Resumen de: CN120719337A
本本发明涉及基于等离激元增强机制的高效光催化分解水制氢材料及其制备方法。所述材料包括:以多孔TiO2纳米管阵列为基体,管径为50~200nm,壁厚为10~50nm;在其表面负载粒径为5~20nm的Au‑Ag双金属纳米颗粒,Au与Ag摩尔比为1:3至3:1,用于激发表面等离激元共振效应;进一步在其外表面沉积二维MoS2纳米片作为共催化剂,厚度为1~5nm;并在整体表面沉积1~3nm厚的超薄碳层以提升光吸收与稳定性。本发明还提供了该光催化材料的制备方法,依次包括TiO2阳极氧化、水热沉积MoS2、光沉积金属纳米颗粒和CVD碳层包覆等步骤。所制材料在太阳光驱动下表现出优异的氢气产率与稳定性,具有广阔的光催化制氢应用前景。
Resumen de: AU2024211141A1
The invention provides an electrolyser system (10) comprising a heat storage unit (14) and an electrolyser (16). The heat storage unit (14) comprises at least one heat source infeed. The electrolyser (16) comprises at least one electrolyser cell (20), a steam inlet and at least one off-gas outlet. The off-gas outlet is connected to the heat source infeed to heat the heat storage unit (14). The heat storage unit (14) is configured to use its stored heat to produce steam for feeding into the steam inlet and for generating electrical power, either one at a time or both at the same time. The invention also provides a system comprising an intermittent or variable electricity source (12) and an electrolyser system (10) as defined above. The intermittent or variable electricity source (12) can be configured to power the electrolyser (16) and to heat the heat storage unit (14) via a heating element, either both at the same time or individually.
Resumen de: TW202502644A
A process for the catalytic cracking of ammonia, the process comprising: supplying an ammonia feed gas to one or more heated catalyst containing reaction vessels disposed within an ammonia cracking reactor; and cracking the ammonia in the ammonia feed gas in the one or more catalyst containing reaction vessels to produce a hydrogen containing stream, wherein the or each of the reaction vessels has a wall which is composed of at least a first alloy and a second alloy, wherein the first alloy is more resistant to nitriding than the second alloy and the second alloy provides mechanical support to the first alloy, and wherein at least a portion of the wall adjacent the catalyst is composed of the first alloy.
Resumen de: KR20250142090A
본 발명은, (a) 제1 전이금속 소스, 제2 전이금속 소스 및 금속 소스를 포함하는 혼합 용액을 제조하는 단계; (b) 작업전극(working electrode) 및 상대전극(counter electrode)을 상기 혼합 용액 내에 위치시키는 단계; 및 (c) 상기 작업전극 및 상기 상대전극의 양단에 변화하는 전압을 인가함으로써 상기 작업전극에 변화하는 전위를 순환전압전류법에 따라 인가하는 단계;를 포함하고, 상기 (c) 단계는, 상기 혼합 용액 내 포함된 제1 전이금속, 제2 전이금속 및 금속이 이온화되어, 금속 단일원자가 올라간 전이금속 기반 층상 이중 수산화물(LDH)이 상기 작업전극의 표면에 형성되는 단계인, 수전해용 촉매전극의 제조방법, 이에 의해 제조되는 수전해용 촉매전극, 및 이를 포함하는 수전해 장치가 제공된다.
Resumen de: WO2024162842A1
A method of generating hydrogen and oxygen from a liquid feed stream through an integrated system of forward osmosis and electrolysis, wherein the method comprising the steps of feeding water into an electrolyte solution by means of forward osmosis and applying a voltage across the electrolyte solution to generate hydrogen and oxygen, characterized in that the electrolyte solution comprising an electrolyte, an ionic liquid and a solvent, wherein the electrolyte is used in an amount ranging between 1 wt% to 10 wt% of the electrolyte solution, wherein the ionic liquid is used in an amount ranging between 1 wt% to 5 wt% of the electrolyte solution and wherein the solvent is used in an amount ranging between 75 wt% to 99 wt% of the electrolyte solution.
Resumen de: CN120714626A
一种稀土氧化物后负载型钌基氨分解催化剂、制备方法及其在氨分解制备氢气中的应用,属于制氢技术领域。该氨分解催化剂以氧化物或碳材料为载体,首先负载钌金属形成活性中心,随后采用后负载方式引入稀土氧化物,调控金属‑载体界面的结构与电子特性,最终经还原处理获得具有高分散性与稳定性的氨分解催化剂,显著提升了低温氨分解性能与运行稳定性。在400℃、氨气空速18000mL·gcat‑1·h‑1条件下,该催化剂的氨转化率接近热力学极限,并具有良好抗烧结和抗中毒能力。该催化剂制备工艺简便、可规模化生产,适用于各类氨分解制氢场景,尤其适合分布式与按需式制氢系统,为氢能高效利用与绿色转化提供有力技术支撑。
Resumen de: US2025283237A1
A method can include: processing precursors, electrochemically oxidizing an anolyte and reducing a catholyte in an electrolyzer, and cooperatively using the oxidized anolyte and reduced catholyte in a downstream process. The electrolyzer can include an anode, a cathode, and a separator. The anode can include an anolyte, an electrode, an anolyte reaction region. The cathode can include a catholyte, an electrode, a catholyte reaction region.
Resumen de: CN120715229A
本发明涉及电解水制氢技术领域,具体公开一种利用搅拌摩擦增材制备铜铁合金的方法。本发明以价格低廉的铜粉和铁粉为原料,经过球磨处理增大粉末的比表面积、促进原子扩散,然后通过热等静压使粉末初步结合形成致密棒材,再以热等静压制备的棒材为原料进行增材制造,搅拌摩擦增材通过摩擦产热使材料处于塑性状态,在机械搅拌作用下进一步推动铁、铜原子的充分扩散与混合,从而实现过饱和固溶,解决了常规方法难以实现高含量铁在铜中固溶的难题,在析氢催化等领域展现出巨大应用潜力,为高性能铜铁合金材料的制备提供了一种切实可行的新途径。
Resumen de: CN120714684A
本发明公开了一种氮修饰的钨酸镍纳米棒自支撑催化剂及其制备方法以及在电解海水制氢中的应用,所述催化剂是以泡沫镍或者镍网为导电基底,其中导电基底的表面生长有经过氮修饰的钨酸镍纳米棒阵列;制备时,首先将泡沫镍或镍网导电基底进行预处理,接着与含镍离子、钨酸根和硝酸根的反应溶液进行水热反应,最后在管式炉中,采用尿素作为N源进行N修饰改性即得;本发明的制备方法简单,成本低廉,通过N元素来调控催化剂的电子结构,所得氮修饰的钨酸镍纳米棒自支撑催化剂具有优异的电解海水制氢活性,同时具有优异的海水制氢稳定性,有利于电解海水制氢的广泛应用。
Resumen de: CN120719323A
本发明涉及电解催化技术领域,具体涉及CoSe2/Fe3O4复合纳米异质结构电催化剂及其制备方法和应用。CoSe2/Fe3O4复合纳米异质结构电催化剂的制备方法包括如下步骤:S1、将PB纳米管和四水合乙酸钴加入水中,搅拌得到浑浊溶液;将浑浊溶液在油浴条件下搅拌加热,然后以6000‑10000rpm的转速离心并收集沉淀物;沉淀物洗涤后调节pH为4.6‑5.4,干燥后得到Co掺杂的PB纳米管;S2、将硒粉和Co掺杂的PB纳米管分别置于管式炉的上、下游,煅烧得到CoSe2/Fe3O4复合纳米异质结构电催化剂。本发明制备方法得到的CoSe2/Fe3O4复合纳米异质结构电催化剂具有优异的电催化析氧性能。
Resumen de: MX2025008965A
The present application relates to a flow field for use in an electrolysis cell comprising one or more sheets of porous material with a corrugated structure. The electrolysis cell comprises a membrane, an anode, a cathode, an anode reinforcement layer, a cathode reinforcement layer, an anode flow field, a cathode flow field, and a bipolar plate assembly comprising an embedded hydrogen seal. The anode flow field comprises one or more porous sheets having at least one straight edge and at least one of the porous sheets has the form of a corrugated pattern with a plurality of peaks and valleys whose axes are generally aligned with one straight edge of the sheet. The anode flow field geometry simultaneously provides resiliency, for efficient mechanical compression of the cell, and well-distributed mechanical support for the anode reinforcement layer adjacent to the anode flow field.
Resumen de: KR20240033364A
The present specification relates to an electrode catalyst for water electrolysis, a water electrolysis battery including the same, and a manufacturing method thereof. A water electrolysis battery including an electrode catalyst for water electrolysis according to an embodiment of the present invention has excellent oxygen generation activity and durability, and a method for manufacturing an electrode catalyst for water electrolysis according to an embodiment of the present invention exhibits an effect of enabling mass production and scale-up.
Resumen de: KR20250142089A
본 발명의 무스케일 전극 및 무막 전기분해를 이용한 수소생산장치는 전원부로부터 전원(DC)을 인가받아 여과수 또는 전해질 수용액을 전기분해하여 수소와 산소를 발생시키는 양극플레이트 및 음극플레이트와; 여과수 또는 전해질 수용액을 양극플레이트와 음극플레이트로 공급할 수 있도록 양극플레이트와 음극플레이트의 사이에 설치되는 흡습성플레이트와; 양극플레이트와 음극플레이트의 양측 각각에 설치되는 전극접합체와; 양극플레이트와 음극플레이트, 흡습성플레이트 및 전극접합체의 중앙에 설치되는 공급관과; 양극플레이트, 음극플레이트 및 흡습성플레이트가 결합되는 결합링과; 전기분해에 의해 발생되는 수소와 산소가 배출되며 유입되는 처리수 또는 전해질 수용액의 누출이 방지되게 결합링의 양측단에 각각 결합되는 복수의 고정판과; 공급관의 양측단에 각각 결합되는 복수의 결합관;을 포함하여 구성되는 것을 특징으로 하며, 유격막 방식의 문제점을 해결하고자 격벽을 설치하지 않고 다공성 전극을 사용함으로 유격막 방식의 효과를 발휘되면서 기존의 전기분해에서 대두되는 막(Membranes)을 사용하지 않으면서 수소의 생산에 따른 신뢰도를 높이고, 이산화탄소 무배출로 기후 온난화 문제 해결과 동시
Resumen de: WO2024162841A1
An electrolyte solution comprising an electrolyte, wherein the electrolyte is used in an amount ranging between 1 wt% to 10 wt% of the electrolyte solution; an ionic liquid, wherein the ionic liquid is used in an amount ranging between 1 wt% to 5 wt% of the electrolyte solution; and a solvent, wherein the solvent is used in an amount ranging between 75 wt% to 99 wt% of the electrolyte solution.
Resumen de: US2025296836A1
In a process in which ammonia is cracked to form a hydrogen gas product and an offgas comprising nitrogen gas, residual hydrogen gas and residual ammonia gas, residual ammonia is recovered from the offgas from the hydrogen recovery process by partial condensation and phase separation, and hydrogen is recovered from the resultant ammonia-lean offgas by partial condensation and phase separation. The recovered ammonia may be recycled the cracking process and the recovered hydrogen may be recycled to the hydrogen recovery process to improve hydrogen recovery from the cracked gas. Overall hydrogen recovery from the ammonia may thereby be increased to over 99%.
Resumen de: CN120719312A
本发明属于电催化材料技术领域,尤其涉及一种Co9S8‑C/C自支撑电催化材料及其制备方法与应用。所述Co9S8‑C/C自支撑电催化材料包括作为载体的C/C复合材料基底和均匀负载于所述C/C复合材料基底的Co9S8。本发明以C/C复合材料为载体,通过热浸渍法在载体表面生长Co9S8电催化材料。该自支撑电催化材料的制备方法极为简便,绿色无污染,原料成本低,在碱性环境中电催化活性良好,且在大电流下仍具有优异的析氢性能。
Resumen de: CN120719316A
本发明公开了一种钌原子锚定的NiCoP/NF催化剂及其制备方法与应用,属于催化技术领域,解决了现有技术中水分解反应催化剂催化效果不够理想的问题。本发明提供的钌原子锚定的NiCoP/NF催化剂,其形态为仙人掌状,钌原子以单个原子的形式均匀分散在NiCoP/NF表面。本发明使用了“单原子工程”策略,将高活性钌(Ru)以单原子形式均匀分散在双金属磷化物(NiCoP/NF)表面,显著提升了全水分解的反应活性。
Resumen de: CN120719310A
本发明提供一种膜电极结构体的制造方法。在第1层叠体提供工序(S1a)中,提供离子交换容量小于规定值的第1离聚物原料(71)与第1电极(44)层叠而成的第1层叠体(70)。在第2层叠体提供工序(S1b)中,提供离子交换容量为规定值以上的第2离聚物原料(73)与第2电极(46)层叠而成的第2层叠体(72)。在基材提供工序(S1c)中,提供电解质基材(74)。在溶胀工序(S2)中,使第1层叠体(70)、第2层叠体(72)和电解质基材(74)溶胀。在接合工序(S3)中,将电解质基材(74)与第1层叠体(70)的第1离聚物原料(71)接合,并且将电解质基材(74)与第2层叠体(72)的第2离聚物原料(73)接合。据此,能够抑制电解效率的下降和电解质膜劣化的加剧。
Resumen de: CN120719340A
本申请涉及氢气的电解生产领域,提供一种水电解制氢装置控制系统,该方法包括:所述水电解制氢装置包括:用于电解产生氢气的电解槽、用于对所述电解槽提供电流的整流部件、用于向电解槽输入和输出电解液的循环液路、用于分离氢气与电解液的氢分离器以及用于分离氧气与电解液的氧分离器;所述电解槽包括多个电解小室;所述水电解制氢装置控制系统包括处理器,所述处理器用于获取所述水电解制氢装置的性能指标,并根据所述性能指标对各个电解小室的控制参数进行调节,确定存在异常的电解小室;其中,所述性能指标至少包括:温度指标、压力指标,所述温度指标为循环液路的温度,所述压力指标为电解槽的压力。
Resumen de: CN120714646A
一种超薄氮化碳/铁酸铋压电催化复合材料的制备方法,包括如下步骤:S1.将氮化碳前驱体放于坩埚中,在马弗炉内煅烧得到块状碳化氮,研磨后过筛;将过筛后的氮化碳细粉放入马弗炉中二次煅烧,获得超薄氮化碳;S2.将铁酸铋纳米片分散于去离子水中,加入步骤S1得到的超薄氮化碳磁力搅拌4~6h,用去离子水洗涤后干燥,得到超薄氮化碳/铁酸铋压电催化复合材料。所制得的复合材料同时具备高氧化性和还原性,在纯水中产氢的同时也可高效生产双氧水。采用两步热剥离法得到g‑C3N4,无需其他化学试剂的参与或长时间的超声,降低了价格和时间成本。
Resumen de: CN120719306A
本发明涉及一种电解制氢用电解槽装置,包括:两组相对设置的安装机构;两组安装机构之间设有隔膜机构,并且相邻的隔膜机构反转设置;安装机构、隔膜机构之间分别密封夹设有电极机构,并且相邻的电极机构反转设置;安装机构上穿设有紧固机构。本发明的一种电解制氢用电解槽装置,渗透膜侧电极板参与电离提高产气量、防止电极板损坏渗透膜;端面上进行过液槽的加工,更为简单、方便;保留原有主极板的结构强度,增大与主极板的接触,降低接触电阻,提高安全性;优化各部件的通用性。
Resumen de: CN120717527A
本发明提供了一种可控爆炸生产纳米氧化铱的方法,涉及氧化铱的制备技术领域。本发明将碳材料与氯铱酸溶液混合,进行铱离子吸附,得到吸附浆料;所述碳材料的比表面积为300m2/g以上;所述氯铱酸溶液的溶剂为水或乙醇;将所述吸附浆料与硝酸盐混合,得到反应物浆料;将所述反应物浆料以喷雾方式喷入反应炉腔内,发生微爆炸,形成纳米氧化铱;所述反应炉腔的温度为300~500℃。相比于传统的一锅法合成方法,本发明通过连续的喷雾进料方式实现了反应的等分切割,且反应前驱体添加了高比表面积的碳材料,起到了空间阻隔作用,产物团聚得到了有效缓解,因而得到的纳米氧化铱颗粒小,且尺寸均一,电催化析氧反应活性高。
Resumen de: CN120719331A
本发明涉及高熵氧化物和电催化剂合成技术领域,涉及一种双相中空高熵氧化物催化剂及其制备方法和应用,该双相中空高熵氧化物催化剂,所述双相中空高熵氧化物催化剂包含金属元素和非金属元素,其中,所述金属元素包括钌、镍、钴、铁、锰和铬;所述非金属元素为氧;所述双相中空高熵氧化物催化剂的化学式为NiCoFeMnCrRuO。该双相中空高熵氧化物催化剂具有多壳层中空结构,提供了更大的比表面积,暴露了大量的反应活性位点,使双相中空高熵氧化物催化剂拥有更低的过电位、更快的反应效率以及良好的电化学稳定性,同时该双相中空高熵氧化物催化剂的制备方法工艺简单,成本低,可重复性强,适用于工业大批量生产,具有广阔的应用前景。
Resumen de: CN120714563A
本发明涉及一种光催化产氢装置,包括制氢组件,制氢组件包括制氢箱、氢气干燥机和气泵,且制氢箱、氢气干燥机和气泵相连通,气泵一侧设置有气阀组件,气阀组件包括气阀箱,气阀箱内部设置有阀门组件,阀门组件与气泵之间固定连接有输气管,本发明能够通过气泵吸收制氢箱产生的氢气,并排入储气罐内,同时通过阀门组件、调节组件和拉伸组件,在储气罐填满后,自动更换另一个储气罐进行注入,实现两个储气罐交替注入,提高了氢气的收集效率,另外,当两个储气罐内的氢气均充满,而工作人员依旧没有对储气罐进行拆卸更换时,通过提醒组件,能够对附近的工作人员起到提醒的作用,促使工作人员及时对储气罐进行更换。
Nº publicación: CN120719328A 30/09/2025
Solicitante:
中国计量大学
Resumen de: CN120719328A
本发明属于电催化分解水制氢技术领域,具体涉及一种外场极化处理的氢氧化镍@铁酸铋复合电催化剂(Ni(OH)2@BiFeO3‑P)及其制备方法。所述方法包括:首先通过水热法合成铁酸铋(BiFeO3)粉末;随后以铁酸铋粉末为基底,在含镍前驱体溶液中再次进行水热反应,使Ni(OH)2纳米颗粒在BiFeO3纳米片表面原位生长,形成Ni(OH)2@BiFeO3复合电催化剂;最后,对该复合电催化剂施加高压直流电场(1~10kV,保压20~50min)进行外场极化处理。该极化处理诱导BiFeO3铁电畴定向排列,增强其内置电场强度,驱动电子向Ni(OH)2转移并优化催化剂表面电荷分布状态。本发明提供的方法显著提升复合电催化剂析氧反应(OER)活性和电荷转移效率,为开发高性能电催化剂提供了创新性解决方案。