the electrolysis unit (2), a reciprocating piston compressor (3) is provided to compress the hydrogen (H2) generated by the electrolysis unit (2), the reciprocating piston compressor (3) having at least one automatic intake valve (5). A retraction gripper (6) is provided in order to hold the intake valve (5) selectively in an open position, an electrically actuatable actuator (7) is provided to activate the retraction gripper (6), and a control unit (4) is provided to control the actuator (7), the control unit (4) being designed to actuate the actuator (7) in such a way that an outlet pressure (p1) of the hydrogen (H2) at the outlet of the electrolysis unit (2), or a differential pressure (Δp) between an anode and a cathode of the electrolysis unit (2), is adjustable to a predefined target value (p1_soll, Δp_soll).
Resumen de: CN119500160A
本发明属于氢能源领域,公开了一种氨分解制氢Ni基催化剂的制备方法。该制备方法包括如下步骤:1)将金属铈盐和金属锆盐按照比例和去离子水混合,得到金属离子混合溶液,将金属镍盐加入到去一定量离子水中得到金属镍盐溶液;2)制备含有氢氧根和碳酸根的双碱性溶液作为沉淀剂;3)将金属镍盐溶液和沉淀剂采用双滴定法缓慢的滴入到金属离子混合溶液中,调节pH至一定范围,在一定温度的油浴中反应,得到反应产物;4)将反应产物用水和乙醇洗涤后,干燥,煅烧,即得到氨分解制氢Ni基催化剂。本发明的制备方法制备的氨分解制氢催化剂可以显著提升催化剂的活性。
Resumen de: CN119506948A
本发明公开了一种电解水制氢电极及其制备方法,本发明采用一步渗铝法结合微脱合金处理,通过控制渗铝粉末的配比、渗铝温度和时间,以及脱合金溶液的成分和处理时间等关键工艺参数,在镍基基底表面构建出具有超薄微多孔结构的微脱合金层。这种微脱合金层的厚度更小且孔隙分布更加均匀,与传统的脱合金结构相比,不仅显著增加了比表面积和活性位点,还有效优化了传质动力学和电子传输路径,降低了析氢反应过程中的能垒。
Resumen de: CN119506959A
本发明属于电解水催化剂技术领域,公开了一种S,V‑共掺杂的多孔Ni2P材料及其制备方法和应用。本发明通过水热‑气固相反应两步合成方法制备了用S,V共掺杂的磷化镍S,V‑Ni2P/NF,用于高效的电化学分解水。S,V‑Ni2P/NF电极在泡沫镍上原位生长并具有特殊的微米花结构,表现出优异的HER和OER催化活性。S,V‑Ni2P/NF优异的性能主要得益于其特殊的形貌结构和S,V共掺杂的协同作用,阴阳离子双掺使催化剂的电子结构得到了优化,进一步优化了催化剂的电子结构和电子排布,加速了催化剂的电荷传输速率,并且多孔的微米花的结构拥有较大的电化学活性比表面积,为更多活性位点的暴露提供了充足的可能,从而提高了催化剂的催化活性。
Resumen de: CN119508811A
本发明涉及燃烧器领域,氢基分解氨再燃烧器,包括预热分解燃烧室,预热分解燃烧室的内部具有空腔;布朗气管穿过预热分解燃烧室的室壁且输出端至于空腔的内部;第一点火器穿过预热分解燃烧室的室壁,且第一点火器的点火头临近布朗气管的输出端;氨气管的输出端与所述空腔内部连通;输送管的输入端与所述预热分解燃烧室的内腔连通;第二点火器的点火头临近输送管路的输出端。该燃烧器利用氢火焰产生的活性自由基作为催化剂,通过调节电解水产生的氢氧混合气和燃料氨气的比例和燃烧条件,使氨气燃烧转化为氢气、氮气与可能未分解的氨气的燃烧。此技术旨在提高燃烧效率、降低氮氧化物排放,提高整体能源利用率。本发明还提出了氢基分解氨再燃烧方法。
Resumen de: CN119506970A
本发明属于质子交换膜电解水领域,具体涉及一种包覆型电解水催化剂及其制备方法和应用;催化剂由Ru‑Mn02作为载体,铱包覆在载体表面。本发明的电解水催化剂对现有双金属Ir基担载工艺进行改进,改进后双金属Ir、Ru的贵金属的利用率得到有效提升,电化学面积也进一步增加。
Resumen de: CN119506934A
本发明属于电解水催化剂技术领域,公开了一种V掺杂的镍化磷材料及其制备方法和应用。本发明通过水热法在NF上均匀生长V‑NiZn‑LDH微米球阵列,然后通过选择性碱蚀的方法得到了具有丰富缺陷的前驱体,成功制备了锚定在泡沫镍上的具有丰富表面缺陷的镍铁磷化物V‑Nivac2P/NF。在1M KOH溶液中,制备的V‑Nivac2P/NF自支撑电极表现出优异的电解水析氧性能和析氢性能。原位拉曼光谱表明,在OER过程中,缺陷显着加速了从相邻镍原子重构为高活性NiOOH物质,成为真正的催化活性中心。DFT计算也表明空位的引入能够提高催化剂的导电性,在吸附*OOH的步骤,V‑Nivac2P/NF能够有效降低*OOH的吸附能垒。
Resumen de: CN119506960A
本发明公开了一种具有三相异质结构的NF/CoFeS‑CoP‑FeP复合材料,以泡沫镍为基底,作为自支撑骨架,以六水硝酸钴和九水硝酸铁为原料,硫脲作为硫源,在泡沫镍上生长部分硫化的钴铁硫化物与钴铁氢氧化物,再以次磷酸钠作为磷源,将钴铁氢氧化物转化为钴铁磷化物;Co8FeS8为球形魔方状结构;Co2P为球形纳米片状结构;Fe2P为纳米片状结构;Co8FeS8与Co2P结合Fe2P形成三相异质结构。其制备方法包括以下步骤:1,NF/CoFeS‑CoOH‑FeOH的制备;2,NF/CoFeS‑CoP‑FeP的制备。作为析氢催化剂材料的应用时,在1M KOH溶液中反应,在0~‑0.1V范围内,当电流密度为10mA·cm‑2时,NF/CoFeS‑CoP‑FeP过电位为61‑67mV,塔菲尔斜率为99.51‑105.23mV·dec‑1;循环时间为24h的条件下,NF/CoFeS‑CoP‑FeP电流保持率为98%。
Resumen de: CN119508739A
本发明公开了一种制氢系统安全排放装置,包括地沟及其顶端固定安装的水封罐,所述水封罐顶端的中部固定连通有排空阀,所述地沟靠近底端的左侧位置上固定连通有进水管,所述进水管与水封罐的连接处安装有节流阀,所述水封罐靠近底端的右侧位置上固定连通有溢流组件,所述排空阀的顶端固定连通有排放罐。本发明通过对氢气的排放进行利用,通过持续排放的氢气将其导入至加压组件的内部,使得压力增加,并实现密封挡板的自动下移,整个过程自动完成,可快速实现溢流位置的下降,确保氢气的排放空间可以得到满足,避免传统装置因溢流位置固定导致氢气无法排出的问题,显著提高氢气的排放效率。
Resumen de: CN119505133A
本发明涉及一种螺型位错堆积亚胺共价有机框架材料的制备方法,包括制备亚胺共价低聚物步骤和制备螺型位错堆积亚胺共价有机框架材料步骤。本发明还提供了所述制备方法得到的螺型位错堆积亚胺共价有机框架材料及其在光吸收半导体材料中的应用。本发明本发明提供的制备方法简便、通用易行,且得到了螺型位错堆积结构的亚胺共价有机框架材料,材料结构明确、结晶性良好,是一种新颖的拓扑结构,在光电领域具备良好的潜在应用前景。
Resumen de: CN119506968A
本发明公开了一种多层镍钴基OER催化剂及其制备方法。多层镍钴基OER催化剂,其特征在于:所述催化剂是由支撑层、中间层以及皮层组成的三层结构,所述支撑层为泡沫镍,所述中间层为生长在泡沫镍上的镍钴层状双氢氧化物NiCo‑LDH,所述皮层为ZIF‑67,ZIF‑67镶嵌在镍钴层状双氢氧化物上。本发明制备的多层镍钴基OER催化剂能够在电催化领域中,将有机金属框架材料引入的同时避免粘结剂(如Nafion溶液)的使用,实现了MOFs材料的可控合成,从而带来优异的OER性能和稳定性,采用电镀的方法而非水热生长等其他高耗能的方式去生长ZIF‑67层,提高了制备的效率以及降低了原料的损耗,带来更高的产业化潜力。
Resumen de: CN119503964A
本发明公开了一种复合光电极及其制备方法与应用,属于光电化学分析技术领域,具体以BVO光电极为工作电极,铂网为对电极,Hg/HgO电极为参比电极,六水合硫酸镍溶液为电解液,在BVO光电极上进行光电沉积,得到BVO/B:NiOOH光电极。本发明还公开了上述制备方法制备得到的复合光电极及其在光电催化水分解中的应用。本发明通过光电沉积将B:NiOOH沉积在BVO光电极表面,显著地改善了钒酸铋自身的光腐蚀缺陷,稳定性得到明显提升。本发明提供的制备方法操作简便安全、材料易得,可实现大规模生产。
Resumen de: CN119500118A
本发明属于制氢催化技术领域,具体涉及一种中低温氨分解制氢钌基催化剂及其制备方法与应用。本发明中低温氨分解制氢钌基催化剂,包括金属活性组分、载体和促进剂,所述金属活性组分为活性金属钌,所述载体为包含金属氧化物的复合氧化铝;所述金属活性组分占催化剂的1wt%‑5wt%;所述复合氧化铝包含的金属氧化物为氧化镁和/或氧化铈,所述金属氧化物占复合氧化铝的0wt%‑30wt%;所述金属活性组分与促进剂的摩尔比为0.5‑2.0。本发明制备的钌基催化剂催化氨分解制氢的转化效率高,制备工艺简单,便于工艺扩大,钌金属投入量可控,利用率高。
Resumen de: CN119506969A
本申请涉及催化剂材料领域,具体涉及一种电化学催化氨分解制氢材料及其制备方法。一种电化学催化氨分解制氢材料,其原料包括:水合三氯化钌4‑8份,聚酰亚胺10‑20份,N‑乙酰氨基酸2‑6份,二氧化硅2‑4份,二氧化钛2‑4份,氧化铝4‑8份。本申请通过将水合三氯化钌制成钌颗粒,将聚酰亚胺、N‑乙酰氨基酸等物质混合后涂布在钌颗粒表面,然后进行煅烧制成催化材料,涂布时以N‑乙酰氨基酸作为中间层连接聚酰亚胺和钌颗粒,二氧化硅、二氧化钛、氧化铝保证材料的热稳定性,作为“骨架”支撑整个材料结构,从而使得电化学催化氨分解制氢材料成为一个牢固的整体,同时方便自由基到达钌颗粒的表面,从而提高电化学催化氨分解制氢材料的稳定性和催化性能。
Resumen de: CN119500230A
本发明公开了一种包含部分超分子链的低聚合度氮化碳纳米片和制备方法及光催化分解水同时产氢和产氧的应用,制备方法包括:将三聚氰胺与三聚氰酸加入到溶剂中,超声后搅拌,干燥,得到超分子前驱体粉末;将超分子前驱体粉末煅烧,得到包含部分超分子链的低聚合度氮化碳。本发明通过保留部分超分子含氧结构以优化低聚合度氮化碳纳米片与反应液界面水分子的吸附和解离,实现局域环境的高*H和*OH富集,促进光催化完全分解水性能提升。
Resumen de: CN119506945A
本发明公开一种双功能电催化剂及其制备方法与应用,双功能电催化剂包括铌掺杂二氧化钛载体及负载于载体上的铱纳米颗粒,载体为铌掺杂二氧化钛复合物;制备方法包括:将含钛有机物、含铌化合物加入至含有聚乙烯亚胺的酸性溶液中搅拌后,加热反应,再干燥,即得铌掺杂二氧化钛复合物;在铌掺杂二氧化钛复合物的分散液中滴入含铱化合物的溶液,梯度加热反应,洗涤干燥后,即得双功能电催化剂;本申请将铌掺杂二氧化钛作为载体防止了电化学氧化腐蚀,提高了催化稳定性;同时在载体中掺杂铌提升载体的导电性能,有利于更好的分散和锚定铱贵金属,提高了酸性环境下OER和HER的催化活性及稳定性。
Resumen de: CN119517203A
本发明涉及一种碱性电解槽多槽混联制氢优化方法,通过LSTM‑CNN循环神经网络对一定时间内的光伏发电数据进行预测,预测时间点的间隔为15分钟;再利用预测的光伏发电功率数据结合粒子群算法PSO进行碱性电解槽多槽混联中的电解槽状态的优化,优化时间点的间隔为1小时;将每个碱性电解槽设置成每个时间点的最佳状态进行氢气生产,尽可能减少碱性电解槽开关机的次数,最大程度提高碱性电解槽产氢的效率,同时延长碱性电解槽的使用寿命降低运行成本,并有效避免气体交叉渗透的安全问题,提高了系统的稳定性和安全性。
Resumen de: CN119506965A
本发明涉及电催化剂技术领域,具体为一种空位氧化锆负载纳米钌催化剂及制备方法和应用。以硝酸锆为原料,经过与氯化钌溶液的充分混合、水热得到粉末前驱体,后经热解处理,形成富含氧空位的钌氧化锆负载钌粉末的析氢反应电催化剂。本发明先将硝酸锆和氯化钌溶于乙醇,通过水热反应原子级别的结合,经过低温保护气下的碳化之后,形成结晶与非晶的氧化锆界面,以及氧化锆和钌的界面。原料主要是硝酸锆和氯化钌,成本较低,可大量制备,便于商业化,可用作性能优异的HER催化剂,具有较高催化活性和良好的稳定性,可广泛用于水电解装置中。
Resumen de: CN119506916A
一种用于提升大电流电解水制氢中电极表面气泡释放效率的方法,属于氢能制取技术领域,具体方案包括以下步骤:步骤一、向质子交换膜电解槽施加脉冲电压进行水电解制氢,施加的脉冲电流为0.5‑2A,施加的脉冲电压范围为1.4‑1.6V;步骤二、将电解液去离子水输送到质子交换膜电解槽的阳极室,从而引发氧化反应制取氢气。本发明脉冲动态电解技术通过调整电源供电方式即可实现PEMWE大电流制氢性能提升。此外,由于脉冲间歇期间电压为零,总能耗实际仅包括脉冲电压施加时间内的电能消耗,因此从能耗角度来看,脉冲动态电解技术更具优势。脉冲动态电解技术有望在PEMWE大电流制氢中促进气泡释放并缓解极化现象,提升系统的制氢效率和能量利用率。
Resumen de: CN119506956A
本发明属于光电材料技术领域,具体涉及一种Ti3C2/WO3肖特基异质结光阳极及其制备方法与应用。该光阳极的制备方法包括以下步骤:(1)在预处理后的导电玻璃的导电面上涂覆Ti3C2分散液,获得表面有Ti3C2层的导电玻璃;(2)在Ti3C2层上涂覆钨酸混合溶液,干燥后得到表面有钨酸/Ti3C2的导电玻璃;(3)将所述表面有钨酸/Ti3C2的导电玻璃以导电面朝下的方式置于用以生长WO3的前驱体溶液中进行水热反应,然后经清洗、干燥、煅烧,即得Ti3C2/WO3肖特基异质结光阳极。采用该方法制得的肖特基异质结光阳极能够促进光生载流子分离,进而提高光电催化性能。
Resumen de: AU2023433484A1
The present invention discloses an electrode plate of an electrolysis apparatus and an electrolysis apparatus to which the electrode plate is applied. A direct current power supply is connected to the electrolysis apparatus and an electrolyte is injected into the electrolysis apparatus, to convert electric energy into chemical energy. The electrode plate includes a silicon-based electrode plate made of a doped conductive silicon material. The silicon-based electrode plate is electrically connected to the direct current power supply, and a flow channel is disposed on at least one surface of the silicon-based electrode plate, so that the electrolyte is input into the electrolysis apparatus through the silicon-based electrode plate, to implement an electrochemical reaction and output a reaction product. In the present invention, on a basis of maintaining good mechanical support and sealing function, material and process costs of the electrode plate of the electrolysis apparatus are significantly reduced, an overpotential of the electrochemical reaction for producing the reaction product is reduced, and an electrolysis reaction rate per unit area in the electrolysis apparatus is increased. Therefore, an operating voltage is effectively reduced at a same electrochemical reaction rate, and energy conversion efficiency of the electrochemical reaction is finally significantly improved.
Resumen de: AU2024205678A1
An apparatus and process for pre-liquefaction processing of a fluid (e.g. hydrogen) can permit a reduction in capital costs and also an improvement in operational efficiency in flexibility. Embodiments can be configured to account for large variations in feed to be provided for liquefaction and also permit capital cost reductions associated with pre liquefaction processing so the overall capital cost for liquefaction can be greatly reduced while also providing improved operational flexibility. For instance, embodiments can be configured to utilize one or more common pre-liquefaction processing elements to treat a fluid for pre-cooling of a fluid to a pre-selected liquefaction feed temperature.
Resumen de: KR20250025892A
본 명세서에는 전이금속 카바이드(예; 철 카바이드)의 특정 면을 증가시켜, 수전해 수소발생 성능을 효율적으로 향상시킬 수 있는 전이금속 카바이드 촉매, 이를 포함하는 수전해 장치, 및 상기 촉매의 제조방법이 개시된다.
Resumen de: US2025066938A1
Provided are a porous transport layer for water electrolysis including a first layer containing first particles of a titanium group element, and a second layer containing second particles of a titanium group element. An average diameter of the first particles is larger than an average diameter of the second particles, and a surface of the first layer abutting the second layer is planarized. A method for manufacturing the same is also provided.
Resumen de: CN119506924A
本发明公开了一种无排放闭环循环氢气生产与充填系统,属于氢气生产与充填技术领域。该种无排放闭环循环氢气生产与充填系统,包括底板、水电解机构和氢气纯化机,水电解机构的底端和底板的顶端连接,底板的顶端安装有氧气储存罐、氢气储存罐、输送机构和充填机构,氢气纯化机构的底端和底板的顶端连接,水电解机构包括电解箱,电解箱的底端四角均安装有支撑座,支撑座的底端和底板的顶端固定连接,电解箱的顶端安装有箱盖,箱盖的顶端中部安装有隔膜快拆机构,箱盖的顶端两侧均安装有进水阀门,进水阀门的顶端安装有进水接口,本发明能有效实现离子隔膜快速拆卸更换,且操作较为便捷,无需双手同步操作,具有较高的实用价值。
Resumen de: CN119506932A
本发明提供了一种负载多孔镍的析氢电极制备工艺方法,所述负载多孔镍的析氢电极制备工艺方法包括通过电镀工艺将镍锌合金负载在基体上;通过碱性活化液将锌反应浸出,得到多孔镍电极。通过电镀工艺将镍锌合金负载在基体上,再通过碱性活化液将锌反应浸出,得到多孔镍电极,有助于解决现有技术中缺乏一种高效析氢电极对于碱性电解水制氢应用的技术问题。
Resumen de: CN119512308A
本发明公开了一种智能化的AEM电解槽控制系统,具体是获取制氢电源系统的发电功率,阴离子交换膜AEM电解槽的第一运行功率区间,以及碱性电解槽的第二运行功率区间;基于所述发电功率、所述第一运行功率区间和所述第二运行功率区间,控制所述AEM电解槽实际运行功率;通过分析制氢系统的运行策略,基于制氢电源系统的发电功率、AEM电解槽的第一运行功率区间和碱性电解槽的第二运行功率区间,控制碱性电解槽以及AEM电解槽的启停状态和实际运行功率,能够提升制氢系统的运行效率、可靠性及响应速率。
Resumen de: CN119506972A
本发明公开了一种智能制氢系统及方法,包括供水装置、制氢装置、纯化装置、输氢装置、泄压装置、系统监测单元、系统控制单元,本发明通过第一液位计检测水箱的液位,通过第一温度传感器检测水箱的纯水温度,通过第一电导率仪检测经水机处理后的水的电导率,以判断水的纯净程度,通过第二电导率仪检测进入电解槽中电解水的电导率、第二温度传感器检测电解槽中电解水温度,保证电解槽内的水质水温在电解要求内,通过第二液位计检测水汽分离器中析出水的液位,通过露点仪检测氢气的露点温度,通过流量计检测流经氢气出口的氢气实际输出流量,本发明能够实现水温、水位、氢气流量以及电导率等监测,确保设备安全高效运行,防止安全隐患。
Resumen de: CN119506954A
本发明公开了一种Co9S8‑Ni3S2/NCF自重构为NixCo3‑xO4‑Ov‑SO42‑/NCF增强析氧反应活性和稳定性的方法,采用Co9S8‑Ni3S2/NCF的自重构策略,制备部分镍掺杂的钴尖晶石(NixCo3‑xO4‑Ov‑SO42‑),与钴尖晶石相比,这种材料能增强从初始相中浸出SO42‑的吸附能力,以实现超过600小时的整体水分解,电流密度为1000mA cm‑2,且具备优异的活性。Co9S8‑Ni3S2/NCF转变为SO42‑吸附的镍掺杂SO42‑钴尖晶石,在1000mA cm‑2条件下实现了1000小时的析氧反应(OER)稳定性。原位拉曼光谱和XPS结果表明,部分镍原子替代钴原子增强了重构表面的SO42‑吸附能力,从而促进高密度活性位点的形成,加速了高电流密度下的界面电子转移。
Resumen de: CN119506951A
本发明公开了一种抗硫钝化的耦合节能制氢双功能电催化剂的制备方法和应用,涉及节能制氢电催化剂制备技术领域,包括:泡沫镍的预处理、MoSe2/NiSex/NF催化剂的水热还原制备以及SOR与HER的耦合应用。本发明利用泡沫镍所具备的相互连接的多孔网络和多维电子转移路径,采用高温高压的水热还原法将混合相组分锚定生长于导电基底泡沫镍骨架上,实现了多相组分的有效复合,增强传质与电荷转移,进一步提升其导电性能与电催化活性;制备的MoSe2/NiSex/NF不仅具备疏硫特性,还对S2‑转化具备选择性,使电氧化过程生成多硫化物产物而非元素硫,保持其在长期SOR过程中电催化活性,从而制备出导电性好、催化活性高、抗硫钝化的双功能电催化剂。
Resumen de: CN119506931A
本发明涉及一种干法电极极片及其制备方法。在无需使用溶剂的情况下,基于粉体电极成型方法,将粉体活性物质和粉体粘结剂通过混料、粉碎制备成尺寸均匀分布的粉体混合物,然后通过双螺杆挤出机或开炼机,将粉体粘结剂纤维化,从而制备得到干法电极极片膜,而后通过辊压设备达到目标极片膜厚度和压实密度,所述极片膜可直接制成干法电池极片,在电解水中作为催化层独立装配;本发明进一步包含结合了所述极片膜和极片基底复合的干法电池极片,在电解水中作为电极或膜电极独立装配。本发明不涉及溶剂,有效减少制备过程中溶剂使用和干燥环节的成本。
Resumen de: CN119506955A
本发明公开了一种NiSe2/VN‑C/C双功能电催化材料及其制备方法和应用,制备方法包括:取钒源与氮源置于玛瑙研钵中研磨使其混合均匀,将混合好的粉末转移至瓷舟中铺平置于管式炉中,在氩气气氛下,于700~900℃,保温2h,得到的黑色VN粉末;按照镍源与硒源的摩尔比为1:(1~2)取镍源与硒粉,按镍源与钒源的摩尔比1:(0.8~2)取VN,加入到乙二醇溶液中,搅拌均匀得到混合溶液;将混合溶液转移至高压反应釜的聚四氟乙烯内衬中,放入经过预处理的C/C复合材料,保证其被溶液浸没,密封好,最后将高压釜放置于电鼓风干燥箱内,进行溶剂热反应,结束后取出洗涤后于室温密封晾干,得到NiSe2/VN‑C/C试样;制备的NiSe2/VN‑C/C双功能电催化材料电催化性能好、稳定性好,制备方法简单、形貌可控。
Resumen de: CN119506943A
本申请属于电极材料技术领域,具体涉及一种木材衍生自支撑复合电极及其制备方法和应用,所述制备方法包括:木片与溶液A和溶液B混合进行浸渍,所述溶液A为过渡金属盐溶液,所述溶液B为盐酸溶液,得到负载过渡金属盐的木片;浸渍后的负载过渡金属盐的木片进行碳化,得到负载过渡金属盐的基质碳;碳化后的负载过渡金属盐的基质碳利用亚磷酸钠进行磷化处理,得到负载过渡金属磷化物的掺杂磷的基质碳,即为自支撑复合电极;在电催化全分解水方面具有优异的催化活性和目标产物选择性。
Resumen de: CN119506926A
本发明公开了一种基于多孔介质吸附的低浓氧气制取装置,属于制氧技术领域,包括:机体,所述机体的中部设置有输送道,所述机体的外部设置有储水箱,所述储水箱内设置有泵机,所述泵机通过管道连通输送道,所述机体远离输送道的内壁中设置有电解装置,所述输送道连通电解装置,所述电解装置包括:电解槽,所述电解槽设置在机体内;工作人员通过控制器控制储水箱中的泵机抽取电解水,电解水随即通过管道输送至输送道中,随后电解水通过输送道输送至电解槽内,控制器随即控制电解装置启动,电解装置随即对电解水进行电解,经过电解的电解水生成氢气和氧气,最后将氢气和氧气分别输送出去,进而实现了电解水制氧,从而提高了制氧的效率。
Resumen de: CN119500204A
本发明属于催化制氢技术领域,提供了一种氨基修饰碳化钛负载过渡金属的复合催化剂及其制备方法和应用。本发明的制备方法包含:将碳化钛分散在水中得到碳化钛溶液,将对苯二胺与丙酮混合得到对苯二胺的丙酮溶液;将对苯二胺的丙酮溶液滴加至碳化钛溶液得到氨基修饰碳化钛;将氨基修饰碳化钛分散在水中得到氨基修饰碳化钛溶液;将过渡金属硝酸盐、硼氢化钠和氨基修饰碳化钛溶液混合。本发明通过引入氨基,提高碳化钛载体的亲水性,稳定纳米催化体系的分散性;诱导增强载体‑金属协同作用,调整活性位点附近与电子能级相关的电子结构,优化d键中心和费米能级;氨基还可以作为质子清除剂,促进水分子中O‑H键的解离,加速氨硼烷的水解。
Resumen de: CN119500137A
本发明公开了一种花状结构的铜钴氧化物Cu0.92Co2.08O4的制备方法和应用,属于催化剂技术领域。本发明所述的制备方法包括:按3:1的摩尔比称取钴源和铜源溶于水中,加入阳离子表面活性剂,在所得混合物中加入还原剂进行还原反应,过滤,收集沉淀,水洗至中性,得到前驱体;前驱体经煅烧后即得;其中,阳离子表面活性剂为选自CTAB、DODMAC、HTAC、DDAB、苯扎氯铵和硬脂铵氯化物中的一种或两种以上的组合;其用量为钴源摩尔量的0.59~0.75倍。采用本发明所述方法制备的铜钴氧化物作为催化剂对NaBH4水解显示出良好的催化性能。
Resumen de: CN119500099A
本发明提供了一种适用于低温等离子体耦合催化氨裂解的高效催化剂,该催化剂主要由活性金属组分Ru和载体CeO2组成。通过超声浸渍法将金属Ru负载在载体上,经干燥、煅烧、研磨和筛分等步骤制得Ru/CeO2催化剂。在等离子体条件下,Ru/CeO2催化剂可以有效作用于氨分解制氢过程,氨的转化率可达90%以上,表观活化能可降低至42.8kJ/mol。与传统的热催化相比,该技术具有反应温度低、催化剂不易失活、能量消耗低等优势。
Resumen de: CN119506944A
本发明公开了一种P掺杂的Ruddlesden‑Popper型钙钛矿Sr3FeCoO7电化学催化剂及其制备方法和应用,属于电化学催化技术领域。本发明利用Ruddlesden‑Popper钙钛矿Sr3FeCoO7的可调谐电子结构和性能,掺入杂原子磷(P)来填补Sr3FeCoO7中的氧空位,从而调节O 2p中心,从而激活晶格氧并降低OER反应能垒。化学探针分析表明OER机制从AEM向LOM转变,显著提高了催化活性。在电流密度为10mA·cm‑2时,该电催化剂通过LOM途径具有较低的过电位276mV,明显优于其未掺P的化合物的性能。本发明为开发用于水分解的高性能R‑P钙钛矿提供了一种可行的方法。
Resumen de: ZA202400253B
A containerized system for producing anhydrous ammonia from air, water and a power source, includes a containerized hydrogen production unit that produces hydrogen gas from a water source by low temperature electrolyser, high temperature electrolyser, battolyser or by other methods; a containerized nitrogen production unit comprising an onboard air compression and storage unit that produces and stores pressurized air, a pressure swing adsorption process or other methods that use regenerative molecule that does not need any maintenance, which intakes compressed air and produces nitrogen gas through a series of adsorption and desorption processes, or other such methods of producing nitrogen from air; a containerized ammonia production unit comprising a gas booster that increases the pressure of a mixture of the hydrogen gas and the nitrogen gas using the pressurized air; a multi-reactor assembly joint in series or in parallel; and a recycle loop that separates the ammonia from unreacted gases.
Nº publicación: KR20250025751A 24/02/2025
Solicitante:
테크닙에너지스프랑스
Resumen de: AU2023301140A1
The invention relates to a facility for producing hydrogen, the facility comprising: - a series of n electrolysers (4) configured to electrolyse water (1) and generate a hydrogen-aqueous solution mixture (5), the series having an overall capacity of greater than 40 MW; - a gas-liquid separation device (8) configured to remove the aqueous solution contained in the hydrogen-aqueous solution mixture (5) generated by the series of n electrolysers (4) and produce a hydrogen stream (9); and - n lines (7) configured to deliver the hydrogen-aqueous solution mixture generated by the n electrolysers (4) to the gas-liquid separation device (8).