Resumen de: EP4596759A1
In order to improve robustness of a water electrolysis system, there is provided an insulating piping configured by a double tube including an inner tube (130) that connects a water electrolysis stack and an auxiliary machine and through which a fluid flows, and an outer tube (12) provided on an outer side of the inner tube (130) via the inner tube (130) and an outer tube inner space (14); in which the outer tube (12) has an insulating property, the water electrolysis stack and the auxiliary machine are insulated from each other in the inner tube (130), and a dry gas (13) having a humidity of less than or equal to a predetermined value is enclosed in an outer tube inner space (14) that is the space at a pressure of the fluid flowing inside the inner tube (130) and a pressure higher than an atmospheric pressure.
Resumen de: EP4596758A1
A water electrolysis device (1) includes a water electrolysis module (2) that generates hydrogen by water vapor electrolysis. The water electrolysis device includes: a blower (7, 8) configured to supply hydrogen to the water electrolysis module; a recycle passage configured to supply generated hydrogen generated by the water electrolysis module from the water electrolysis module to an intake port of the blower; a condenser (6) configured to condense water vapor contained in the generated hydrogen; and a temperature increasing portion (18) configured to increase a temperature of the generated hydrogen between the condenser and the blower.
Resumen de: EP4596757A1
A hydrogen production facility is disclosed, comprising a plurality of electrolyser stacks arranged for electrolyzing water using an electrolyte and for generating at least a hydrogen-aqueous solution mixture; and a hydrogen separator arrangement for producing a flow of hydrogen from the hydrogen-aqueous solution mixture; wherein the hydrogen separator arrangement comprises a plurality of first stage hydrogen collector separators, the first stage hydrogen collector separators being fluidly coupled to a respective sub-set of the plurality of electrolyser stacks; and wherein the plurality of first stage hydrogen collector separators are fluidly coupled to a downstream hydrogen buffer vessel. A related method is further disclosed.
Resumen de: EP4596756A1
Aspects of the present disclosure relate to a hydrogen production facility. The hydrogen production facility includes one or more electrolyser stacks to electrolyze water using an electrolyte and generate a hydrogen-aqueous solution mixture and an oxygen-aqueous solution mixture, the one or more electrolyser stacks comprising a plurality of membranes. The facility also includes a hydrogen separator to produce a flow of hydrogen from the hydrogen-aqueous solution mixture and an oxygen separator to produce a flow of oxygen from the oxygen-aqueous solution mixture. The hydrogen separator comprises a hydrogen gas-liquid separation device and a hydrogen coalescing device. The oxygen separator comprises an oxygen gas-liquid separation device and an oxygen coalescing device.
Resumen de: EP4596755A1
A hydrogen production facility is disclosed, comprising: a plurality of electrolysis systems to electrolyze water using lye; and a mutualized lye circulation system coupled with the plurality of electrolysis systems to circulate the lye among the plurality of electrolysis systems to facilitate electrolyzing the water, the lye circulation system comprising one or more pumps, wherein a number of the one or more pumps is less than a number of electrolysis systems of the plurality of electrolysis systems. A hydrogen production facility comprising first and second modular structures is also disclosed.
Resumen de: CN119866394A
A method for producing an ion conducting membrane comprising a membrane layer comprising a reconstitution catalyst. The film layer is made from an ink comprising a stabilized dispersion of reconstitution catalyst nanoparticles. Also provided are ion conducting membranes for electrochemical devices, such as fuel cells or water electrolysers, having a membrane layer comprising a reconstitution catalyst, the membrane layer comprising dispersed reconstitution catalyst nanoparticles, a nanoparticle stabilizer, and an ion conducting polymer.
Resumen de: KR20250118564A
본 발명의 다양한 실시예에 따른 음이온 교환막 수전해용 촉매는, 전이금속을 포함하는 코어; 및 상기 코어 상에 배치되고, 전이금속 수산화물을 포함하는 쉘을 포함할 수 있다. 본 발명의 다양한 실시예에 따른 음이온 교환막 수전해용 촉매의 제조 방법은, 제1 전이금속염, 염기성 물질 및 용매를 혼합하여 자기장 교반(magnetic stirring)하는 단계; 상기 자기장 교반한 용액에 환원제를 첨가하여 전이금속 나노섬유 스펀지를 제조하는 단계; 상기 전이금속 나노섬유 스펀지를 막으로 압축하여 제2 전이금속염이 포함된 수용액에 담지하는 단계; 상기 담지하는 단계 이후 황 전구체와 반응하는 단계;를 포함할 수 있다. 본 발명의 다양한 실시예에 따른 막전극접합체는 음이온 교환막 수전해용 촉매 또는 상기 촉매를 포함하는 촉매층을 포함할 수 있다.
Resumen de: MX2025004437A
Electrochemical cell system (100) which comprises an electrochemical cells arrangement (10), a control unit (20) configured to operate the electrochemical cells arrangement (10) only as electrolytic cells or only as fuel cells, a heat unit (40), external to the electrochemical cells arrangement (10), which is thermally coupled to the electrochemical cells arrangement (10) and which is configured to alternately store heat from the electrochemical cells arrangement (10) to the heat unit (40) and supply heat from the heat unit (40) to the electrochemical cells arrangement (10), and a transfer arrangement (30) configured to alternately transfer heat from the electrochemical cells arrangement (10) to the heat unit (40) and from the heat unit (40) to the electrochemical cells arrangement (10).
Resumen de: MX2025005140A
Cell for forming an electrolyser comprising at least one diaphragm or membrane having a first side and a second side opposite the first side, a first cell plate, arranged on the first side of the diaphragm, provided with a first electrode, provided with an inlet channel for supplying or draining electrolyte to or from the electrode, provided with a first discharge channel for discharging oxygen from the electrode, at least one second cell plate, arranged on the second side of the diaphragm, provided with a second electrode and provided with a second discharge channel for discharging hydrogen from the electrode wherein the at least one first and second cell plate are made of a polymer material.
Resumen de: CN119465247A
The invention discloses a molybdenum phosphide carbon nanosphere loaded noble metal Pt as an efficient hydrogen evolution reaction catalyst and a preparation method thereof. The preparation method of the electrochemical catalyst comprises the following steps: firstly preparing a molybdenum phosphorus carbon nanosphere precursor by a hydrothermal method, then carrying out heat treatment in a hydrogen-argon mixed gas atmosphere, and finally loading noble metal platinum by a hydrothermal method to obtain the MoP/C-Pt catalyst. According to the MoP/C-Pt catalyst prepared through the method, molybdenum phosphide carbon nanospheres serve as a carrier, Pt nano-particle aggregation is obviously inhibited through the interaction between metal and the carrier, the problems that in the electrochemical hydrogen evolution reaction, the precious metal utilization rate of the catalyst is low, and stability is poor are effectively solved, in addition, MoP has special Mo delta + and P delta-active sites, and the stability of the catalyst is improved. According to the present invention, the carbon carrier is introduced, such that the water decomposition can be catalyzed under the low potential, the conductivity of the catalyst is enhanced due to the introduction of the carbon carrier, and the catalyst can provide the excellent electro-catalysis performance especially in the acidic and alkaline electrolyte. The preparation method is simple and can be widely applied to industrial production.
Resumen de: WO2024110874A1
Methods and systems related to valorizing carbon dioxide are disclosed. A disclosed system includes a reverse water gas shift (RWGS) reactor, a carbon dioxide source connection fluidly connecting a carbon dioxide source to the RWGS reactor, an electrolyzer having an anode area and a cathode area, and a carbon monoxide source connection fluidly connecting the RWGS reactor to the cathode area. The RWGS reactor is configured to generate, using a volume of carbon dioxide from the carbon dioxide source connection, a volume of carbon monoxide in an RWGS reaction. The electrolyzer is configured to generate, using the electrolyzer and a reduction of the volume of carbon monoxide from the carbon monoxide source connection and an oxidation of an oxidation substrate, a volume of generated chemicals including hydrocarbons, organic acids, alcohol, olefins, or N-rich organic compounds.
Resumen de: KR20250117771A
원자력 발전 및 수소 생산을 위한 복합 운용 시스템 및 방법을 제공한다. 원자력 발전 및 수소 생산을 위한 복합 운용 시스템은 원자력 발전 및 수소 생산을 위한 복합 운용 시스템으로서, 제2 차 계통; 수전해를 수행하는 수전해부; 전력수요 변동량 정보를 제공받는 전력 그리드; 터빈 운전정보와 상기 수전해부의 운전정보를 제공하는 원자력 발전소 주제어부; 및 상기 전력수요 변동량 정보와 상기 운전정보를 기반으로, 원자력 발전과 수소 생산이 복합적으로 수행되도록 하기 위한 통합 운전제어부를 포함한다.
Resumen de: US2024059557A1
An exemplary hydrogen production apparatus 100 according to the present invention includes a grinding unit 10 configured to grind a silicon chip or a silicon grinding scrap 1 to form silicon fine particles 2, and a hydrogen generator 70 configured to generate hydrogen by causing the silicon fine particles 2 to contact with as well as disperse in, or to contact with or dispersed in water or an aqueous solution. The hydrogen production apparatus 100 can achieve reliable production of a practically adequate amount of hydrogen from a start material of silicon chips or silicon grinding scraps that are ordinarily regarded as waste. The hydrogen production apparatus thus effectively utilizes the silicon chips or the silicon grinding scraps so as to contribute to environmental protection as well as to significant reduction in cost for production of hydrogen that is utilized as an energy source in the next generation.
Resumen de: CN119317736A
An electrolyte membrane including a composite catalyst layer is provided. The membrane has a thickness of less than or equal to 100 mu m and is a single adhesive polymer membrane comprising a plurality of ion conducting polymer layers. The composite catalyst layer comprises particles of an unsupported composite catalyst dispersed in an ion conducting polymer, and the layer has a thickness in the range of from 5 mu m to 30 mu m and including 5 mu m and 30 mu m. Also provided are a catalyst coated film (CCM) incorporating the electrolyte membrane, and a method of manufacturing the electrolyte membrane.
Nº publicación: KR20250117814A 05/08/2025
Solicitante:
도요타지도샤가부시키가이샤
Resumen de: JP2024102507A
To provide a water electrolysis stack capable of improving durability.SOLUTION: A water electrolysis stack has a cell laminate in which a plurality of water electrolysis cells are laminated. In the cell laminate, inter-cell regions are formed in adjacent water electrolysis cells, and gas flows in the inter-cell regions during water electrolysis.SELECTED DRAWING: Figure 6