Resumen de: EP4600236A1
A hydrocarbon generation system (1) includes a hydrocarbon generator (2, 21, 22), an electrolyzer (3), a water vapor supply line (4), and a heat exchanger (51). The hydrocarbon generator generates hydrocarbon through an exothermic reaction between a carbon oxide gas and hydrogen. The electrolyzer generates hydrogen from water vapor of raw materials, the generated hydrogen being supplied to the hydrocarbon generator. The water vapor supply line generates the water vapor of the raw materials by evaporating liquid water of the raw materials and supplies the generated water vapor to the electrolyzer. The heat exchanger uses heat of a reaction generated in the hydrocarbon generator to evaporate the liquid water of the raw materials in the water vapor supply line via heat transfer oil.
Resumen de: KR20200094876A
The present invention relates to a solid oxide fuel cell and a solid oxide electrolysis cell. According to the present invention, the solid oxide fuel cell and the solid oxide electrolysis cell comprises, respectively; a flat tubular unit cell (100) having a plurality of tubular through-holes (111a, 111b) for transferring fuel gas formed in a longitudinal direction; an upper cap (200) coupled to one longitudinal end of the flat tubular unit cell (100) and blocking one end of the flat tubular unit cell (100) from the outside while communicating the plurality of tubular through-holes (111a, 111b) with each other; a cell lower slit (300) coupled to the other longitudinal end of the flat tubular unit cell (100), having an opening part (320) opening the plurality of tubular through-holes (111a, 111b) formed therein, and having an insertion groove (330) formed on a lower surface; and a manifold (400) coupled to the cell lower slit (300), having spaces (420, 430) formed therein to communicate with the plurality of tubular through-holes (111a, 111b), including a reaction gas inlet (450) through which the fuel gas is supplied and a reaction gas outlet (460) through which the fuel gas reacting with air is discharged, and dividing the spaces (420, 430) and the plurality of tubular through-holes (111) into halves to form the flow of fuel gas in a U-shape. Accordingly, since a flat tubular unit cell and a flat planar unit cell are divided into halves, respectively, inflow and outflow of t
Resumen de: EP4601053A1
An electrochemical cell stack includes at least two electrochemical cells that each contain a fuel electrode, an air electrode, and an electrolyte located between the fuel electrode and the air electrode, at least one interconnect located between the at least two electrochemical cells, and a contact layer that electrically connects the at least one interconnect and the fuel electrode of an adjacent one of the at least two electrochemical cells. The contact layer includes first wires that extend in a first direction, the first wires including thinner first wires and thicker first wires, the thicker first wires having a thickness that is larger than a thickness of the thinner first wires, and second wires that extend in a second direction different from the first direction.
Resumen de: EP4600203A1
The present disclosure provides an improved ammonia-producing plant and process for the simultaneous production of hydrogen and ammonia as end products, by integrating a hydrogen separation unit into an ammonia-producing plant. More in particular, the present disclosure provides an ammonia production plant comprising (a) a reforming section, (b) a purification section, downstream of the reforming section, and (c) an ammonia synthesis section, downstream of the purification section, wherein the plant further comprises (d) a hydrogen separation unit, wherein the hydrogen separation unit has an inlet for a hydrogen-containing gas stream, a first outlet for a pure hydrogen gas and a second outlet for a tail gas, particularly wherein the inlet of the hydrogen separation unit is in fluid communication with a hydrogen-containing gas stream in the purification section and/or in the ammonia synthesis section, and/or with a hydrogen-containing gas stream between the purification section and the ammonia synthesis section of the ammonia production plant, and, particularly, wherein the second outlet is in fluid communication with the reforming section and/or with the purification section of the ammonia production plant.
Resumen de: US2025250695A1
A platform technology that uses a novel membrane electrode assembly, including a cathode layer, an anode layer, a membrane layer arranged between the cathode layer and the anode layer, the membrane conductively connecting the cathode layer and the anode layer, in a COx reduction reactor has been developed. The reactor can be used to synthesize a broad range of carbon-based compounds from carbon dioxide and other gases containing carbon.
Resumen de: EP4600408A1
An anode for electrolysis in which electrolysis performance is less likely to deteriorate even when electric power having a large output fluctuation, such as renewable energy, is used as a power source and in which excellent catalytic activity is stably maintained for a long period of time is provided. The anode for electrolysis 10 includes a conductive substrate 2 in which at least a surface of the conductive substrate 2 is formed of nickel or a nickel-based alloy; and a first layer 4 formed on the surface of the conductive substrate 2, the first layer 4 being capable of functioning as a catalyst layer containing a lithium-containing nickel cobalt oxide represented by a composition formula LixNiyCo2O4 (0.05 ≤ × ≤ 1.0, 1.0 ≤ y ≤ 2.0, 1.0 ≤ z ≤ 2.0, and x + y + z = 2 to 3).
Resumen de: AU2023397261A1
The invention relates to an electrolysis system (1) with a pressure electrolyzer (3) for generating hydrogen (H
Resumen de: EP4600407A2
An electrolysis system (10) includes: an electrolysis cell (20) configured to generate hydrogen by high-temperature steam electrolysis; a steam generation unit (30) that has a refrigerant heat exchange unit configured to perform heat exchange between heat of a heat storage unit and a refrigerant, generates a steam by heating raw material water via the refrigerant subjected to the heat exchange in the refrigerant heat exchange unit, and supplies the steam to the electrolysis cell; a heat storage supply unit (50) that has the heat storage unit and configured to supply heat of the heat storage unit to the refrigerant heat exchange unit; and a control unit (70) configured to control the heat storage supply unit such that an amount of heat input to the refrigerant heat exchange unit is smaller during a system startup or during a high-temperature standby than during a normal operation.
Resumen de: CN120400877A
The invention provides a water electrolysis system capable of ensuring cooling of a water electrolysis cell and suppressing deterioration of durability of the water electrolysis cell. A water electrolysis system for obtaining hydrogen from a hydrogen electrode by supplying water to an oxygen electrode of a water electrolysis cell and applying a voltage to the water electrolysis cell, the water electrolysis system having a cooling fluid path for supplying a cooling fluid different from the water supplied to the oxygen electrode to the water electrolysis cell through a flow path different from a flow path through which the water is supplied to the oxygen electrode.
Resumen de: US2025250698A1
Disclosed herein are a catalyst for a hydrogen evolution reaction, a water electrolysis electrode including the same, and a method of manufacturing the same, wherein the catalyst can be manufactured at room temperature, and catalyst diversity can be given through an alloy structure including ruthenium and two or more metals. According to the present disclosure, the catalyst can be manufactured at room temperature due to characteristics of an electroplating manufacturing method, and the catalyst diversity can be given through the alloy structure that includes ruthenium and two or more metals.
Resumen de: CN120465055A
本发明涉及贵金属与难熔多主元基底结合的高熵合金催化剂、制备方法和酸性OER应用。该催化剂是由难熔金属组元A和贵金属活性组元B形成的高熵合金,成分表达式为AxBy,A选自Ta,Nb,Hf,Zr,Ti,W,Mo中的多种,B选自Ir,Os,Ru中的至少一种。通过物理冶金合金化调控前驱体组织结构,并通过脱合金技术获得树枝状难熔金属组元支撑颗粒状活性组元的独特结构,可直接用于酸性OER催化剂,在大电流密度工作条件下兼具活性和稳定性,同时具有低贵金属用量及可宏量制备的特色,具有作为PEM电解槽催化剂的实际应用潜力。
Resumen de: CN120400870A
The present disclosure relates to a water electrolysis cell, and a stack of water electrolysis cells stacked with water electrolysis cells. Provided is a water electrolysis cell in which the concentration of hydrogen reaching the oxygen-generating electrode side is reduced to the concentration before the concentration is increased, with a simple configuration. The water electrolysis cell is provided with an electrolyte membrane, a catalyst layer, and a diaphragm through which a fluid flows, and generates hydrogen and oxygen by supplying water and applying a voltage thereto, in which a hydrogen reaction catalyst for promoting a reaction between hydrogen and oxygen is provided at a site where the generated oxygen and the remaining water flow on the surface of the diaphragm on the oxygen generation electrode side.
Resumen de: WO2024133737A1
The invention relates to a metal body comprising a substrate (1) made of a metal material. At least one first layer (L1) made of Ni-X-Y is deposited onto the surface of the substrate (1), wherein X is a chemical element which is selected from Al, Zn, Mg, Mn, Sn and/or a plurality of the aforementioned elements and Y is a chemical element which is selected from Mo, Cr, Fe, Cu, Co, Ti, V, Ce and/or a plurality of the aforementioned elements. The at least one first layer (L1) has at least two lamellar regions with different phases in terms of the ternary phase diagram. In order to increase the specific surface area of the at least one first layer (L1), at least one of the lamellar phases which form a region of the at least one first layer (L1) is completely or partially leached.
Resumen de: CN120380621A
A solid oxide cell stack has a combined flow distributor and contact enabler made of a pressed metal foil with diversion structures and contact regions between interconnect layers and cell layers in the stack.
Resumen de: US2025250688A1
An electrolysis system includes: an electrolysis cell configured to generate hydrogen by high-temperature steam electrolysis; a steam generation unit that has a refrigerant heat exchange unit configured to perform heat exchange between heat of a heat storage unit and a refrigerant, generates a steam by heating raw material water via the refrigerant subjected to the heat exchange in the refrigerant heat exchange unit, and supplies the steam to the electrolysis cell; a heat storage supply unit that has the heat storage unit and configured to supply heat of the heat storage unit to the refrigerant heat exchange unit; and a control unit configured to control the heat storage supply unit such that an amount of heat input to the refrigerant heat exchange unit is smaller during a system startup or during a high-temperature standby than during a normal operation.
Resumen de: JP2025116859A
【課題】シート状チタン多孔質を高効率で、かつ歩留まり良く製造可能な方法を提供すること。【解決手段】この製造方法は、少なくとも一つの貫通孔を有する少なくとも一つのステージ、少なくとも一つのステージを囲み、少なくとも一つのステージから離隔するフレーム、および少なくとも一つのステージとフレームを互いに連結する少なくとも一つの連結部を備える治具上に、少なくとも一つの貫通孔および少なくとも一つのステージとフレーム間の隙間を覆うように、チタン多孔質体を含むマザーシートを配置すること、マザーシートを治具上に吸着すること、ならびに隙間に沿って、ファイバレーザから射出されるレーザ光をマザーシート上で走査することによってマザーシートを切断することを含む。【選択図】図6B
Resumen de: US2025250694A1
A membrane electrode assembly includes a cathode portion disposed on one end and an anode portion disposed on an opposite end from the cathode portion. The membrane electrode assembly also includes a cathode ionomer layer disposed adjacent the cathode portion and an anode ionomer layer disposed adjacent the anode portion. Further, the membrane electrode assembly may include one or more support layers disposed between the cathode ionomer layer and the anode ionomer layer. Additionally, the anode ionomer layer includes a plurality of gas recombination catalysts in a graded dispersion such that a portion of the anode ionomer layer disposed closer to the anode portion includes a higher concentration of gas recombination catalysts than a portion of the anode ionomer layer disposed closer to the cathode portion.
Resumen de: CN120440986A
本发明涉及一种具有片状纳米花形貌的镍铁层状双氢氧化物及其制备方法与应用,该镍铁层状双氢氧化物的制备方法包括以下步骤:S1、将乙酸镍溶解于有机溶剂或有机溶剂与水的混合溶剂中制备第一溶液;将亚铁盐溶解于水中制备第二溶液;S2、将第一溶液和第二溶液混合均匀得到混合溶液,经静置陈化得到所述镍铁层状双氢氧化物。该方法操作简单,反应条件温和,设备成本低,合成过程绿色环保;且由上述方法制备的NiFe‑LDH呈现三维纳米花结构,形貌均一,具有高比表面积,可提供更多的活性位点,作为催化剂用于电解水析氧表现出优异的电催化性能,在电化学储能、电催化以及催化氧化等领域具有广阔的应用前景。
Resumen de: CN120443232A
本发明属于碱性电解水制氢领域,具体涉及自活化高熵合金OER催化电极及其制备方法和碱性OER应用。该高熵合金的成分为AxBy,A由Fe、Co、Cr、Ni中至少两种元素组成,B为W、Mo或其组合。其中,优选高熵合金(FeCoCrNi)xWy具有共晶结构,基于共晶高熵合金混合焓特性,通过合金化和物理冶金手段可以实现共晶组织调控;其次,这种共晶高熵合金不需要任何处理可以直接用作碱性OER催化电极,在碱性环境大电流密度条件下进行OER过程中会自发活化,自重构形成多孔结构,极大提高材料比表面积,改善传质、气体扩散过程,提升材料催化性能。
Resumen de: CN120391000A
An electrochemical cell system (100) comprising: an electrochemical cell arrangement (10); a control unit (20) configured to operate the electrochemical cell arrangement (10) only as an electrolytic cell or as a fuel cell; a heating unit (40) located outside the electrochemical cell arrangement (10), the heating unit being thermally coupled to the electrochemical cell arrangement (10) and the heating unit being configured to alternately store heat from the electrochemical cell arrangement (10) to the heating unit (40) and supply heat from the heating unit (40) to the electrochemical cell arrangement (10); and a transfer arrangement (30) configured to alternately transfer heat from the electrochemical cell arrangement (10) to the heating unit (40) and from the heating unit (40) to the electrochemical cell arrangement (10).
Resumen de: US2025250687A1
A water electrolysis system includes a flow rate adjusting valve for relatively changing a first flow rate which is a flow rate of water flowing through a first flow path portion extending from a first water lead-out unit, and a second flow rate which is a flow rate of water flowing through a second flow path portion extending from a second water lead-out unit.
Resumen de: WO2025165039A1
The present invention relates to a high-efficiency hydrogen production system by a direct air capture method using renewable energy. According to an embodiment of the present invention, the high-efficiency hydrogen production system comprises: a direct air capture device in which a chemical reaction occurs when an alkaline liquid mixture containing a specific component, such as potassium hydroxide or sodium hydroxide, is brought into contact with air, to capture carbon dioxide from the air; an electrolysis tank into which pure water and the sodium carbonate or potassium carbonate solution generated in the process of the chemical reaction for capturing carbon dioxide in the direct air capture device are introduced and then electrolyzed by using renewable energy including solar or wind power generation energy, to generate a gas containing hydrogen and a liquid containing potassium hydroxide or sodium hydroxide and separate and extract the generated gas and liquid; a gas storage tank in which the gas separated and extracted from the electrolysis tank is stored; and a liquid storage tank in which the remaining liquid after the gas is separated and extracted from the electrolysis tank is stored and potassium hydroxide or sodium hydroxide contained in the liquid is reintroduced into the direct air capture device.
Resumen de: KR20250120072A
본 발명의 일 실시예에 따른 캐스케이드 방식의 고체산화물 수전해셀 시스템은 캐스케이드 방식의 고체산화물 수전해셀 시스템은 스팀을 공급하는 스팀 공급부; 에어를 공급하는 에어 공급부; 스팀 공급부로부터 스팀을 공급받아 수소를 포함하는 반응 생성물로 변환하는 적어도 하나 이상의 스택을 포함하는 고체산화물 수전해셀; 고체산화물 수전해셀에서 배출되는 고온의 반응 생성물을 스팀 공급부에서 고체 산화물 수전해셀로 공급되는 스팀과 열 교환하는 제1 열 교환기; 제1 열 교환기를 통해 열 교환된 반응 생성물을 응축하는 응축기; 응축기를 통해 수증기가 제거된 수소를 저장하는 수소 저장부; 응축기를 통해 수증기가 제거된 수소의 일부를 스팀 공급부에서 고체산화물 수전해셀로 공급되는 스팀에 혼합되도록 재순환하는 수소 재순환 블로어; 고체산화물 수전해셀에서 배출되는 고온의 에어를 에어 공급부에서 고체산화물 수전해셀로 공급되는 에어와 열 교환한 후 배출하는 제2 열 교환기; 고체산화물 수전해셀에서 배출되는 고온의 에어의 일부를 다시 고체산화물 수전해셀에서 유동하는 에어에 공급되도록 재순환하는 에어 재순환 블로어; 배관 어셈블리; 및 제어부; 를 포함한다.
Resumen de: CN120202324A
The invention relates to a stack module having at least one solid oxide electrolysis stack comprising a plurality of stacked solid oxide electrolysis cells, in which the stack module comprises two gas inlet connections and two gas outlet connections. According to the invention, at least one solid oxide electrolysis stack is encapsulated in a metal container, with two gas inlet connections and two gas outlet connections connected to the metal container. The invention further relates to a solid oxide electrolyzer having at least one stacked module and to a method for replacing a stacked module of a solid oxide electrolyzer.
Nº publicación: CN120457293A 08/08/2025
Solicitante:
NOK\u682A\u5F0F\u4F1A\u793E
Resumen de: WO2024142618A1
A gasket device (1) comprises a gasket (2) and a spacer (3). The spacer (3) supports separators (101, 102) which are members facing each other and an electrolyte membrane (104) between the separators (101, 102) and the electrolyte membrane (104) such that the separators (101, 102) and the electrolyte membrane (104) face each other via spaces (100a, 100b). The gasket (2) surrounds the space (100a) or the space (100b) between the separator (101) or the separator (102) and the electrolyte membrane (104). Moreover, the spacer (3) surrounds the gasket (2) from the outer side between the separators (101, 102) and the electrolyte membrane (104). The gasket (2) and the spacer (3) are in contact with each other in the expanding direction of the spaces (100a, 100b).