Ministerio de Industria, Turismo y Comercio LogoMinisterior
 

Alerta

Resultados 757 resultados
LastUpdate Última actualización 01/10/2025 [07:07:00]
pdfxls
Publicaciones de solicitudes de patente de los últimos 60 días/Applications published in the last 60 days
previousPage Resultados 550 a 575 de 757 nextPage  

Hydrogen production system using ammonia and its control method

NºPublicación:  KR20250125178A 21/08/2025
Solicitante: 
제이엔케이글로벌주
KR_20250125178_PA

Resumen de: KR20250125178A

본 발명은 수소 생산 원료인 암모니아를 가열하여 분해 반응을 수행하기 위한, 시스템의 준비(start-up), 시스템 질소 퍼징 및 버너 공기공급, 분해반응기 승온, 암모니아 공급, 분해가스 생성확인 및 시스템 정지(shut-down)를 순차적으로 수행하는 정제된 수소를 생산하는 암모니아를 이용한 수소 생산 시스템 및 그 제어방법에 관한 것이다.

METHOD OF PRODUCING H2 AND/OR BR2 BY ELECTROLYSING HBr USING FLUOROPOLYMER MEMBRANES

NºPublicación:  US2025263859A1 21/08/2025
Solicitante: 
TOTALENERGIES ONETECH [FR]
TOTALENERGIES ONETECH
US_2025263859_PA

Resumen de: US2025263859A1

A method of producing hydrogen and/or bromine by electrolysing hydrogen bromide using a fluoropolymer membrane having a glass transition temperature Tg≥110° C. in an electrolysis of hydrogen bromide, wherein the hydrogen bromide stems from a sulfuric acid synthesis.

ORGANIC HYDRIDE GENERATION SYSTEM, CONTROL DEVICE FOR ORGANIC HYDRIDE GENERATION SYSTEM, AND CONTROL METHOD FOR ORGANIC HYDRIDE GENERATION SYSTEM

NºPublicación:  US2025263853A1 21/08/2025
Solicitante: 
ENEOS CORP [JP]
ENEOS Corporation
US_2025263853_PA

Resumen de: US2025263853A1

A control device includes a controller that controls a first power supplier structured to supply power to an electrolytic bath for generating an organic compound and a second power supplier different from the first power supplier and structured to supply power to the electrolytic bath. The controller controls the second power supplier based on a change in a voltage between a cathode electrode and an anode electrode provided in the electrolytic bath to a specified voltage, a change in a potential of the cathode electrode to a specified potential ECA1, or a change in a potential of the anode electrode to a specified potential EAN1.

CALCIUM HYDROXIDE PRECIPITATION IN AN ELECTROLYTIC REACTOR WITH HYDRODYNAMIC SEPARATION

NºPublicación:  US2025263847A1 21/08/2025
Solicitante: 
UNIV CALIFORNIA [US]
The Regents of the University of California
US_2025263847_PA

Resumen de: US2025263847A1

A system and method to precipitate calcium hydroxide at low temperatures (T<40° C.) using an electrolytic reactor with hydrodynamic separation. The calcium can be supplied by any calcium bearing material such as calcium carbonate or basalt rock, or from industrial wastes such as brine or steel slag. The solid feedstock undergoes dissolution, whereas the brine may be utilized as is. Once in solution, the feed stream is directed towards an electrolyzer reactor which comprises a cathode, an anode, and a membrane separator. At the cathode, or in a separate precipitation chamber, an alkaline catholyte solution containing calcium hydroxide (portlandite) and magnesium hydroxide (brucite) precipitates, and hydrogen gas is produced.

SYSTEMS AND METHODS FOR HYDROGEN RECOVERY

NºPublicación:  US2025263844A1 21/08/2025
Solicitante: 
OHMIUM INT INC [US]
Ohmium International, Inc
US_2025263844_PA

Resumen de: US2025263844A1

A system for hydrogen recovery includes a dryer having an inlet that may be fluidly connected to a hydrogen outlet of a hydrogen generator, a hydrogen using device having an inlet fluidly connected to a dry hydrogen outlet of the dryer, and one or more conduits fluidly connecting a wet hydrogen outlet from the dryer and an impure hydrogen exhaust outlet of the hydrogen using device to the inlet of the dryer.

SYSTEM, APPARATUS, AND METHOD TO CREATE SYNTHETIC FUEL

NºPublicación:  US2025263848A1 21/08/2025
Solicitante: 
HUNT ENERGY ENTPR LLC [US]
HUNT ENERGY ENTERPRISES, L.L.C
US_2025263848_PA

Resumen de: US2025263848A1

Particular embodiments described herein provide for a synthetic fuel creation system. The synthetic fuel creation system includes a syngas creation station to create syngas, a crude creation station to create heavy syncrude, and a crude cracking station to convert the heavy syncrude into synthetic fuel. The synthetic fuel creation system can use an electrocatalysis system to create the syngas and the electrocatalysis system can include an anode, a cathode, oxygen evolution reaction catalysts, hydrogen/carbon monoxide evolution reaction catalysts, and an electrolyte, where the hydrogen/carbon monoxide evolution reaction catalysts include a graphitic carbon nitride.

WATER ELECTROLYSIS STACK

NºPublicación:  US2025263846A1 21/08/2025
Solicitante: 
TOYOTA JIDOSHA KK [JP]
TOYOTA JIDOSHA KABUSHIKI KAISHA
US_2025263846_PA

Resumen de: US2025263846A1

To provide a water electrolysis stack capable of suppressing deterioration in sealability. A water electrolysis stack configured by laminating a plurality of water electrolysis cells to generate hydrogen by supplying water to the water electrolysis cell and applying electric power, wherein a laminated member for improving sealing property, which is a member that does not introduce water therein, is laminated at a predetermined position of the water electrolysis cell to be laminated.

POLYMER ELECTROLYTE MEMBRANE (PEM) ELECTROLYTIC CELLS USING ZEOLITE-TEMPLATED CARBON (ZTC) AS ELECTROCATALYST

NºPublicación:  US2025263850A1 21/08/2025
Solicitante: 
SAUDI ARABIAN OIL COMPANY [SA]
Saudi Arabian Oil Company
US_2025263850_PA

Resumen de: US2025263850A1

A polymer electrolyte membrane (PEM) electrolytic cell assembly, and a method for making the assembly, are provided. An exemplary method includes forming a functionalized zeolite templated carbon (ZTC), including forming a CaX zeolite, depositing carbon in the CaX zeolite using a chemical vapor deposition (CVD) process to form a carbon/zeolite composite, treating the carbon/zeolite composite with a solution including hydrofluoric acid to form a ZTC, and treating the ZTC to add catalyst sites, forming the functionalized ZTC. The method further includes incorporating the functionalized ZTC into electrodes, forming a membrane electrode assembly (MEA), and forming the PEM electrolytic cell assembly. The method further includes coupling the PEM electrolytic cell assembly to a heat source.

METHOD OF ELECTROLYSING HYDROGEN BROMIDE AFTER BROMINATION

NºPublicación:  US2025263849A1 21/08/2025
Solicitante: 
TOTALENERGIES ONETECH [FR]
SULZER MAN AG [CH]
TOTALENERGIES ONETECH,
SULZER MANAGEMENT AG
US_2025263849_PA

Resumen de: US2025263849A1

A method of electrolysing hydrogen bromide comprising the steps i) brominating a hydrocarbon such that hydrogen bromide is produced, ii) providing an electrolytic cell comprising an anode, a cathode, and a membrane sandwiched between the anode and the cathode, iii) feeding a first composition comprising hydrogen bromide and water to the anode, iv) feeding a second composition comprising hydrogen bromide and water to the cathode, and v) operating the electrolytic cell to produce hydrogen at the cathode, wherein the hydrogen bromide fed in step iii) and/or the hydrogen bromide fed in step iv) is hydrogen bromide produced in step i).

Apparatus and method for the production of hydrogen

NºPublicación:  US2025263845A1 21/08/2025
Solicitante: 
HOHL CHRISTOPH [DE]
Hohl Christoph
US_2025263845_PA

Resumen de: US2025263845A1

The invention relates to a method and an apparatus for the production of hydrogen from a hydrogen-containing substance by splitting the hydrogen-containing substance into its components, wherein the hydrogen-containing substance is stimulated by means of an electromagnetic wave generator. The electromagnetic wave generator emits energy at the resonant frequency of an atomic bond of the hydrogen-containing substance. According to the invention, it is provided that the splitting of the hydrogen-containing substance takes place in an electromagnetic resonator.

Methods and Systems of PFAS Destruction using UV Irradiation at 222 Nanometers

NºPublicación:  US2025263322A1 21/08/2025
Solicitante: 
CLAROS TECH INC [US]
Claros Technologies Inc
US_2025263322_PA

Resumen de: US2025263322A1

Methods, systems and devices for PFAS destruction including adding a sulfite salt to an aqueous solution containing PFAS and then irradiating the aqueous solution with light at 222 nm. The method may include adding a base to the aqueous solution in an amount sufficient to raise a pH of the aqueous solution including PFAS to about 10 or more. It may also include adding a halide salt such as a bromide salt or an iodine salt, and further adding a carbonate. Greater than 90%, or greater than 99%, of the PFAS in the solution may be destroyed by irradiating the aqueous solution in this way.

Catalytic Reactor System and Catalyst for Conversation of Captured CO2 and Renewable H2 Into Low-Carbon Syngas

NºPublicación:  US2025263302A1 21/08/2025
Solicitante: 
INFINIUM TECH LLC [US]
Infinium Technology, LLC
US_2025263302_PA

Resumen de: US2025263302A1

The present invention describes an improved catalytic reactor system with an improved catalyst that transforms CO2 and low carbon H2 into low-carbon syngas with greater than an 80% CO2 conversion efficiency, resulting in the reduction of plant capital and operating costs compared to processes described in the current art. The inside surface of the adiabatic catalytic reactors is lined with an insulating, non-reactive surface which does not react with the syngas and effect catalyst performance. The improved catalyst is robust, has a high CO2 conversion efficiency, and exhibits little or no degradation in performance over long periods of operation. The low-carbon syngas is used to produce low-carbon fuels (e.g., diesel fuel, jet fuel, gasoline, kerosene, others), chemicals, and other products resulting in a significant reduction in greenhouse gas emissions compared to fossil fuel derived products.

Process For the Production of Dimethyl Ether and Hydrogen from Methane Using a Solid Metal Oxide Reagent

NºPublicación:  US2025263361A1 21/08/2025
Solicitante: 
TOTALENERGIES ONETECH [FR]
SULZER MAN AG [CH]
TOTALENERGIES ONETECH,
SULZER MANAGEMENT AG
US_2025263361_PA

Resumen de: US2025263361A1

The present invention relates to a process for producing dimethyl ether (DME) and hydrogen (H2) from methane, comprising the steps of: a) providing a gaseous feed stream comprising methane; b) reacting said gaseous feed stream with at least one halogen reactant (X2), under reaction conditions effective to produce an effluent stream comprising methyl halide (MeX), and hydrogen halide (HX); c) separating from the effluent stream obtained in step b): (i) a methyl halide (MeX) stream; and, (ii) a hydrogen halide (HX) stream; d) reacting the methyl halide (MeX) stream separated in step c) with a solid metal oxide (MO(s)) under reaction conditions effective to produce metal halide (MX) and dimethyl ether (DME); and e) decomposing by means of electrolysis said hydrogen halide (HX) stream separated in step c) under conditions effective to produce a gaseous hydrogen (H2) stream and a stream comprising halogen reactant (X2).

PROCESS FOR CAPTURE OF CARBON DIOXIDE FROM AIR AND THE DIRECT CONVERSION OF CARBON DIOXIDE INTO FUELS AND CHEMICALS

NºPublicación:  US2025263349A1 21/08/2025
Solicitante: 
INFINUIM TECH LLC [US]
INFINIUM TECH LLC [US]
INFINUIM TECHNOLOGY, LLC,
INFINIUM TECHNOLOGY, LLC
US_2025263349_PA

Resumen de: US2025263349A1

The invention relates to a process, catalysts, materials for conversion of renewable electricity, air, and water to low or zero carbon fuels and chemicals by the direct capture of carbon dioxide from the atmosphere and the conversion of the carbon dioxide to fuels and chemicals using hydrogen produced by the electrolysis of water.

PRODUCTION OF AMMONIA, METHANOL, AND SYNTHESIS PRODUCTS FROM ONE OR MORE GASIFICATION PRODUCTS

NºPublicación:  US2025263294A1 21/08/2025
Solicitante: 
FLUOR TECH CORPORATION [US]
Fluor Technologies Corporation
US_2025263294_PA

Resumen de: US2025263294A1

Ammonia, methanol, Fischer Tropsch products, and derivatives thereof are made by using hydrogen and oxygen supplied from an electrolyzer that is at least partially powered by renewable power, resulting in green process and systems that produce green products disclosed herein. A process using biomass and renewable energy includes producing an unshifted syngas from biomass and oxygen in a gasification unit, introducing water into an electrolyzer to produce an oxygen product and a hydrogen product, and introducing the oxygen product to the gasification unit. The electrolyzer is powered by renewable energy, and the oxygen product supplies at least a portion of the oxygen to the gasification unit.

SYSTEM FOR CAPTURING AND RECYCLING CARBON DIOXIDE AND PROCUCING HYDROGEN FOR CEMENT MANUFACTURING FACILITY

NºPublicación:  US2025262590A1 21/08/2025
Solicitante: 
LOWCARBON CO LTD [KR]
LOWCARBON CO., LTD
US_2025262590_PA

Resumen de: US2025262590A1

Proposed is a system for capturing and recycling carbon dioxide and producing hydrogen for a cement manufacturing facility. The system includes a preheater provided with multiple stages of cyclones arranged in series in a vertical direction and configured to receive and preheat a cement raw material, a calciner configured to calcine the cement raw material preheated by the preheater, a kiln configured to burn the cement raw material calcined in the calciner, an exhaust line connected to the cyclones and configured to discharge an exhaust gas respectively discharged from the calciner and the kiln to the outside, a reactor configured to capture carbon dioxide in the exhaust gas, to collect a reactant containing the captured carbon dioxide, and to separate a carbon dioxide reactant and a waste solution in the reactant, and a hydrogen generator configured to generate hydrogen gas by receiving the separated carbon dioxide from the reactor.

METHOD OF PREPARING CATALYST FOR AMMONIA DECOMPOSITION

NºPublicación:  US2025262610A1 21/08/2025
Solicitante: 
SK INNOVATION CO LTD [KR]
SK INNOVATION CO., LTD
US_2025262610_PA

Resumen de: US2025262610A1

According to the embodiments of the present disclosure, an ammonia decomposition catalyst may be prepared by performing heat treatment on alumina, a lanthanum compound and a cerium compound in a reducing gas atmosphere to form a composite oxide on an alumina support, and supporting an active metal including ruthenium on the composite oxide.

Proton Torch with In-Situ Gas Generator Module

NºPublicación:  US2025267782A1 21/08/2025
Solicitante: 
ARCFLASH LABS INC [US]
Arcflash Labs, Inc
US_2025267782_PA

Resumen de: US2025267782A1

A system which facilitates the joining of metal or ceramic objects via heat in an oxygen-depleted atmosphere comprising: a plasma flame generator (torch), regulator, gas purifier, in-situ hydrogen generator, liquid pumps, battery, and electrical power supply. The electrical system is self-contained and is intended to provide equal or greater functionality to that of existing TIG/Plasma arc welders but in a portable form-factor free from reliance on expensive and cumbersome high pressure compressed gas bottles.

SYSTEM NETWORK COMPRISING AT LEAST TWO ELECTROLYSIS SYSTEMS AND A POWER SUPPLY SOURCE

NºPublicación:  US2025266688A1 21/08/2025
Solicitante: 
SIEMENS ENERGY GLOBAL GMBH & CO KG [DE]
Siemens Energy Global GmbH & Co. KG
US_2025266688_PA

Resumen de: US2025266688A1

A system network includes at least two electrolysis systems, a power supply source, and a central supply line. The central supply line is connected to the secondary side of a transformer. The primary side of the transformer can be fed with energy from the power supply source. The transformer is designed for an operating frequency above the mains frequency of the public power grid, and so a higher-frequency AC grid is formed, to which the electrolysis systems are connected via the central supply line.

STACKABLE ELECTRO-SYNTHETIC OR ELECTRO-ENERGY CELLS

NºPublicación:  US2025266470A1 21/08/2025
Solicitante: 
HYSATA PTY LTD [AU]
Hysata Pty Ltd
US_2025266470_PA

Resumen de: US2025266470A1

Electro-energy or electro-synthetic cells whose architectures allow them to be readily stacked into a cell stack. The cells include polymeric cell frames that incorporate within them, functional materials, such as an inter-electrode separator, electrodes, metallic bipolar plates, and the like. For example, an electro-energy or electro-synthetic cell includes a polymeric cell frame, a first electrode and a second electrode, and an inter-electrode separator positioned between the first electrode and the second electrode. A compressive component is positioned adjacent to the first electrode. The compressive component may be a metallic bipolar plate compressive component and/or a metallic porous transport layer compressive component. In one example the polymeric cell frame is sealed to the metallic bipolar plate by a polymer-to-metal join. In another example at least one polymeric structural locating component locates the metallic bipolar plate against the polymeric cell frame. A cell stack includes a plurality of the cells.

WATER ELECTROLYSIS SYSTEM AND ENERGY SYSTEM

NºPublicación:  US2025266534A1 21/08/2025
Solicitante: 
HONDA MOTOR CO LTD [JP]
HONDA MOTOR CO., LTD
US_2025266534_PA

Resumen de: US2025266534A1

A water electrolysis system includes: a water electrolysis device including a membrane electrode assembly formed by sandwiching an electrolyte membrane between an anode and a cathode, the water electrolysis device being configured to generate oxygen gas at the anode by supplying water to the cathode and electrolyzing the water; and a water supply device configured to supply, to the anode, water generated in association with power generation of a fuel cell stack.

SCALABLE FLOW FIELD FOR AN ELECTROCHEMICAL CELL AND METHOD OF HIGH-SPEED MANUFACTURING THE SAME

NºPublicación:  AU2024219118A1 21/08/2025
Solicitante: 
EVOLOH INC
EVOLOH, INC
AU_2024219118_PA

Resumen de: AU2024219118A1

The present application relates to a flow field for use in an electrolysis cell comprising one or more sheets of porous material with a corrugated structure. The electrolysis cell comprises a membrane, an anode, a cathode, an anode reinforcement layer, a cathode reinforcement layer, an anode flow field, a cathode flow field, and a bipolar plate assembly comprising an embedded hydrogen seal. The anode flow field comprises one or more porous sheets having at least one straight edge and at least one of the porous sheets has the form of a corrugated pattern with a plurality of peaks and valleys whose axes are generally aligned with one straight edge of the sheet. The anode flow field geometry simultaneously provides resiliency, for efficient mechanical compression of the cell, and well-distributed mechanical support for the anode reinforcement layer adjacent to the anode flow field.

多径メッシュ接触層を含む電気化学セルスタック

NºPublicación:  JP2025122636A 21/08/2025
Solicitante: 
ブルームエネルギーコーポレイション
JP_2025122636_PA

Resumen de: EP4601053A1

An electrochemical cell stack includes at least two electrochemical cells that each contain a fuel electrode, an air electrode, and an electrolyte located between the fuel electrode and the air electrode, at least one interconnect located between the at least two electrochemical cells, and a contact layer that electrically connects the at least one interconnect and the fuel electrode of an adjacent one of the at least two electrochemical cells. The contact layer includes first wires that extend in a first direction, the first wires including thinner first wires and thicker first wires, the thicker first wires having a thickness that is larger than a thickness of the thinner first wires, and second wires that extend in a second direction different from the first direction.

PARTIAL LOAD OPERATION OF ELECTROLYZER

NºPublicación:  AU2024307301A1 21/08/2025
Solicitante: 
SIEMENS ENERGY GLOBAL GMBH & CO KG
SIEMENS ENERGY GLOBAL GMBH & CO. KG
AU_2024307301_PA

Resumen de: AU2024307301A1

A method and arrangement of performing electrolysis by an electrolyzer includes an operational mode and a partial operational mode. During the operational mode operational power from a main power source (202) to a first (808) and second set of stacks (806). In response to detecting a power insufficient for the first and the second set of stacks (806) to perform electrolysis without impurities, the electrolyzer is set to a partial operational mode, wherein the first set of stacks (808) perform electrolysis without impurities and the second set of stacks (806) do not perform electrolysis.

SYSTEMS AND METHODS FOR INCREASED SULFURIC ACID CONCENTRATION FROM SULFUR DIOXIDE DEPOLARIZED ELECTROLYSIS AND USES THEREOF

Nº publicación: WO2025174971A1 21/08/2025

Solicitante:

PEREGRINE HYDROGEN INC [US]
PEREGRINE HYDROGEN INC

WO_2025174971_PA

Resumen de: WO2025174971A1

A method can include coupling sulfur dioxide depolarized electrolysis (e.g., electrochemical oxidation of sulfur dioxide to sulfuric acid with electrochemical reduction of water to hydrogen) with the contact process to facilitate formation of high concentration sulfuric acid with concurrent hydrogen production. The sulfuric acid and hydrogen can optionally be used cooperatively for downstream processes (e.g., metal extraction from ore, fertilizer production, hydrocarbon processing, etc.).

traducir