Resumen de: US2025207564A1
A geothermal management system may receive time-series data for operation of the geothermal energy system. A geothermal management system may calibrate a physical model using the time-series data. A geothermal management system may apply the physical model to a pre-determined comparison parameter to generate a performance indicator. A geothermal management system may identify an operating status of the geothermal energy system based on the performance indicator.
Resumen de: US2025207563A1
A geothermal energy system, having a carbon dioxide store at a first temperature and density, a retrieving device for retrieving carbon dioxide at a second temperature higher than the first temperature and a second density lower than the first density, a heat pump having a first heat exchanger, a compressor, a second heat exchanger, and an expander or a throttle. The first heat exchanger transmits thermal energy of the carbon dioxide to a process medium of the heat pump. The compressor compresses the process medium downstream of the first heat exchanger. The second heat exchanger transmits thermal energy of the compressed process medium to a consumer, and the expander or the throttle expands the process medium downstream of the second heat exchanger, and an introduction device introduces carbon dioxide downstream of the retrieving device and upstream of the heat pump into the system.
Resumen de: DE102023136275A1
System (10) zur Nutzung geothermischer Energie, mit einer Einspeicherungsvorrichtung (13), die eingerichtet ist, Kohlenstoffdioxid, das auf einem ersten Temperaturniveau und einem ersten Dichteniveau vorliegt, in ein unterirdisches Reservoir (11) einzuspeichern, mit einer Ausspeicherungsvorrichtung (14), die eingerichtet ist, Kohlenstoffdioxid, das auf einem zweiten Temperaturniveau und einem zweiten Dichteniveau vorliegt, aus dem unterirdisches Reservoir auszuspeichern, wobei das zweite Temperaturniveau größer als das erste Temperaturniveau und das zweite Dichteniveau kleiner als das erste Dichteniveau ist, mit einer einen ersten Wärmeübertrager (17), einen Kompressor (18), einen zweiten Wärmeübertrager (19) und einen Expander (26) oder eine Drossel aufweisenden Wärmepumpe (16), wobei der erste Wärmeübertrager (17) eingerichtet ist, thermische Energie des Kohlenstoffdioxids stromabwärts der Ausspeicherungsvorrichtung (14) und stromaufwärts der Einspeicherungsvorrichtung auf ein Prozessmedium der Wärmepumpe (16) zu übertragen, wobei der Kompressor (18) eingerichtet ist, das Prozessmedium stromabwärts des ersten Wärmeübertragers (17) zu verdichten, wobei der zweite Wärmeübertrager (19) eingerichtet ist, thermische Energie des verdichteten Prozessmediums auf einen Verbraucher zu übertragen, und wobei der Expander (26) oder die Drossel eingerichtet ist, das Prozessmedium stromabwärts des zweiten Wärmeübertragers (19) zu entspannen, und mit einer Einbringein
Resumen de: AU2025204136A1
A method for drilling a geothermal well in a subterranean zone includes drilling, with a drill string, a wellbore of the geothermal well in the subterranean zone. An inherent temperature of the rock adjacent a rock face at a downhole end of the wellbore is at least 250 degrees Celsius. While drilling, a drilling fluid is flowed at a temperature at the rock face such that a difference between the inherent temperature of the rock adjacent the rock face and the temperature of the drilling fluid at the rock face is at least 100 degrees Celsius. A method for drilling a geothermal well in a subterranean zone includes drilling, with a drill string, a wellbore of the geothermal well in the subterranean zone. An inherent temperature of the rock adjacent a rock face at a downhole end of the wellbore is at least 250 degrees Celsius. While drilling, a drilling fluid is flowed at a temperature at the rock face such that a difference between the inherent temperature of the rock adjacent the rock face and the temperature of the drilling fluid at the rock face is at least 100 degrees Celsius. un u n m e t h o d f o r d r i l l i n g a g e o t h e r m a l w e l l i n a s u b t e r r a n e a n z o n e i n c l u d e s d r i l l i n g , w i t h a d r i l l s t r i n g , a w e l l b o r e o f t h e g e o t h e r m a l w e l l i n t h e s u b t e r r a n e a n z o n e n i n h e r e n t t e m p e r a t u r e o f t h e r o c k a d j a c e n t a r o c k f a c e a t a d o w n h o l e e n d o f t h e w
Resumen de: WO2023247768A1
This layout (12) comprises at least one heat exchange unit (24) comprising: - at least one central well (26) extending from the surface of the subsoil (22); - at least one flank well (28) extending from the surface of the subsoil (22) and having an inclined lateral portion (48); - at least two separate drains (30) connecting the central well (26) and the inclined lateral portion (48) of the flank well (28). For the or each heat exchange unit (24), the central well (26), the flank well (28) and each drain (30) are set out in the one same vertical plane, the intersections between the drains (30) and the central well (26) and between the drains and the inclined lateral portion (48) being separated from one another and the drains (30) opening inclined by an angle less than 45° with respect to the inclined lateral portion (48).
Resumen de: WO2025136911A1
Methods, systems, and computer readable storage mediums for managing completion of a well for geothermal energy extraction is disclosed. The method may include obtaining a plurality of measurements of a geological formation in which a wellbore of the well is positioned. The method may also include, for each measurement of the plurality of measurements, obtaining a fluid flow analysis result for the geological formation to obtain fluid flow analysis results for the geological formation. The method may further include defining at least one zone along the wellbore based on the fluid flow analysis results. The method may also include ranking the at least one zone based on the fluid flow analysis results and a ranking system to obtain at least one ranked zone. The method may additionally include obtaining a formation model for the geological formation using the at least one ranked zone a thermal properties of the geological formation.
Resumen de: WO2025129336A1
Some embodiments of the present disclosure relate to an apparatus for regulating flow of a fluid flowing through the apparatus when deployed and retained within a well. The apparatus may comprise a retaining assembly for retaining the apparatus in a desired position within a wellbore; a mandrel with a first end and a second end, defining a longitudinal axis therebetween, the mandrel defining one or more orifices for fluid communication between inside the mandrel and outside the mandrel; and, a shift sleeve in nested arrangement with the mandrel, the shift sleeve defining one or more orifices for providing fluid communication between an inside of the shift sleeve and outside the shift sleeve. The shift sleeve is shiftable in response to changes in a property of a fluid flowing through the apparatus, wherein shifting of the shift sleeve changes a cross- sectional flow area of one of the one or more orifices.
Resumen de: WO2025133580A1
A thermosiphon system (1) includes a geothermal well bore (2), a pipe (3) extending down the bore (2), and a heat exchanger (5) coupled to the lower end of the pipe (3) disposed in the geothermal well bore (2). The heat exchanger (5) includes one or more vanes (19) arranged to cause a working fluid in the form of supercritical carbon dioxide exiting the lower end of the pipe (3) to return up the geothermal well bore (2) via a helical path (22) between an outer radius of the pipe (3) and an interior radius of the geothermal well bore (2). The helical path (22) having a pitch length (P) and a total length (H) parallel to the geothermal well bore (2). The thermosiphon system (1) also includes a turbine (9) driven by the mass flow stream of the working fluid.
Resumen de: US2025207012A1
A high-thermal conductivity slurry composition is provided that includes slurry mixture comprising a high-thermal k material and an optional dispersant. The high thermal k material is in form of a plurality of particles having a wide size distribution that spans across at least 2 log units. The high-thermal k material is present in an amount effective such that the slurry composition has, upon compaction or settling of the slurry mixture at a target location, a thermal conductivity of at least 3 W/m° K.
Resumen de: EP4575346A1
A geothermal management system may receive time-series data (607) for operation of the geothermal energy system (100). A geothermal management system may calibrate a physical model using the time-series data (607). A geothermal management system may apply the physical model to a pre-determined comparison parameter to generate a performance indicator. A geothermal management system may identify an operating status of the geothermal energy system based on the performance indicator.
Resumen de: EP4575347A1
System (10) zur Nutzung geothermischer Energie, mit einer Einspeicherungsvorrichtung (13), die eingerichtet ist, Kohlenstoffdioxid, das auf einem ersten Temperaturniveau und einem ersten Dichteniveau vorliegt, in ein unterirdisches Reservoir (11) einzuspeichern, mit einer Ausspeicherungsvorrichtung (14), die eingerichtet ist, Kohlenstoffdioxid, das auf einem zweiten Temperaturniveau und einem zweiten Dichteniveau vorliegt, aus dem unterirdisches Reservoir auszuspeichern, wobei das zweite Temperaturniveau größer als das erste Temperaturniveau und das zweite Dichteniveau kleiner als das erste Dichteniveau ist, mit einer einen ersten Wärmeübertrager (17), einen Kompressor (18), einen zweiten Wärmeübertrager (19) und einen Expander (26) oder eine Drossel aufweisenden Wärmepumpe (16), wobei der erste Wärmeübertrager (17) eingerichtet ist, thermische Energie des Kohlenstoffdioxids stromabwärts der Ausspeicherungsvorrichtung (14) und stromaufwärts der Einspeicherungsvorrichtung auf ein Prozessmedium der Wärmepumpe (16) zu übertragen, wobei der Kompressor (18) eingerichtet ist, das Prozessmedium stromabwärts des ersten Wärmeübertragers (17) zu verdichten, wobei der zweite Wärmeübertrager (19) eingerichtet ist, thermische Energie des verdichteten Prozessmediums auf einen Verbraucher zu übertragen, und wobei der Expander (26) oder die Drossel eingerichtet ist, das Prozessmedium stromabwärts des zweiten Wärmeübertragers (19) zu entspannen, und mit einer Einbringein
Resumen de: WO2024076730A1
Techniques for controlling tortuosity of fluid flow through a subterranean formation include introducing a diversion fluid into a wellbore, introducing a first fluid into the wellbore, collecting a second fluid from the wellbore or a second wellbore, and recovering heat from the second fluid. Techniques for increasing the likelihood that a fluid will absorb heat as it flows through rock fractures include introducing a first fluid into a first wellbore, introducing a particulate fluid into the first wellbore, collecting a second fluid from a second wellbore, and recovering heat from the second fluid. Techniques for recovering heat from a subterranean formation include observing a first parameter of a first fluid introduced into a first wellbore, observing a second parameter of a second fluid collected from a second wellbore, recovering heat from the second fluid, and introducing a diversion fluid into the first wellbore.
Resumen de: CN120194322A
本发明涉及环保工程技术领域,公开一种用于燃烧地热伴生气的二氧化碳减排装置,包括外壳,设置于外壳底部的底座,还包括设置于外壳内部的分离机构,以及设置于外壳内部的循环机构;分离机构用于分离二氧化碳,循环机构用于再生吸收二氧化碳的介质;分离机构包括设置于外壳底部的燃烧室,设置于燃烧室底部的进气管,外壳中部的喷淋室,设置于燃烧室顶部的连接管,连接管远离燃烧室的一端与喷淋室固定连接,设置于喷淋室顶部的喷管,若干个环形阵列设置于喷管底部的喷嘴,设置于喷淋室中部的孔板。通过设置分离机构,减排装置可在伴生气燃烧后主动截留二氧化碳,并将伴生气燃烧产生的高温余热直接作用于吸附剂再生环节。
Resumen de: CN120193816A
本发明涉及对干热岩进行压裂技术领域,公开了一种对干热岩进行压裂的方法和对干热岩进行采热的方法。本发明提供一种对干热岩进行压裂的方法,其中,包括如下步骤:(1)选取开设在干热岩上的釆热井中的套管完井段,并将所述套管完井段分为n个待处理段;(2)以第一排量向所述套管完井段的油管中注满压裂液,可选地,并将可溶球随压裂液加入;(3)选取所述待处理段中的裂缝发育层段进行喷砂射孔,获得目的层段;(4)使用超临界二氧化碳对所述目的层段进行压裂施工,获得压裂段;(5)重复进行步骤(2)‑(4),将所有待处理段完成压裂;其中,所述n选自8‑12。
Resumen de: CN120193509A
本发明属于管桩技术领域,尤其是一种改性预制管桩,包括管桩本体和钢制桩帽,桩帽设置在管桩本体的下端端部,管桩本体的长至少为6m,管桩本体内设有塑料盘管,盘管包括相互连通的螺旋管和竖直管,所述管桩壁上设有与管心连通的若干通孔,通孔分布在管桩本体中部,管桩本体端部不设置通孔的长度不超过2m。通过通孔使得浇筑过程中混凝土能渗透到管桩外侧,同一层通孔渗透出的混凝土相互连接并环绕桩体外壁,凝固后形成厚壁层对桩壁起到保护作用,提高抗腐蚀性能;另外,渗透出的混凝土往管桩外蔓延凝固后与管桩成一体,增强管桩与岩石之间的接触面,分散管桩的承压;还有,岩石层底部的压力或浮力大,提高管桩的抗拉或抗浮作用。
Resumen de: CN120194427A
本发明公开了一种浅层地埋管换热器能效提升系统,通过区域隔热板围设一个封闭式或半封闭式蓄热区域单元;蓄热区域单元内包括若干蓄热井、若干浅层提水井、若干深层提水井、若干太阳能热水器、蓄热水箱、若干U型垂直地埋管和地源热泵机房;区域隔热板埋地深度设置在地壳恒温带土壤内,从上至下贯穿地壳日变温带、年变温带,其埋地深度H≥H2+0.5~1m,所述的H2为年变温带深度;所述的蓄热井为设有“十”或“井”字型若干水平分支管的内外套筒式中空结构,其水平分支管设置在地壳年变温带、恒温带土壤内;其上水平分支管埋地深度H≥H1+0.5~1m,其下水平分支管埋地深度H≥H2+0.5~1m;所述的H1为日变温带深度,H2为年变温带深度。
Resumen de: CN120194437A
用于利用地热能的系统,具有:储存装置,装备成将以第一温度水平和第一密度水平存在的二氧化碳储存在地下贮存器中;取回装置,装备成从地下贮存器中取回以高于第一温度水平的第二温度水平和低于第一密度水平的第二密度水平存在的二氧化碳;热泵,包括第一热交换器、压缩机、第二热交换器和膨胀器或节流阀,第一热交换器装备成将取回装置下游和储存装置上游的二氧化碳的热能传递到热泵的过程介质,压缩机装备成压缩第一热交换器下游的过程介质,第二热交换器装备成将压缩的过程介质的热能传递到消耗者,膨胀器或节流阀装备成使第二热交换器下游的过程介质膨胀;和引入装置,装备成将取回装置下游和热泵上游的二氧化碳源的二氧化碳引入系统中。
Resumen de: CN120169019A
本发明公开了一种地热能回灌井用气体分离装置,涉及气体分离技术领域,该地热能回灌井用气体分离装置,包括封闭筒,封闭筒的下侧与出水管的上端固定连接,出水管的下端与单向阀的上端固定连接,该地热能回灌井用气体分离装置,启动气缸,在气缸的推动下,短杆滑动在旋转套内,使旋转套进行转动,通过搅拌杆和转轴的配合,带动转片旋转,使热能液体内的杂质始终处于悬浮状态,解决了杂质因重力沉积在底部形成硬质结块的问题,容易造成管道堵塞;气缸推动时,连接杆同步运动,并通过连接杆和圆环盘的配合,使热能液体进入圆环盘,并从滤孔流出,将热能液体中的杂质留下,解决了热能液体中杂质含量大的问题,从而延长回灌井使用寿命。
Resumen de: CN120176313A
本发明涉及一种地热储热高效换热装置,属于地热换热技术领域,包括储热罐,所述储热罐顶部前后两侧分别连接有热源进管和热源出管,所述储热罐底部中间位置连接有综合出管,所述储热罐内设置有储热结构和换热结构,所述储热结构和换热结构间隔设置,所述储热结构包括多个储热环,所述储热环竖向间隔分布在储热罐内,所述换热结构包括换热管,所述换热管套设于竖向设置的储热环外圈,所述换热管进水端贯穿至储热罐外侧设置。本发明采用多层储热环和若干储热棒进行热量储存,形成立体储热空间,增加了储热面积,提升储热容量。
Resumen de: CN120175279A
本发明涉及一种新式太阳能热水循环油井除蜡装置,尤其是利用太阳能集热器产生热水,储存到储热水箱;通过智能控制部分;驱动管道循环泵;与设置在油井套管和油管间隙腔内,两根对称进出循环回路热水管连接组成密封整体管道的油井井下除蜡装置。其把太阳能热水循环到井下加热,用以清除油井结蜡带来的采油影响,增加油井采油效率,减少或消除传统油井清蜡作业过程,提高采油节能效果。扩大了太阳能应用领域,达到人为控制利用太阳能可再生能源为生产生活服务。用于油井井下除蜡,具有清蜡效果好、成本价格低、施工作业简单,一次投入长久使用,性价比高,密封保温性好、使用安装灵活、有效利用太阳能资源、减少传统能源人力财力电力消耗、提高采油效率等优势。
Resumen de: CN120176167A
本发明涉及地热供暖技术领域,具体涉及一种地热供暖发电联合系统,包括地热供热端;采暖用户和发电机组端;供暖发电联合单元,用于提供非采暖季热媒水的小流量和采暖季热媒水的大流量来满足发电机组和采暖用户所需的热能,在供暖时使供热管道内压力、温度稳定实现正常供暖;所述供暖发电联合单元包括若干串联的换热器、智能调节阀和温度均衡调节单元;若干串联的换热器输入端与地热供热端连接,若干串联的换热器输出端通过供热管道接经机泵与采暖用户和发电机组端连接,所述供热管道安装有智能调节阀、流量计和压力变送器;本发明满足非采暖季热媒水的小流量和采暖季热媒水的大流量需求,同时在供暖时使供热管道内压力、温度稳定实现正常供暖。
Resumen de: CN120175598A
本发明公开了一种基于U型井地下闪蒸的自循环地热能发电系统,涉及地热开采与发电领域。该系统包括对接井、闪蒸腔体、竖直生产井、发电终端;所述对接井套管外部为高导热性水泥层,所述对接井的一端为注水入口,另一端连接有导管,所述导管的另一端设置有雾化阀门且设置在闪蒸腔体内;所述闪蒸腔体的上端与竖直生产井的下端相连接,所述竖直生产井的上端蒸汽出口通过第一管道与发电终端相连接;所述注水入口通过第二管道与发电终端相连接。本申请与传统闭环水热系统相比可使热能随高压蒸汽自动向上运移,无需高压循环泵、涡轮机、发电机与冷凝器等大型设备,减少了投资和运维成本。本申请系统安全性高,无需长期监测维护,对环境影响小。
Resumen de: CN120176272A
本发明属于空调制冷技术领域,尤其涉及一种浅水井冷量回收式空调制冷系统,本发明中,送风机构将室内的空气送入浅水井内,室内空气与井内空气混合后上升,初步降低气体温度,然后混合气体顺序经过第一换热机构与第二换热机构,第一换热机构与第二换热机构利用井水对混合气体进行第二次以及第三次冷却,多次冷却后的气体通过送风管送入室内,实现室内制冷;本发明中,通过井水对空气进行多次冷却,同时,空气的流动会使井水加速蒸发,井水蒸发吸热,进一步对空气进行冷却,然后将冷却后的空气送入室内,对室内进行降温,在此过程中,减少了常规空调的使用,极大的节省了能源。
Resumen de: WO2025128521A1
Methods and systems are provided for drilling a wellbore in a subterranean formation. The methods and systems circulate drilling fluid into and through the wellbore during the drilling, and circulate drilling fluid that exits the wellbore during the drilling into and through at least one secondary wellbore that employs geothermal cooling to cool the drilling fluid during the drilling.
Nº publicación: WO2025125048A1 19/06/2025
Solicitante:
BASF SE [DE]
BASF SE
Resumen de: WO2025125048A1
The invention relates to a geothermal installation with cascaded water vapour generators for industrial installations, comprising: (a) a geothermal source which is designed such that it provides a brine with a temperature in the range from 120 to 300 °C, (b) at least two heat exchangers (2, 3, 4) through each of which the brine can flow on their primary side, the primary side of the respective heat exchangers (2, 3, 4) being arranged in a cascaded manner with respect to its adjacent heat exchanger (2, 3, 4), wherein the respective heat exchanger (2, 3, 4) has a secondary side which is configured such that either supplied water (c1, c2, c3) evaporates as a result of the heat exchange from the primary to the secondary side, or circulating water heats up in a secondary circuit and as a result an evaporator (15, 16, 17) arranged in the secondary circuit evaporates supplied water (c1, c2, c3), (c) a first pipeline, which fluidically connects the withdrawal location (a) of the geothermal source to the cascaded primary sides of the heat exchangers (2, 3, 4), (d) each of the provided heat exchangers (2, 3, 4) has a downstream mineral withdrawal unit (12, 13, 14), (e) a first brine pump (1) which is arranged between the withdrawal location (a) and the primary side of the first heat exchanger (2) in the main flow direction, by way of which the brine is conveyed from the source to the respective cascaded primary sides of the heat exchangers (2, 3, 4) and their respective downstream min