Resumen de: CN121230224A
本发明涉及地热能源采集技术领域,且公开了一种中深层相变储能换热一体化复合装置,包括换热器和安装座,所述安装座位于换热器的左侧,所述安装座的顶部固定安装有外箱,所述外箱的内侧设置有延伸至换热器上方的预热组件,所述预热组件的内侧设置有延伸至换热器内侧的连通管,所述外箱的内侧设置有延伸至其外侧的储能组件,所述预热组件的内侧设置有延伸至其顶部的进液连接管,所述进液连接管的顶部设置有处理箱,该中深层相变储能换热一体化复合装置,通过设置清洁机构,实现了自清洁结构对换热管表面进行污垢清理的目的,通过过滤机构和限位机构,实现了设有过滤结构对热流体进行过滤的目的。
Resumen de: CN121230225A
本发明公开了一种地源热井U型管快速下井的装置,属于建筑施工技术领域。包括安装在支撑架上的两组支撑板和安装在固定架上的驱动组件,支撑板的周侧固定安装有倾斜板,驱动组件上安装有第二顶块;夹持组件,包括安装在驱动组件的齿链上的导向架,导向架上滑动连接有两组外夹板,导向架内安装有用于牵引外夹板的第一弹性件,导向架上转动连接有支撑柱,支撑柱上滑动连接有两组内夹板,支撑柱上套装有两组用于推顶内夹板的第二弹性件和第一扭簧。本发明采用电机驱动齿链带动多组夹持组件循环作业,实现单/双U型管的连续夹持及自动输送,大幅降低人工干预强度。
Resumen de: CN121230030A
本发明公开了一种能源塔双模式智能切换控制方法及系统,涉及能源塔控制方法和系统技术领域,包括能源塔单元、双模式循环管路、地下岩土储热体、智能控制模块、混合式智能供电单元、高效除湿与自清洁单元。本发明能够突破气候限制,增强运行稳定性,高效除湿与自清洁单元解决了传统空气源热泵在湿热天气下的核心痛点,它能确保能源塔即使在梅雨季节或闷热夜晚也能维持高换热效率,将热泵模式的适用范围进行了提升,使系统具备了全天候、高运行效率的能力。
Resumen de: CN121205863A
本发明属于光风发电的储能技术领域,提供了一种加热与换热外置式人工地热储能与光风联供发电系统及方法,系统包括:供电装置、地下水库、换热装置、安全装置以及发电装置;地下水库包括:库体钢铁骨架、钢铁墙体、外绝热材料以及库内水体;换热装置包括:电加热设备和换热器设备;本发明通过构建的地下水库、换热装置,能够实现可再生能源的高效利用与调峰发电;通过采用加热与换热外置式的设计,能够在不影响整个地下水库高温水体储能状态下,排空换热装置单元水体、关闭安全阀门,方便并安全地对电加热和换热器等维护及维修。
Resumen de: CN121205844A
本发明公开了废弃矿井抽水蓄能与地热开发联合施工方法,首先对废弃矿井的永久性巷道区进行加固与防渗处理,使其作为抽水蓄能的地下库区;接着实施地下库区注水与地热开发,通过蓄水池冷水注入地下库区,同时接受地下水径流补给,水充分吸收周围地层热量后,通过离心泵抽至换热站,实现地热开发;之后进入冷水回注与蓄能发电阶段,蓄水池冷水回注地下库区时流经水轮机,带动其旋转并使发电机发电,同时地下库区进行蓄水,实现蓄能发电。最后地下库区内冷水再次吸热并进入“地下加热‑抽水换热‑回注发电”的循环。实现了抽水蓄能与地热开发的协同运行,解决了废弃矿井资源利用效率低的问题,为清洁能源开发和绿色低碳转型提供一种新模式。
Resumen de: WO2025265029A2
Methods, systems, and devices for quantifying geothermal heat flux using shallow subsurface temperature measurements are provided. A method can include deploying vertical temperature probes with fiber optic sensors, strain sensors, and advective sensors at measurement sites. Time-series temperature data is then recorded, processed to determine equilibrium temperature profiles, and corrected for climate-driven signals, strain, and advection effects. Geothermal heat flux is calculated by combining the corrected temperature gradient with subsurface thermal conductivity, and a heat flux map can be generated to identify geothermal energy resources.
Resumen de: WO2025265145A1
Methods and systems for extracting geothermal energy are disclosed. The method may include inserting a closed-loop geothermal system into a wellbore penetrating a geothermal reservoir, where the closed-loop geothermal system comprises a fluid conduit, and a downhole end of the fluid conduit is disposed in a first downhole portion of the wellbore, disposing a pump with a fluid inlet positioned within the first downhole portion, and drawing, using the pump, geothermal fluid into the first downhole portion of the wellbore. The method may further include extracting heat, using the closed- loop geothermal system circulating a working fluid, from the drawn geothermal fluid within the first downhole portion and transporting the extracted heat to a primary heat utilization facility disposed on the surface of the earth.
Resumen de: CN121206723A
本发明公开了一种地热回灌水排气装置,包括箱体、加热组件、第一进气管道、第二进气管道和抽吸口,箱体的内腔具有相连通的第一室、第二室和第三室,第一室具有进水口和排气口,第三室具有出水口,回灌水经进水口流入第一室并依次经过第二室和第三室后由出水口排出;加热组件设置在第二室内,加热组件用于对第二室内的液体进行加热;第一进气管道设在第一室内;第二进气管道设在第二室内,第二进气管道用于向第二室内鼓入置换气体;第二室和第三室的顶部均设置有抽吸口,抽吸口用于与负压设备连接,以抽吸第二室和第三室内的气体并输送至第一进气管道内。本发明能够使回灌水中的气体含量大幅降低,有效的防止回灌系统中形成气堵。
Resumen de: WO2025260170A1
An energy generation or storage site comprises a plurality of large-bore wellbores having a diameter of 4 ft to 20 ft co-located at a common site in which one or more wellbores comprise energy generation or energy storage. Energy generation wellbores incorporate nuclear energy in the form of thermal generation units such as small modular reactors (SMRs) installed within the wellbore. One or more thermal generation units may be stacked within each energy generation wellbore. Additional wellbores of the plurality of wellbores incorporate energy storage in the form of one or more of hydrogen storage, thermal-mass energy, chemical energy, and hydraulic energy.
Resumen de: WO2025264353A1
Systems and processes for stimulating subterranean geologic formations to create an artificial stress barrier. Methods of modeling same.
Resumen de: CN121206721A
本申请公开了一种地热采集系统、地热供能系统及供能系统的控制方法,涉及地热采集技术领域,地热采集系统包括安装于地热井内的热管,所述热管包括内管和设置于所述内管外周的N个进液管,所述N个进液管的第一端的开口方向朝向所述地热井的井口,所述N个进液管的第一端用于进液,所述N个进液管的第二端分别与所述内管的侧壁开设的N个出液口连通,所述N个出液口中的至少两个出液口的深度不相等,N为大于或者等于2的正整数。本申请每个进液管注入的液体量只是单一入口液体量的一部分,且N个进液管中的流体可至少在两种不同的深度下注入内管,能够有效减少浅层深度下液体量较大和蒸汽量较大导致的逆流结构不稳定流动现象。
Resumen de: CN121205581A
本发明提供了一种电场增强开采干热岩的系统及开采方法,可用于地热开采,包括地面供电装置和地面循环系统;地面循环系统的高压泵将储液罐的液体注入到注入井内,从生产井采出的液体进入热交换器;直流电源的正负极与生产井和注入井连接;当需延缓冷锋推进、抑制热突破时,将生产井连接正极、注入井连接负极,使电场方向由生产井指向注入井,电渗流方向与压力驱动的达西流方向相反,可削弱总体流速、延迟热前沿推进;当需强化换热或提升短期产热能力,切换极性使电渗流与达西流同向,从而加速流体循环。本发明通过在储层中施加外部直流电场,利用电渗流效应对流体和热量的传输进行主动调节,从而有效延迟热突破、提高地热采收率并显著延长系统服役寿命。
Resumen de: CN121206722A
本发明实施例的地热水输送系统包括取水段、输水段和用水段。其中,取水段包括第一管道和取水泵,第一管道的一端伸入地下,第一管道的另一端与取水泵的进水端相连,输水端包括第二管道和多个在输水段的输送方向上间隔设置于第二管道上的增压泵,第二管道的一端与取水泵的出水端相连;用水段包括第三管道和用水泵,用水泵的进水端与第二管道的另一端相连,用水泵的出水端与第三管道的一端相连,第三管道的另一端与用户相连。本发明实施例的地热水输送系统通过在输送段的输送方向上设置多个增压泵,能够地热水的输送过程中对第二管道内的地热水进行增压,避免第二管道内的地热水在输送过程中出现压力下降的问题,能够提高地热水的输送效率。
Resumen de: CN121216920A
一种利用地埋蒸汽管道余热的温差自发电装置及工作方法,属于热能回收与自供电技术领域。第一导热板设在蒸汽管道外壁,外侧有热端陶瓷基板、热电元件、冷端陶瓷基板及第二导热板,热电元件与负极导线及正极导线连接。第二导热板与热管连接,热管上端伸出至地面的外侧。本发明通过环状温差发电片与蒸汽管道外壁的贴合设计,有效减小热源与发电片的接触热阻,确保热端均匀受热,提升热能转化效率;采用热管与散热翅片组合的冷端散热结构,利用工质相变传热特性将冷端热量高效传递至地表空气,显著降低冷端温度,维持温差发电片的有效温差,从而稳定提升发电效率。
Resumen de: US2025387749A1
In a general aspect, a carbon dioxide (CO2) removal system uses geothermal energy. In some implementations, a method to remove CO2 gas from a gaseous feed includes directing a gaseous feed to interact with an alkaline capture solution in a first gas-liquid contactor. A first portion of CO2 from the gaseous feed dissolves into the alkaline capture solution to form a CO2-rich alkaline capture solution. Steam is generated using heat from a geothermal heat source, and the steam heats the CO2-rich alkaline capture solution in a second gas-liquid contactor. A second portion of the CO2 is separated from the CO2-rich alkaline capture solution in the second gas-liquid contactor to form a CO2-lean alkaline capture solution. The CO2-lean alkaline capture solution is directed to the first gas-liquid contactor.
Resumen de: US2025387812A1
A geothermal power generation system includes a binary power generator provided with a medium evaporator. The geothermal power generation system includes: gas-liquid separator to separate geothermal brine from a geothermal fluid spouted out from a production well; first pipe to send the geothermal brine separated by the gas-liquid separator to the medium evaporator; first valve provided inside the first pipe and to open and close a flow path of the first pipe; second pipe to send the geothermal brine, from which heat has been recovered by the binary power generator, from the medium evaporator to a re-injection well; analyzer to intake the geothermal brine flowing through the second pipe and to analyze components of a scale contained in incoming geothermal brine; and controller to determine at least one detergent from a plurality of detergent candidates, based on an analysis result of the analyzer, and to control supply of the detergent.
Resumen de: US2025389456A1
Systems and processes for stimulating subterranean geologic formations to create an artificial stress barrier.
Resumen de: US2025389457A1
Methods, systems, and devices for quantifying geothermal heat flux using shallow subsurface temperature measurements are provided. A method can include deploying vertical temperature probes with fiber optic sensors, strain sensors, and advective sensors at measurement sites. Time-series temperature data is then recorded, processed to determine equilibrium temperature profiles, and corrected for climate-driven signals, strain, and advection effects. Geothermal heat flux is calculated by combining the corrected temperature gradient with subsurface thermal conductivity, and a heat flux map can be generated to identify geothermal energy resources.
Resumen de: US2025389458A1
Methods, systems, and devices for quantifying geothermal heat flux using shallow subsurface temperature measurements are provided. A method can include deploying vertical temperature probes with fiber optic sensors, strain sensors, and advective sensors at measurement sites. Time-series temperature data is then recorded, processed to determine equilibrium temperature profiles, and corrected for climate-driven signals, strain, and advection effects. Geothermal heat flux is calculated by combining the corrected temperature gradient with subsurface thermal conductivity, and a heat flux map can be generated to identify geothermal energy resources.
Resumen de: US2025389257A1
Methods and systems for extracting geothermal energy are disclosed. The method may include inserting a closed-loop geothermal system into a wellbore penetrating a geothermal reservoir, where the closed-loop geothermal system comprises a fluid conduit, and a downhole end of the fluid conduit is disposed in a first downhole portion of the wellbore, disposing a pump with a fluid inlet positioned within the first downhole portion, and drawing, using the pump, geothermal fluid into the first downhole portion of the wellbore. The method may further include extracting heat, using the closed-loop geothermal system circulating a working fluid, from the drawn geothermal fluid within the first downhole portion and transporting the extracted heat to a primary heat utilization facility disposed on the surface of the earth.
Resumen de: US2025389455A1
A geothermal heat extractor includes a heat transfer fluid and a heat transfer fluid supply conduit. The heat transfer fluid is maintained in the supply conduit in a liquid state at a pressure above its saturation pressure. The geothermal heat extractor further includes a heat transfer fluid return conduit, a geothermal heat source coupled thereto, at least one flow control valve configured to control the flow of the heat transfer fluid from the supply conduit to the return conduit, and an external load coupled to the return conduit. As the heat transfer fluid is provided to the return conduit in the liquid state, the heat transfer fluid vaporizes in the return conduit by heat supplied to the return conduit from the geothermal heat source. The vaporized heat transfer fluid is supplied from the return conduit to the external load.
Resumen de: WO2024170827A1
A reinforced concrete pile (1, 1') comprises a heat transfer pipe (2, 3) and at least one of the pile's (1, 1') ends constitutes a splicing end by which the pile (1, 1') is connectible to another pile (1, 1') for obtaining a pile assembly and, at the splicing end, the heat transfer pipe (2, 3) is adapted to be joined with the other pile's (1, 1') respective heat transfer pipe (2, 3). The pile's (1, 1') splicing end is provided with a positioner sleeve (14), which surrounds the heat transfer pipe's (2, 3) end in such a way that between the heat transfer pipe (2, 3) and the positioner sleeve (14) develops an annular space (6) for receiving a sealing sleeve (11), which is made at least partially from a plastically deformable material and extends outward from the pile's splicing end, and the positioner sleeve's (14) end, which is located further away from the pile's (1, 1') splic ing end, is designed to have its inner diameter decreasing towards the discussed end in such a way that, in the process of connecting two piles (1, 1') to each other and hammering the upper pile (1') towards the lower pile (1), the sealing sleeve (11), disposed in the annular space (6) has its end, within the positioner sleeve's (14) decreasing inner diameter zone, deforming plastically, sealing against the heat transfer pipe's (2, 3) external surface.
Resumen de: WO2024192189A1
A closed well loop is provided for a geothermal system. The closed well loop includes at least one well having at least one lateral section the traverses a subterranean formation. Fluid flow in the at least one lateral section extracts thermal energy from the subterranean formation. The fluid flow in the at least one lateral section is driven by convection where hotter fluid convects upward along the top part of the lateral section and colder fluid convects downward along the bottom part of the lateral section.
Resumen de: CN121184410A
本发明涉及地热资源开发技术领域,尤其涉及一种孔隙型砂岩热储地热井控砂抽水系统,本发明提供的孔隙型砂岩热储地热井控砂抽水系统,包括:地热井,适用于孔隙型砂岩热储层;抽水装置,包括设置在地热井内的水泵和连接于水泵输入端的吸水管,吸水管的底部封闭,吸水管的管壁设置有透水孔;过滤组件,套设于吸水管的外周侧,过滤组件沿吸水管的延伸方向设置,并覆盖透水孔,本发明提供的孔隙型砂岩热储地热井控砂抽水系统能够在井内实现对砂粒的有效拦截,可有效解决孔隙型砂岩热储开发中的出砂问题。
Nº publicación: CN121184082A 23/12/2025
Solicitante:
西南石油大学
Resumen de: CN121184082A
本发明涉及油气田开发技术领域,尤其涉及一种利用石墨烯封堵微纳米裂缝以优化油气开采的方法。其技术方案包括以下步骤:地质评估与通道建立,确定目标油藏邻近的高温地热层,并建立连接所述地热层与所述油藏的裂缝通道;裂缝选择性封堵,制备石墨烯基封堵材料,并将其注入所述裂缝通道,对部分裂缝进行选择性封堵,以形成热绝缘层,减少热能损失;地热循环与驱油,通过注入井向所述地热层注入流体。本发明将地热开发与油气开采创新性地深度融合,通过石墨烯封堵技术与系统性的井网设计,构建了高效、经济、环保的提高采收率方法,不仅提升了油气产量和热能利用效率,在节能降耗的同时实现碳封存。