Resumen de: EP4570745A1
The present disclosure relates to apparatuses for producing hydrogen, and to top-down methods for producing nanoparticles. Different mechanical mills may be used to break down micron sized soil or sand particles and to react the particles with water, particularly sea water.
Resumen de: EP4570743A1
A method for producing hydrogen using a feed stream comprising ammonia is provided. The method may include the steps of: cracking a gaseous ammonia feed comprising ammonia and at least 0.15% water vapor in an ammonia cracker to produce a cracked gas stream comprising hydrogen, nitrogen, unreacted ammonia, and water vapor; cooling the cracked gas stream to a separation temperature that is sufficient for condensing at least a portion of the unreacted ammonia and the water vapor to form a dual phase fluid; separating the dual phase fluid in a separator that is configured to produce an aqueous ammonia stream and a vapor stream, the vapor stream comprising predominantly of hydrogen and nitrogen; wherein the separation temperature is below 0°C.
Resumen de: GB2636333A
A system comprising two electrolysis subsystems for electrolysis of water to produce hydrogen, wherein the first subsystem produces waste thermal energy and the second uses this energy. One of the subsystems may use a low-temperature electrolysis technology and the other a high-temperature technology. Said low-temperature process may be anionic exchange membrane (AEM) electrolysis, alkaline electrolysis or a combination. The high-temperature process may be solid oxide electrolysis cell (SOEC) electrolysis. The waste thermal energy may be recovered into a heat exchange fluid and the system may also comprise a heater or a steam generator. Also claimed is a method for the system.
Resumen de: EP4570949A1
A hydrogen gas generation system comprises a reactor chamber, an elongate cathode, an ammonia inlet, a hydrogen gas outlet, and a collection outlet. The reactor chamber has an input end and an output end. A wall of the reactor chamber between the input end and the output end is an anode. The elongate cathode extends between the input end and the output end through an interior of the reactor chamber. The ammonia inlet is positioned to introduce a liquid ammonia into the reactor chamber such that the liquid ammonia flows in a direction from the input end to the output end. The hydrogen gas outlet at the output end, wherein a hydrogen gas generated in the reactor chamber exits the reactor chamber through the hydrogen gas outlet. The collection outlet is at the output end. Nitrogenous compounds exit the reactor chamber through the collection outlet.
Resumen de: EP4571906A1
The present invention relates to a hydrogen ion conductive multilayer composite membrane comprising one or more inner reinforced membrane comprising a porous PTFE layer impregnated with an ionomer composition and outer reinforced membranes positioned on both sides of the inner reinforced membrane, wherein the outer reinforced membranes comprise a porous PTFE layer impregnated with an ionomer composition.
Resumen de: EP4570742A1
A method for producing hydrogen comprises a) performing water electrolysis to produce oxygen and a first hydrogen product stream; b) reforming a hydrocarbon stream with oxygen to produce a reformed stream containing CO<sub>x</sub> and hydrogen; c) optionally, subjecting said reformed stream to a water gas shift process to produce a shifted product stream containing additional hydrogen and carbon dioxide; and separating hydrogen from the shifted product stream to produce a second hydrogen product stream; and d) directing oxygen produced in step a), optionally after buffering, to step b). The method allows for producing constant, continuous and uninterrupted amounts of emission-free hydrogen accomodating external influences such as fluctuations with weather conditions, day-night cycles and seasons. Said process can be run continuously and is not reliant on only one energy source which might be fluctuating.
Resumen de: EP4570950A1
The present invention relates to an electrolyzer designed for the generation of hydrogen and oxygen through water electrolysis. The electrolyzer comprises a housing structure accommodating at least one electrolytic cell, which includes an anode, a cathode, and an ion-conducting membrane. A water inlet is provided to introduce water into the electrolytic cell, and an electrical power source is operatively connected to the anode and cathode to facilitate the electrolysis process. The electrolyzer also includes separate outlets for the efficient extraction of hydrogen and oxygen generated during electrolysis. A multi-parameter optical measurement system is integrated within the electrolyzer. This system features at least one optical fiber with multiple sensing points distributed along its length, each capable of detecting various operational parameters within the electrolyzer.
Resumen de: WO2024184065A1
An offshore hydrogen production platform (100) is described comprising a support structure (101) and plurality of vertically spaced decks (110, 111, 112) arranged to be supported by the support structure (101). The plurality of vertically spaced decks (110,111, 112) comprise an uppermost deck (110), and wherein the uppermost deck (110) comprises a hydrogen production equipment (130). The offshore hydrogen production platform (100) further comprises an enclosure (113) arranged to encapsulate the hydrogen production equipment (130). Also described is a method of producing hydrogen using hydrogen production equipment (130) located on a uppermost deck (110) of an offshore hydrogen platform (100).
Resumen de: CN119677896A
In one embodiment, discussed herein is a method of producing hydrogen, the method comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a membrane between the anode and the cathode, where the membrane is both electronically and ionically conductive; (b) introducing a first stream to the anode, wherein the first stream comprises ammonia; (c) introducing an oxidizing agent to the anode; and (d) introducing a second stream to the cathode, wherein the second stream comprises water and provides a reducing environment to the cathode; wherein the hydrogen is generated from water in an electrochemical manner; wherein the first stream and the second stream are separated by the membrane; and wherein the oxidant and the second stream are separated by the membrane.
Resumen de: EP4570958A2
A method of operating an electrolyzer module includes providing a first air stream and steam into a stack of electrolyzer cells located in a hotbox and outputting a product stream containing hydrogen and steam, and an oxygen exhaust stream, providing the product stream to an internal product cooler (IPC) heat exchanger located in the hotbox to reduce the temperature of the product stream by transferring heat to the first air stream, and providing the product stream from the IPC to an external product cooler (EPC) heat exchanger located outside of the hotbox and inside of a cabinet housing the hotbox to further reduce the temperature of the product stream by transferring heat to a fluid stream.
Resumen de: EP4570957A2
A method operating an electrolyzer system includes producing hydrogen by electrolysis of steam in at least one electrolyzer cell stack of the electrolyzer system using power received from an intermittent power source, detecting a reduction in a level of power received from the intermittent power source below a first threshold, decreasing a rate of producing hydrogen in response to the detected reduction in the level power below the first threshold, detecting a reduction in a level of power received from the intermittent power source below a second first threshold that is lower than the first threshold, and switching the electrolyzer system into a hot standby mode in which the electrolyzer system does not produce hydrogen and maintains the least one electrolyzer cell stack above a predetermined threshold temperature.
Resumen de: EP4570955A1
The cell (26) comprises a cell casing (34) defining an anodic compartment (36) and a cathodic compartment (38), the anodic compartment (36) comprising an anode chamber (50) and the cathodic compartment (38) comprising a cathode chamber (58), the cell casing (34) comprising a membrane (40) separating the anode chamber (50) from the cathode chamber (58).The anodic compartment (36) defines, within the cell casing (34), an anodic degassing cavity (52) located on top of the anode chamber (50), the cathodic compartment (38) defining, within the cell casing (34), an cathodic degassing cavity (60) located on top of the cathode chamber (58). The cell casing (34) comprises a partition wall (42) tightly separating the anodic degassing cavity (52) from the cathodic degassing cavity (60).
Resumen de: EP4570954A1
The invention relates to a coated diaphragm (16) of an electrochemical device (8) for alkaline electrolysis. The diaphragm (16) comprises an alkaline membrane (18) coated on at least one side with a catalyst layer (20). The catalyst layer (20) is obtained by deposition of at least one metallic catalyst on the membrane (18) by physical vapor deposition, the metallic catalyst being chosen between Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Hf, Ta, W and any combination thereof.
Resumen de: EP4570949A1
A hydrogen gas generation system comprises a reactor chamber, an elongate cathode, an ammonia inlet, a hydrogen gas outlet, and a collection outlet. The reactor chamber has an input end and an output end. A wall of the reactor chamber between the input end and the output end is an anode. The elongate cathode extends between the input end and the output end through an interior of the reactor chamber. The ammonia inlet is positioned to introduce a liquid ammonia into the reactor chamber such that the liquid ammonia flows in a direction from the input end to the output end. The hydrogen gas outlet at the output end, wherein a hydrogen gas generated in the reactor chamber exits the reactor chamber through the hydrogen gas outlet. The collection outlet is at the output end. Nitrogenous compounds exit the reactor chamber through the collection outlet.
Resumen de: WO2024094454A2
A separator for alkaline hydrolysis comprising a porous layer, the porous layer comprising inorganic particles, characterized in that the inorganic particles have a fraction of primary particles having a diameter above 100 nm of lower than 3 % by number, as measured by Transmission Electron Microscopy (TEM).
Resumen de: WO2024094453A2
A separator for alkaline hydrolysis comprising a porous layer, the porous layer comprising zirconium oxide particles, characterized in that the zirconium oxide particles have a particle size of 70 nm or less, measured using the Debye-Scherrer equation on the (-111) reflection of a powder X-ray diffraction pattern of the zirconium oxide particles.
Resumen de: US2025187912A1
A catalyst includes a ruthenium metal loaded on a support, wherein the support has a chemical formula of AxB(1-x)Oy. A is an alkaline earth metal, B is aluminum, zinc, cerium, manganese, or a combination thereof, x is 0.05 to 0.50, and y is chemical stoichiometry. The catalyst may further include an auxiliary agent loaded on the support. The catalyst can be used to decompose gaseous ammonia.
Resumen de: US2025188621A1
Device for generating hydrogen gas and oxygen gas from water, comprising a case, which forms a hydrolysis chamber designed to contain an amount of water; electrode means that act as a cathode and an anode; and gas-separating means, disposed in the hydrolysis chamber between the cathode and the anode, which comprise a permeable membrane segment suitable for preventing the generated hydrogen gas and oxygen gas from passing through the permeable membrane segment and mixing together, the hydrolysis chamber being divided into a first portion that contains the cathode and a second portion that contains the anode, wherein the first and second chamber portions are in fluid communication with respective pipes for hydrogen gas and oxygen gas. Another object of the invention is a system for the same purpose, comprising at least one device as described above.
Resumen de: US2025188620A1
A new energy hydrogen production system and a control method therefor. In the new energy hydrogen production system, a new energy input module supplies power to electrolytic cells by means of a power conversion module; and a control system of the new energy hydrogen production system is used for controlling, according to the power of the new energy input module, the power conversion module to work, such that among N electrolytic cells in an operation state, at least N-1 electrolytic cells work in a preset load range. The preset load range is a corresponding load range having the highest system efficiency in an electrolytic cell working range division result prestored in the control system.
Resumen de: US2025188628A1
An electrolysis cell for chlor-alkali or alkaline water electrolysis comprises two cell elements each defining an electrode chamber by providing a back wall and sidewalls of the electrode chambers, an electrode accommodated in each of the electrode chambers, and a sheet-like separator extending in a height direction and a width direction of the electrolysis cell, the separator being interposed in a joint between the two cell elements and providing a separating wall between the electrode chambers, wherein at least one of the electrodes is made from a sheet of metallic mesh, which is supported by a plurality of webs attached to the back wall of the respective electrode chamber, the webs extending in the height direction of the electrolysis cell, and wherein a plurality of ribs extending in the width direction of the electrolysis cell is carried by the webs, wherein the electrode is disposed on the plurality of ribs.
Resumen de: US2025188630A1
An oxynitride catalyst includes NiaMbNcOd, wherein M is Nb, Mn, or Co, a>0, b>0, c>0, d>0, and a+b+c+d=1. A hydrogen evolution device includes an anode and a cathode dipped in an electrolyte, and the anode includes the oxynitride catalyst. The oxynitride catalyst can be disposed on a support. The oxynitride catalyst may have a polyhedral structure.
Resumen de: US2025188633A1
The present invention relates to the generation of at least one electrolysis product, in particular to a hydropower-electrolysis system, a hydro power plant and a method for generating at least one electrolysis product. An electrolysis assembly includes a plurality of electrolysis cells configured to generate, upon provision of a direct electrical current, at least one electrolysis product from a supply medium. A hydropower assembly is electrically connected to the electrolysis assembly for operating the electrolysis cells of the electrolysis assembly based on electrical power generated by the hydropower assembly.
Resumen de: US2025188632A1
An electrolytic method of loading hydrogen into a cathode includes placing the cathode and an anode in an electrochemical reaction vessel filled with a solvent, mixing a DC component and an AC component to produce an electrolytic current, and applying an electrolytic current to the cathode. The DC component includes cycling between: a first voltage applied to the cathode for a first period of time, a second voltage applied to the cathode for a second period of time, wherein the second voltage is higher than the first voltage, and wherein the second period of time is shorter than the first period of time. The peak sum of the voltages supplied by the DC component and AC component is higher than the dissociation voltage of the solvent. The AC component is selected based on a local minimum of a Nyquist plot to minimize energy loss while maintaining hydrogen transport.
Resumen de: US2025188631A1
An embodiment water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase. An embodiment method of preparing a water electrolysis catalyst includes preparing a mixture including an iridium precursor, a nickel precursor, and cysteamine hydrochloride, drying the mixture, grinding the dried mixture, and firing a ground product, wherein the water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase.
Resumen de: US2025188629A1
A power control device for a hydrogen production system according to one aspect includes: a power generation device that generates electric power by using renewable energy; a hydrogen production device that produces hydrogen by using electric power generated by the power generation device; and a connector that connects the power generation device and the hydrogen production device to an electric power system. The power control device determines a power command value to be supplied to the hydrogen production device based on electric power generated by the power generation device and electric power that reversely flows to the electric power system so that hydrogen is produced in a state where a reverse power flow to the electric power system continuously occurs.
Resumen de: AU2023397261A1
The invention relates to an electrolysis system (1) with a pressure electrolyzer (3) for generating hydrogen (H
Resumen de: US2025188565A1
Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
Resumen de: DE102023134698A1
Die Erfindung betrifft ein Verfahren zum Herstellen einer Elektrode (10) für die Verwendung bei der alkalischen Elektrolyse von Wasser, das Verfahren umfassend Bereitstellen eines metallischen Substrats (12), Bereitstellen eines Beschichtungswerkstoffes (26), umfassend ein Pulver (28) aus einem Katalysatormaterial (20) und nicht-metallische Partikel (24), und Beschichten zumindest eines Abschnitts des Substrats mit dem Beschichtungswerkstoff. Die Erfindung betrifft auch derart herstellte Elektroden.
Resumen de: WO2025119989A1
The invention concerns a method of electrolysing water using an electrolyser comprising an anode; a cathode and optionally a separator; wherein at least one of the cathode and the separator comprises a substrate and a coating, and the coating comprises 9.5 to 35 wt% chromium; 10 to 75 wt% cobalt; and 10 to 60 wt% of one or more further transition metals and/or one or more non-metallic elements selected from C, P, N and B.
Resumen de: DE102023212354A1
Elektrolysesystem mit einem Stack (1), der einen Anodenraum (2) und einen Kathodenraum (3) aufweist und der dazu eingerichtet ist, Wasser elektrolytisch in Wasserstoff und Sauerstoff aufzuspalten, wobei der Kathodenraum (3) einen Einlass (9) und einen Auslass (10) aufweist. Dem Stack (1) ist ein Gas-Flüssig-Separator (11) zugeordnet, der über eine Ausleitung (12) mit dem Auslass (10) des Kathodenraums (3) verbunden ist und in dem Flüssigkeit von Gas getrennt wird, wobei der Gas-Flüssig-Separator einen Gasauslass (13) zum Abströmen des abgetrennten Gases aufweist. Der Gasauslass (13) mündet in einen zentralen Gas-Flüssig-Separator (25) zur Trennung von Flüssigkeit und Gas.
Resumen de: DE102023212440A1
Die Erfindung betrifft ein Offshore-Elektrolysesystem (100) umfassend eine Windkraftanlage (1) mit einem auf dem Meeresgrund verankerten Turm (19) und mit einer Elektrolyseanlage (5), wobei die Elektrolyseanlage (5) mit einer Versorgungsleitung (11) an die Windkraftanlage (1) angeschlossen ist, und wobei die Elektrolyseanlage (5) einen in einem Container (9) angeordneten Elektrolyseur (13) aufweist, wobei der Container (9) unterhalb des Meeresspiegels (25) angeordnet ist.Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb eines entsprechenden Offshore-Elektrolysesystems. Dabei wird von einem unterhalb des Meeresspiegels (25) angeordneten Elektrolyseur (13) der Elektrolyseanlage (5) Wasser in Wasserstoff (H2) und Sauerstoff zerlegt, wobei der erzeugte Wasserstoff (H2) über eine Produktgasleitung (7) abtransportiert wird.
Resumen de: KR20250085126A
본 발명은 수전해 수소발생반응용 Pt/LaNiO3 촉매에 관한 것으로서, 상세하게는, 수전해 시스템에서 수소발생반응(HER) 전극에 적용되는 신규 촉매로써 수전해시 동일 전압에서의 수소발생 반응성이 우수하며, 또한 과전압을 낮추는 효율, 촉매 안정성이 우수한 수전해 수소발생반응용 Pt/LaNiO3 촉매에 관한 것이다.
Resumen de: KR20250085401A
본 발명은 이퓨얼(e-fuel)을 제조하기 위한 시스템 및 방법에 관한 것으로, 본 발명에 따르면, 최근, 환경오염 문제가 날로 심각해지면서 기존의 석유나 가스 등의 연료를 대신하여 친환경 연료에 대한 요구가 높아짐에 따라 기존의 화석연료에 비해 이산화탄소 배출량을 크게 감소할 수 있는 친환경 연료로서 이퓨얼(E-Fuel)이 제시된 바 있으나, 전체적인 제조공정이 복잡하여 가격이 매우 높은 단점이 있었던 종래기술의 이퓨얼 제조시스템 및 방법들의 문제점을 해결하기 위해, 수소(H2)와 이산화탄소(CO2)를 이용하여 촉매반응을 통해 친환경적으로 이퓨얼을 생성할 수 있도록 구성됨으로써, 보다 친환경적으로 이퓨얼을 생산할 수 있는 동시에, 이퓨얼 제조시스템의 생산성을 높이고 전체적인 비용을 절감할 수 있도록 구성되는 수소와 이산화탄소를 이용한 이퓨얼 제조시스템 및 방법이 제공된다.
Resumen de: DK202330343A1
Water electrolyser stack having a range of half-cell frames which each circumscribes one of an anolytic or a catholytic process chamber and which half-cell frames are arranged and aligned in an array between a proximal electric current injector/collector plate and a distal electric current injector/collector plate, and where each half-cell frame comprises an embedded furrow flow channel adapted to serve an electrolyte flow from a stack internal inflow manifold channel to a corresponding anolytic or catholytic reaction chamber and an embedded furrow flow channel adapted to serve an electrolyte and gas outflow from a corresponding anolytic or catholytic reaction chamber to a corresponding stack internal manifold channel wherein each of the embedded furrow flow channels comprise at least one fluid and/or gas trap section.
Resumen de: TW202409348A
An alkaline electrolyzer system comprising an electrochemical cell in proximity to a spacer frame is provided. The spacer frame contains a polymer composition that includes a polymer matrix that contains at least one polyarylene sulfide.
Resumen de: WO2025121289A1
Provided is a membrane electrode assembly capable of suppressing hydrogen crossover. The membrane electrode assembly is for solid macromolecule-type water electrolysis and comprises: an anode having a catalyst layer; a cathode having a catalyst layer; and a solid macromolecule electrolyte membrane disposed between the anode and the cathode. At least one of the catalyst layer in the anode and the catalyst layer in the cathode includes a fluorine-containing polymer having an ion exchange group, and having a unit having a cyclic ether structure.
Resumen de: WO2025122112A1
The invention relates to a hydrogen sulfide separation system (A) and method for producing pure hydrogen (30) with high efficiency and environmental sustainability for the energy sector, while also converting sulfur (40) into economic value by producing sulfuric acid (60) The system includes a gasification unit (100) to convert liquid hydrogen sulfide (10) into gaseous hydrogen sulfide (20), an electrolyzer (200) equipped with a palladium-alloy membrane (290) to separate hydrogen (30) and sulfur (40) through electrolysis, and an oxidation unit (300) to oxidize sulfur (40) using hydrogen (30) and oxygen (50), resulting in sulfuric acid (60). The method enhances energy efficiency, reduces operating costs, and offers a sustainable solution for hydrogen production.
Resumen de: US2025186304A1
A hydrogen generation device includes a tubular tank and a top lid combined with the tank. An immersion tube in which a hydrogen generating agent package is stuffed is placed in the tank. The hydrogen generating agent package is submerged in water after water is poured in the tank to generate hydrogen, which is released through a tank opening of the tank. The hydrogen generating agent package accommodates hydrogen generating agent powders including calcium oxide and aluminum powders, both of which are mixed and wrapped with a nonwoven fabric, as well as a little catalytic sodium carbonate added inside. For inhibition of free radicals and promotion of metabolism, the hydrogen generation device is further provided with a connector and a hose for a skin-care instrument, a nasal mask, an eye shield or an ear cleaner through which hydrogen is supplied as required.
Resumen de: EP4567157A2
An electrolyzer system includes stacks of electrolyzer cells configured receive steam and air, and output a hydrogen product stream and an oxygen exhaust stream, and a first heat pump configured to extract heat from the oxygen exhaust stream to generate a first portion of the steam provided to the stacks.
Resumen de: EP4567153A1
A method of electrolysing water, the method comprising:- providing an electrolyser comprising an anode; a cathode and optionally a separator;- contacting the cathode and/or the anode with an aqueous alkaline solution comprising water; and- electrolysing the water using a potential difference from the anode to the cathode,wherein at least one of the cathode and the separator comprises a substrate and a coating, wherein the coating comprises 9.5 to 35 wt% chromium; 10 to 75 wt% cobalt; and 10 to 60 wt% one or more further transition metals and/or one or more non-metallic elements selected from C, P, N and B, and wherein the coating catalyses hydrogen evolution at the cathode.
Resumen de: EP4567159A2
There is disclosed an electrolyser (10, 20, 50) for operation at supercritical conditions, in which chambers (200, 210, 520) for retaining respective fluid reaction products are separated by a porous wall which permits a flow of electrolyte fluid therethrough and which inhibits a reverse flow of the respective reaction product. There is also disclosed a method of operating an electrolyser.
Resumen de: CN119630834A
The invention relates to a method for heating a furnace comprising radiant tubes and capable of heat-treating a running steel product, comprising the following steps: i. Supplying H2 and O2 to at least one of said radiant tubes such that said H2 and said O2 combine into heat and steam; ii. Recovering said steam from said at least one of said radiant tubes; iii. Electrolyzing the steam to produce H2 and O2; iv. Supplying said H2 and O2 produced in step iii to at least one of said radiant tubes such that said H2 and O2 combine into heat and steam.
Resumen de: AU2022322636A1
A highly crystalline mesoporous sulphur functionalized carbon nitride and a process for producing the same. The process including the steps of: providing a carbon nitride precursor material; mixing the carbon nitride precursor material with a metal salt to form a first mixture; and, thermally treating the first mixture to produce the crystalline carbon nitride.
Resumen de: EP4567079A1
Molybdenum carbide includes a Mo<sub>2</sub>C crystal structure, in which a content of carbon with respect to a total mass (100 mass%) of the molybdenum carbide is 6% or more.
Resumen de: CN119604469A
The present invention relates to a method for manufacturing an electrocatalyst for alkaline water electrolysis, said method comprising the steps of: (i) generating an aqueous electrolyte comprising suspended graphene and graphite nanoplatelets having lt in an electrochemical cell; the present invention relates to an electrolytic cell having a thickness of 100 nm, where the electrolytic cell comprises: a graphite negative electrode, (b) a graphite positive electrode, (c) an aqueous electrolyte comprising ions in a solvent, the ions comprising cations and anions, where the anions comprise sulfate anions; and wherein the method comprises the step of passing an electric current through the electrolysis cell to obtain exfoliated graphene and graphite nanosheet structures in the aqueous electrolyte in an amount greater than 5 g/l; (ii) forming an electroplating bath (2) comprising suspended graphene and graphite nanoplatelets in an amount greater than 2 g/l, said acidic electroplating bath comprising an aqueous solution of nickel sulfate and an electroplating solution comprising suspended graphene and graphite nanoplatelets in an amount greater than 5 g/l (thickness lt; 100 nm) of an aqueous electrolyte of step (i); and (iii) electrodepositing a combined layer of Ni or Ni alloy with graphene and graphite particles from the electroplating bath on a support to form an electrocatalyst.
Resumen de: US2025149602A1
A SOC stack system comprises one or more solid oxide cell stacks and multi-stream solid oxide cell stack heat exchanger(s).
Resumen de: EP4567158A1
Provided is a hydrogen production system (100) including: an electrolysis module (19) that supplies steam to a hydrogen electrode (11) including a metal component and produces hydrogen through steam electrolysis; a hydrogen storage facility (40) that stores the generated hydrogen; a steam supply unit (20) that supplies steam to the hydrogen electrode (11); a regulation unit (50) that regulates a supply amount of the hydrogen supplied from the hydrogen storage facility (40) to the hydrogen electrode (11) and a supply amount of the steam supplied from the steam supply unit (20) to the hydrogen electrode (11); and a control device (80) for controlling the regulation unit (50) to switch a heating medium supply state in which a heating medium is supplied from a heating medium supply unit (70) to the hydrogen electrode (11) to a steam supply state in which steam is supplied from the steam supply unit (20) to the hydrogen electrode (11), in response to the electrolysis module (19) exceeding a first switching temperature when activating the electrolysis module (19).
Resumen de: WO2024058606A1
The present invention relates to a method for preparing a NiMo-MoO3-x porous nanorod catalyst on the basis of a metal-organic framework and a non-precious alloy catalyst prepared thereby. The method for preparing a non-precious alloy catalyst according to the present invention can produce an alloy catalyst retaining excellent HER performance close to that of a commercial platinum catalyst by forming porous nanorods with a wide surface area having a combination of an alloy and an oxide.
Resumen de: US2025187912A1
A catalyst includes a ruthenium metal loaded on a support, wherein the support has a chemical formula of AxB(1-x)Oy. A is an alkaline earth metal, B is aluminum, zinc, cerium, manganese, or a combination thereof, x is 0.05 to 0.50, and y is chemical stoichiometry. The catalyst may further include an auxiliary agent loaded on the support. The catalyst can be used to decompose gaseous ammonia.
Resumen de: US2025186304A1
A hydrogen generation device includes a tubular tank and a top lid combined with the tank. An immersion tube in which a hydrogen generating agent package is stuffed is placed in the tank. The hydrogen generating agent package is submerged in water after water is poured in the tank to generate hydrogen, which is released through a tank opening of the tank. The hydrogen generating agent package accommodates hydrogen generating agent powders including calcium oxide and aluminum powders, both of which are mixed and wrapped with a nonwoven fabric, as well as a little catalytic sodium carbonate added inside. For inhibition of free radicals and promotion of metabolism, the hydrogen generation device is further provided with a connector and a hose for a skin-care instrument, a nasal mask, an eye shield or an ear cleaner through which hydrogen is supplied as required.
Resumen de: CN118374814A
The invention discloses a device for preparing arsine through double-anode electro-catalysis and application, the device comprises a cathode electrolytic bath and two anode electrolytic baths arranged on the two sides of the cathode electrolytic bath, the cathode electrolytic bath and the anode electrolytic baths are separated through diaphragms, and anode catalysts are tightly attached to the side faces, facing the anode electrolytic baths, of the diaphragms; a cathode electrode is inserted into the cathode electrolytic bath and is connected with the negative electrode of the power supply through a wire, and the two anode catalysts on the two opposite sides of the two diaphragms are connected in parallel through wires and are connected with the positive electrode of the power supply. According to the invention, a dual-channel anode electrolytic bath structure is designed, and the capacity of transferring protons by reaction is regulated and controlled by increasing the quantity of the anode electrolytic bath and the anode catalyst, so that the current density of the reaction is directly improved, on one hand, the oxygen generation rate of the anode is improved, and on the other hand, the generation of cathode arsine is accelerated.
Resumen de: CN119013421A
The hydrocarbon feed stream is exposed to heat in the absence of oxygen to convert the hydrocarbon feed stream into a solid stream and a gas stream. The gas stream is separated into an off-gas stream and a first hydrogen stream. The carbon is separated from the solids stream to produce a carbon stream. The water stream is electrolyzed to produce an oxygen stream and a second hydrogen stream. Iron ore is reduced to produce iron by flowing hydrogen through the iron ore. The iron and a first portion of the carbon in the carbon stream are combined to produce steel. At least a portion of the oxygen in the oxygen stream and a second portion of the carbon in the carbon stream are combined to produce electrical energy and a carbon dioxide stream.
Resumen de: CN119243213A
The invention relates to the technical field of electro-catalysis hydrogen evolution, and discloses a preparation method and application of a double-gradient self-supporting hydrogen evolution electrode. The preparation method comprises the following steps: forming an oxygen-containing hydrophilic group on the surface of conductive carbon cloth to obtain pretreated carbon cloth; a metal organic framework composed of Co and dimethylimidazole grows on the surface of the pretreated carbon cloth in an in-situ self-growth mode, the metal organic framework forms triangular protrusions on the surface of the pretreated carbon cloth, roasting is conducted, and a geometric gradient electrode is obtained; and covering the surface of the geometric gradient electrode with a mask distributed with a plurality of through holes, applying a hydrophobic and aerophilic coating on the surface of the geometric gradient electrode through the through holes, and forming a plurality of hydrophobic and aerophilic areas on the surface of the geometric gradient electrode. By adopting the preparation method disclosed by the invention, the overpotential and the overpotential growth rate of the electrode under high current density can be effectively reduced.
Resumen de: US2025188631A1
An embodiment water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase. An embodiment method of preparing a water electrolysis catalyst includes preparing a mixture including an iridium precursor, a nickel precursor, and cysteamine hydrochloride, drying the mixture, grinding the dried mixture, and firing a ground product, wherein the water electrolysis catalyst includes iridium oxide including a rutile phase and iridium-nickel oxide including a hexagonal phase.
Resumen de: DE102023212354A1
Elektrolysesystem mit einem Stack (1), der einen Anodenraum (2) und einen Kathodenraum (3) aufweist und der dazu eingerichtet ist, Wasser elektrolytisch in Wasserstoff und Sauerstoff aufzuspalten, wobei der Kathodenraum (3) einen Einlass (9) und einen Auslass (10) aufweist. Dem Stack (1) ist ein Gas-Flüssig-Separator (11) zugeordnet, der über eine Ausleitung (12) mit dem Auslass (10) des Kathodenraums (3) verbunden ist und in dem Flüssigkeit von Gas getrennt wird, wobei der Gas-Flüssig-Separator einen Gasauslass (13) zum Abströmen des abgetrennten Gases aufweist. Der Gasauslass (13) mündet in einen zentralen Gas-Flüssig-Separator (25) zur Trennung von Flüssigkeit und Gas.
Resumen de: KR20250084095A
신재생에너지 기반의 그린수소 생산 시스템 및 방법을 제공한다. 신재생에너지 기반의 그린수소 생산 시스템으로서, 전력계통; 재생에너지 기반의 전력을 생성하는 재생에너지 제공파츠; 및 상기 전력계통, 상기 재생에너지 제공파츠 중 적어도 어느 한 곳으로부터 전력을 공급받고, 기 설정된 고순도의 수소생산을 수행하는 수소 생산파츠를 포함한다.
Resumen de: US2025001352A1
The present disclosure relates to a pressure swing adsorption apparatus for high purity hydrogen purification from ammonia decomposition and a hydrogen purification method using the same, and more specifically, the pressure swing adsorption apparatus includes a plurality of adsorption towers including a guard bed unit and a hydrogen purification unit, in which each adsorption tower is packed with different adsorbents, to purify high purity hydrogen from mixed hydrogen gas produced after ammonia decomposition, make it easy to replace the adsorbent for ammonia removal, minimize the likelihood that the lifetime of the adsorbent in the hydrogen purification unit is drastically reduced by trace amounts of ammonia, efficiently recover hydrogen of the guard bed unit, thereby maximizing the hydrogen recovery rate compared to a conventional pressure swing adsorption process including a pretreatment unit and a hydrogen purification unit, and respond to a large change in ammonia concentration in the raw material.
Resumen de: WO2025116392A1
One embodiment of the present invention relates to a hydrogen production reactor for producing hydrogen by decomposing ammonia. The hydrogen production reactor comprises: a housing; at least one reaction tube provided inside the housing and having an inlet into which a reactant containing ammonia flows in: a heating unit for providing heat to the reaction tube; a preheating unit provided in the reaction tube and extending in one direction; and a catalyst layer positioned downstream of the preheating unit and extending in one direction, wherein the preheating unit is filled with an oxide containing magnesium oxide (MgO).
Resumen de: PL450397A1
Przedmiotem zgłoszenia jest przedstawiony na rysunku układ do kompresji wodoru, który składa się z elektrolizera, sprężarki i zbiornika do magazynowania, przy czym sprężarka realizuje kompresję wodoru w dwóch fazach: — fazie I kompresji - do magazynowania wodoru w zbiornikach oraz — fazie II kompresji - do tankowania urządzeń wodorem. Wynalazek znajduje zastosowanie w tworzeniu stacji tankowania aut wodorowych, magazynowaniu energii oraz transporcie i logistyce.
Resumen de: JP2025086209A
【課題】メタン合成の際に用いる触媒の劣化を抑制しつつ、メタン製造システムを高効率で動作維持可能に制御することを可能とする。【解決手段】メタン製造方法は、供給された電気エネルギーを用いて水電解装置における水電解により水素を生成する工程と、生成された水素と、二酸化炭素とをメタン合成装置において反応させてメタンを製造し、メタンを製造する際に発生した反応熱を前記水電解装置に伝導させる工程と、前記メタン合成装置の温度が、予め設定された目標温度となるように前記水電解装置に供給する電気エネルギー量を調整する工程と、を備える。【選択図】図3
Resumen de: US2025188630A1
An oxynitride catalyst includes NiaMbNcOd, wherein M is Nb, Mn, or Co, a>0, b>0, c>0, d>0, and a+b+c+d=1. A hydrogen evolution device includes an anode and a cathode dipped in an electrolyte, and the anode includes the oxynitride catalyst. The oxynitride catalyst can be disposed on a support. The oxynitride catalyst may have a polyhedral structure.
Resumen de: JP2025086206A
【課題】メタン製造システムを高効率で動作維持可能に制御することを可能とする。【解決手段】メタン製造方法は、供給された電気エネルギーを用いて水電解装置における水電解により水素を生成する工程と、生成された水素と、二酸化炭素とをメタン合成装置において反応させてメタンを合成し、メタンを合成する際に発生した反応熱を前記水電解装置に伝導させる工程と、前記水電解装置から自己発熱によって発生する余剰熱量と前記メタン合成装置から前記水電解装置に伝導した熱エネルギー量の合計が、前記水電解装置における水電解反応において必要となる熱エネルギー量と等しくなるように前記水電解装置に供給する電気エネルギー量を調整する工程と、を備える。【選択図】図3
Resumen de: CN117285004A
The invention provides a ubiquitous light-gathering catalytic hydrogen production device and method and application. The ubiquitous light-gathering catalytic hydrogen production device comprises a hydrogen production unit, an artificial light-gathering light source unit and an electric power adjusting unit, the hydrogen production unit comprises a reaction tank and is used for preparing hydrogen and oxygen through artificial photocatalytic decomposition of water; the artificial condensation light source unit comprises a reflection assembly and a plurality of light-emitting assemblies, the light-emitting assemblies are used for emitting artificial light, and the reflection assembly is used for reflecting and gathering the artificial light into the reaction tank; the electric power adjusting unit is used for providing electric energy for the artificial condensation light source unit. According to the invention, electric power is converted into artificial light of a single wave band, artificial photocatalytic hydrogen production is carried out in a condensation mode, and the device is suitable for various electric power hydrogen production energy storage with fluctuation characteristics, especially hydrogen energy storage of low-price and negative-price electric power such as renewable energy power generation electric energy, valley electricity, abandoned electricity and the like.
Resumen de: WO2025114080A1
The invention relates to a process (100) for producing a synthesis product (6), in which gaseous hydrogen (3) is provided by electrolysis (10) of water (1) and is subjected to a reaction (30) with one or more gaseous reactants (4) to form the synthesis product (6), wherein during a first process mode, the hydrogen (3) and the one or more reactants (4) are mixed to obtain a gaseous reaction mixture (5) and the gaseous reaction mixture (5), or a part thereof, is stored under pressure in a storage unit (20), and wherein during a second process mode the gaseous reaction mixture (5), or a part thereof, stored under pressure in the first process mode is taken from the storage unit (20) and fed to the reaction (30) to form the synthesis product (6). The invention also relates to a corresponding plant.
Resumen de: AU2023396734A1
The present invention relates to an ammonia decomposition catalyst and a method for producing same and, more specifically, to an ammonia decomposition catalyst containing alumina (Al
Resumen de: WO2025114702A1
There is provided a an apparatus for the photolysis of a target material. The apparatus comprises a chamber arranged to receive a target material, at least one emitter arranged to emit an electromagnetic radiation signal at or towards the target material in use, an electromagnetic field generator configured to generate an electromagnetic field within the chamber in use, and a controller. The controller is configured to control the electromagnetic field generator to generate an electromagnetic field in the presence of the target material, such that the electromagnetic radiation signal emitted by the at least one emitter is incident upon the target material in the presence of the generated electromagnetic field.
Resumen de: WO2025114716A1
A water-electrolyser anode for a proton exchange membrane (PEM) water electrolyser comprises: a transition metal oxychalcogenide catalyst having the formula ABxOy, wherein A is a transition metal and B is a chalcogenide, and wherein 0 < x < 2 and 0 < y < 2. Also provided are a proton exchange membrane (PEM) water electrolyser, a method of water electrolysis, use of a transition metal oxychalcogenide as a catalyst in an oxygen evolution reaction under acidic conditions, and a method of manufacturing an anode for an electrolyser.
Resumen de: WO2025114700A1
A process for preparing an oxygen evolution reaction (OER) catalyst comprises an oxygenated iridium component supported on a particulate solid support, which process comprising the steps of: (i) forming an aqueous mixture comprising a particulate solid support and a solution of a halide-free metal iridate; (ii) reducing the pH of the aqueous mixture to ≤ 5.0 to precipitate an oxygenated iridium component onto the particulate solid support; and (iii) isolating the product of step (ii).
Resumen de: WO2025114571A1
An electrolysis device configured to produce hydrogen gas from water, the electrolysis device comprising a container (4), the container accommodating an aqueous alkaline solution (5), a cathodic electrode (1), and an anodic electrode (2), an electrical current being selectively applied between the cathodic electrode and the anodic electrode, wherein the cathodic electrode and possibly the anodic electrode, is made of a nickel alloy, with a nickel base alloyed with at least one element chosen among chromium, molybdenum, cobalt and iron, wherein the cathodic electrode and the anodic electrode are manufactured by an additive manufacturing process, from respective first and second mixed metallic powder compounds, wherein the cathodic and anodic electrodes exhibit an outer surface comprising a plurality of first surface patterns (6,7).
Resumen de: DE102023211891A1
Die vorliegende Anmeldung betrifft Verfahren sowie eine Anlage (10) zur Aufbereitung eines Sauerstoffgases, welches mittels Elektrolyse von Wasser und/oder Wasserdampf erzeugt und als Oxidationsmittel in einer hüttentechnischen Einrichtung (1) eingesetzt wird, wobei das mittels der Elektrolyse erzeugte Sauerstoffgas wenigstens einem Trocknungsschritt unterzogen wird, über welchen die in dem Sauerstoffgas enthaltenen Begleitgase Wasserstoff und Wasser, vorzugsweise quantitativ, entfernt werden
Resumen de: JP2025085515A
【課題】高い効率で水素を発生させることができる鉄基粉末を提供する。【解決手段】Cu-Kα線を用いたX線回折の回折ピークの内、α-Fe結晶の(110)回折面に相当する回折強度曲線の半価幅が0.03°以上0.60°以下の範囲である水素製造用鉄基粉末。【選択図】なし
Resumen de: JP2025085516A
【課題】高い効率で水素を発生させることができる鉄基粉末を提供する。【解決手段】X線回折の回折ピークの内、α-Fe結晶の(110)回折面に相当する回折強度曲線から求められる格子面間隔が2.000Å以上2.100Å以下の範囲である水素製造用鉄基粉末。【選択図】なし
Resumen de: WO2025116392A1
One embodiment of the present invention relates to a hydrogen production reactor for producing hydrogen by decomposing ammonia. The hydrogen production reactor comprises: a housing; at least one reaction tube provided inside the housing and having an inlet into which a reactant containing ammonia flows in: a heating unit for providing heat to the reaction tube; a preheating unit provided in the reaction tube and extending in one direction; and a catalyst layer positioned downstream of the preheating unit and extending in one direction, wherein the preheating unit is filled with an oxide containing magnesium oxide (MgO).
Resumen de: WO2025116600A1
Disclosed is a catalyst for a hydrogen evolution reaction or a hydrogen oxidation reaction, which can be used under alkaline conditions and has significantly improved kinetic properties compared to conventional commercially-available platinum catalysts. The present invention provides a catalyst for electrochemical hydrogen reactions under alkaline conditions, which has 2 to 20 ruthenium atoms supported in an ensemble form on the surface of a molybdenum carbide-carbon nanocomposite support, and a manufacturing method therefor, and a ruthenium-based catalyst electrode comprising the catalyst, which can be used as an electrode for anion exchange membrane-based water electrolysis cells and fuel cells.
Resumen de: WO2025116572A1
The present invention relates to an electrode for water electrolysis for hydrogen production and a manufacturing method therefor. The manufacturing method according to the present invention achieves a simpler process compared with an existing iridium (IrO2) electrode manufacturing process, uses low thermal energy, shortens the time required for, especially, heat curing, facilitates the thickness adjustment of a coating layer, and can manufacture an electrode for water electrolysis at relatively low facility costs and manufacturing costs, and requires less time, labor, and energy to perform steps of the process. In addition, the electrode for water electrolysis obtained by the manufacturing method according to the present invention not only possesses generally required electrochemical stability and chemical resistance, but also exhibits high discharge efficiency of generated bubbles while preventing defects due to voids in an actual hydrogen manufacturing process.
Resumen de: WO2025116571A1
The present disclosure relates to a manufacturing method for a separator for water electrolysis having a superhydrophobic coating layer. The manufacturing method of the present disclosure not only has high efficiency of manufacturing the separator, but also can reduce manufacturing costs and ultimately product sales costs, and thus has excellent industrial utility value. In addition, the superhydrophobic separator according to the present disclosure has high efficiency of separating hydrogen and oxygen generated in a water electrolysis process, can stably maintain hydrogen purity, and has excellent performance in preventing oxygen from being mixed into hydrogen gas, and thus can fundamentally block the risk of explosion (fire).
Resumen de: WO2025116024A1
Provided is a catalyst for hydrogen generation comprising a mixture of tungsten carbide and cobalt, the catalyst for hydrogen generation being characterized in that the absolute value of the cathode current per mg of the catalyst is 0.10 mA/mg or more when the catalyst for hydrogen generation is loaded on a glassy carbon electrode and subjected to potential scanning at -1.2 V with respect to a silver/silver chloride reference electrode under nitrogen bubbling in a 1 mol/L sodium hydroxide aqueous solution.
Resumen de: WO2025111640A1
A polymer electrolyte membrane (PEM) electrolyser or fuel cell system for the extraction of hydrogen, the electrolyser or fuel cell system comprising first and second end plate assemblies provided at longitudinal and opposed ends of the electrolyser or fuel cell system with an electrolyser stack positioned between the first and second end plate assemblies; the electrolyser stack comprising a plurality of electrolyser cells wherein each cell comprises bi-polar contact plates separated by a catalyst-coated membrane or catalyst coated electrodes and wherein the electrolyser stack is located between a pair of current collectors; wherein each of said current collectors is arranged adjacent said first and second end plate assemblies respectively with a compression arrangement being located at each end of the fuel cell stack to apply a compressive force on each of the current collectors thereby clamping the plurality of bi-polar contact plates and the plurality of catalyst-coated membranes and/or catalyst coated electrodes therebetween to apply uniform pressure across the bi-polar contact plates, wherein the compression arrangement is further configured to be adjustable to vary contact pressure between the plurality of bi-polar contact plates.
Resumen de: US2025179663A1
A production unit for the production of hydrogen or ammonia by electrolytic decomposition of water, with an electrolysis unit supplied with electrical energy by a photovoltaic unit and connected on the media side to a water storage tank and on the output side to a hydrogen tank, is intended to enable a particularly reliable and fluctuation-insensitive use of a regenerative energy source. For this purpose, the production unit is designed for floating operation and comprises a balloon envelope forming a buoyant body which can be filled with a buoyancy gas and which is provided with a support structure for the water storage unit, the electrolysis unit, the photovoltaic unit and the hydrogen storage unit.
Resumen de: US2025179658A1
In a method of producing metal borohydride, M(BH4)n, from metal metaborate, M(BO2)n, in which M is a metal, such as a metallic metal, an alkali metal, an alkaline earth metal, a transition metal or a chemical compound behaving as a metal, and n is a valence value of the metal, metal borohydride is formed through a reaction of metal hydride, MHn, with trimethyl borate, B(OMe)3, and metal trimethyl borate is formed through a reaction of boric acid, H3BO3, with methanol, MeOH, under removal of water, H2O. An electrochemical cell is used for the conversion of metal metaborate and water, H2O, to boric acid, in the electrochemical cell. The electrochemical cell has an anodic half-cell and a cathodic half-cell separated by a cation exchange membrane, and a solvent and water is provided to both the anodic half-cell and the cathodic half-cell. Metal metaborate is provided to the anodic half-cell, where acid ions, H+, and electrons, e−, are generated at the anode from electrolysis of water, and H reacts with metal metaborate and water. The cation exchange membrane passes metal ions, Mn+, from the anodic half-cell to the cathodic half-cell, and metal hydroxide, M(OH)n, is formed in the cathodic half-cell.
Resumen de: US2025179655A1
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: US2025179652A1
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: US2025179654A1
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: US2025179656A1
A method for controlling a hydrogen generation system includes controlling the potentials of an electrode for oxygen generation and an electrode for hydrogen generation included in an electrolyzer so that the potential change is smaller in the electrode for oxygen generation or the electrode for hydrogen generation having a larger deterioration rate than in the electrode having a smaller deterioration rate.
Resumen de: US2025179651A1
Disclosed is a method for operating an electrolysis plant for producing hydrogen and oxygen as product gases, wherein the oxygen product gas, which additionally contains hydrogen as a foreign gas, is fed from an electrolyser to a downstream gas separator, wherein when a predefined limit value for the hydrogen concentration in the oxygen product gas is exceeded, an inert gas (L) is fed to the gas separator such that the hydrogen concentration in the oxygen product gas is lowered. The invention further relates to a corresponding electrolysis plant.
Resumen de: US2025179666A1
Embodiments include a method for operating an electrolysis system. Aspects include supplying service water to a water treatment system and purifying and deionizing the service water in the water treatment system to create deionized water and ion-containing wastewater. Aspects also include supplying the deionized water from the water treatment system to an electrolyzer and supplying the ion-containing wastewater from the water treatment system to a cooling device. A waste heat generated by the electrolyzer is dissipated by the cooling device.
Resumen de: US2025179660A1
A method for controlling an organic hydride generation system includes controlling potentials in an anode electrode and a cathode electrode such that a potential change in an electrode having a higher deterioration rate among the anode electrode and the cathode electrode included in an electrolytic bath is smaller than a potential change in an electrode having a lower deterioration rate.
Resumen de: US2025179653A1
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: US2025179010A1
Provide are a urea production method and a urea production apparatus in which hydrogen and oxygen are produced by electrolysis of water in an electrolysis unit, nitrogen is separated and recovered from air in an air separation unit, ammonia is synthesized in an ammonia synthesis unit using hydrogen from the electrolysis unit and nitrogen from the air separation unit as raw materials, carbon dioxide is produced by combusting a fuel in an oxycombustion unit while using at least the oxygen from the electrolysis unit, and urea is synthesized in a urea synthesis unit by using the carbon dioxide and the ammonia as raw materials.
Resumen de: US2025177939A1
Method for controlling an ammonia synthesis converter or a methanol synthesis converter during intermittent availability of a renewable power-dependent hydrogen feed, wherein under a limited or no availability of power the converter effluent is recycled back to the inlet of said converter in a loop, and heated to keep said converter in a hot stand-by mode wherein the temperature in the reaction space remains within a target range.
Resumen de: US2025179674A1
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: US2025179977A1
This invention is about a hydrogen-generating device, with low energy consumption and high electrode durability, for diesel cycle engines. The hydrogen-generating device includes an electrolysis cell made of aluminum, containing heat exchanger fins on the outside, an electrolytic solution, two electrodes; a hydrogen transport system to be injected into the engine's air intake system; electronic module for direct voltage control, used in electrolysis, of the electrode polarity alternation time, of the volume of hydrogen in a mixture of constant hydrogen/oxygen composition to be injected into the engine in a variable manner, thus injecting a quantity of up to 10% of the hydrogen:oxygen mixture, in the ratio of 65:35, per liter of diesel consumed, in a volume/volume ratio.
Resumen de: US2025179675A1
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: US2025179670A1
The invention relates to a method for operating an electrolyzer (10) for the production of hydrogen and oxygen, comprising a membrane (22), which is permeable to OH ions and separates an anode chamber (14) from a cathode chamber (16), said method comprising at least the following method steps:a) temporary dry operation of the cathode chamber (16),b) temporary diffusion of water molecules through the membrane (22) from the anode chamber (14) into the cathode chamber (16),c) variation of a differential pressure (42) between the cathode chamber (16) and the anode chamber (14) by means of a restrictor valve (46), andd) adjustment of the moistening/wetting of the cathode chamber (16) by adjusting a defined differential pressure (42).
Resumen de: US2025179673A1
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: KR20250080797A
본 발명은 수소 제조를 위한 수전해용 전극 및 이의 제조방법에 관한 것으로, 본 발명에 따른 제조방법은 기존 이리듐(IrO2) 전극 제조 공정에 비하여 공정이 단순하며, 사용되는 열에너지가 낮고, 특히 열경화에 소요되는 시간을 단축할 수 있고, 코팅층 두께 조절이 용이할 뿐 아니라, 비교적 적은 설비 비용 및 제조 비용으로 수전해용 전극을 제조할 수 있으며, 공정의 단계를 수행하는데 적은 시간, 노동력, 에너지를 요하는 장점이 있다. 또한, 본 발명에 따른 제조방법으로 제조되는 수전해용 전극은 통상적으로 요구되는 전기화학적 안정성, 내화학성을 구비할 뿐 아니라, 실제 수소 제조 과정에서 보이드로 인한 결함을 방지하면서 생성되는 기포의 배출 효율 또한 높다는 장점을 갖는다.
Resumen de: KR20250080796A
본 발명은 초소수성 코팅층이 형성된 수전해용 분리막의 제조방법에 관한 것으로, 본 발명의 제조방법은 분리막의 제조 효율이 높을 뿐 아니라 제조 비용 및 궁극적으로 제품 판매 원가를 절감할 수 있으므로 산업적 효용가치가 매우 우수하다. 또한, 본 발명에 따른 초소수성 분리막은 수전해 공정에서 발생하는 수소 및 산소의 분리 효율이 높고, 수소 순도를 안정적으로 유지할 수 있으며, 수소 가스로의 산소 혼입 방지 성능이 탁월하여 폭발(화재) 위험을 원천적으로 차단할 수 있는 장점이 있다.
Resumen de: US2025179671A1
A pressure control system for pressure control of at least two pressurized fluid systems comprises a duct for each fluid system having an inlet connectable to the respective fluid system and an outlet, a pressure control valve arranged within each of the ducts to control the fluid flow from the inlet to the outlet of the duct, wherein the pressure control valves are pilot-operated pressure relief valves having an inlet port for a pilot gas to affect a cracking pressure of the pressure control valves, wherein the pressure control system further comprises a common pilot gas buffer system, which is connected to each of the inlet ports of the pressure control valves for a simultaneous pressure control of the fluid systems.
Resumen de: US2025179672A1
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: US2025179941A1
A thermal energy storage system with fluid flow insulation, the system including heated thermal storage blocks positioned within a housing, and a method for operating the thermal energy storage system, including providing a flow of fluid into the housing, the fluid convectively extracting heat from a top region, a side region and a bottom region of the thermal energy storage system, to generate heated fluid that insulates the thermal storage blocks from the housing and a foundation of the thermal energy storage system.
Resumen de: US2025179985A1
A system and method by which energy from ocean waves is converted into hydrogen, and that hydrogen is used to manifest electrical and mechanical energies by an energy consuming device. A portion of the generated electrical power is communicated to water electrolyzers which produce oxygen and hydrogen from water as gases. At least a portion of the generated hydrogen gas is transferred to a transportation ship via a hose-carrying, remotely operated (or otherwise unmanned) vehicle, and subsequently transferred to an energy-consuming module or infrastructure, where a portion of the hydrogen is consumed in order to manifest a generation of electrical energy, a mechanical motion, and/or a chemical reaction.
Resumen de: US2025179942A1
An apparatus includes one or more thermal storage blocks that define a radiation chamber and a fluid flow slot positioned above the radiation chamber to define a fluid pathway in a first direction. The apparatus includes a heater element positioned adjacent to the radiation chamber in a second, different direction, wherein the radiation chamber is open on at least one side to the heater element. The apparatus includes a fluid movement system configured to direct a stream of fluid through the fluid pathway in the first direction.
Resumen de: US2025179901A1
A method of producing hydrogen and sequestering carbon or sulfur includes generating a fluid including at least one of water, steam, hydrogen sulfide, carbon dioxide and heat as a byproduct of a surface facility and injecting the fluid into a subsurface formation. The subsurface formation can include a porous rock, in various forms of porosity such as intragranular, intergranular, fracture porosity. The method can further include heating the fluid to stimulate an exothermic reaction of the fluid with components of the subsurface rock formation and produce a hydrogen reaction product and one or more of sulfur minerals from the hydrogen sulfide or carbon minerals from the carbon dioxide. The fluid can be heated to between about 25° C. and about 500° C. The method can also include extracting the hydrogen produced from the reaction of the fluid with the subsurface rock formation and mineralizing sulfur or carbon in the porous rock.
Resumen de: WO2025113866A1
The invention relates to a process (100) for the production of hydrogen from ammonia comprising the following steps: - providing a water feed stream to a water electrolyzer (101); - performing a water electrolysis (102) of the water feed stream in the electrolyzer, producing an oxygen product stream and an electrolysis hydrogen stream; - providing an ammonia feed stream to an ammonia cracking reactor (103); - providing an oxidant stream (105) and performing a combustion reaction (106) with said oxidant stream, thereby generating heat; - in the ammonia cracking reactor, performing an endothermic reaction of ammonia cracking (104) of the ammonia feed stream with said generated heat; characterized in that the oxidant stream comprises at least a portion of the oxygen product stream produced by the water electrolysis of the water feed stream.
Resumen de: EP4563727A2
A method of operating an electrolyzer system includes providing steam from a steam source through a system steam conduit to module steam conduits located in respective electrolyzer modules, controlling a flow rate of the steam through the system steam conduit using a system mass flow controller located on the system steam conduit, providing portions of the steam to the module steam conduits and providing steam in the module steam conduits to respective stacks of electrolyzer cells located in respective hotboxes in the respective electrolyzer modules, and operating the stacks to generate a hydrogen product stream and an oxygen exhaust stream.
Resumen de: DK202330316A1
An alkaline electrolyzer comprising a stack (17) of electrolytic cells (1) is used for producing hydrogen gas (8). Each of the cathode compartments (5) comprises a cathode gas outlet (23A) into a cathode electrolyte return conduit (22A), the downstream end (41) of which is connected to a hydrogen purifier (33) configured for providing purified hydrogen gas by removing oxygen from the gas received from the cathode electrolyte return conduit (22A). A cathode gas recirculation system (38) connects a downstream end of the hydrogen purifier (32,33) to an upstream end (40) of the cathode electrolyte return conduit (22A) for supplying purified hydrogen gas to the cathode electrolyte return conduit (22A). Alternatively, or in addition, each of the anode compartments (6) comprises an anode gas outlet (23B) into an anode electrolyte return conduit (22B), the downstream end (41) of which is connected to an oxygen purifier (33), configured for providing purified oxygen gas by removing hydrogen from the gas coming from the anode electrolyte return conduit (22B). An anode gas recirculation system (38) connects a downstream end (41) of the oxygen purifier (33) to an upstream end (40) of the anode electrolyte return conduit (22B) for supplying purified oxygen gas to the anode electrolyte return conduit (22B). By recirculating purified gases through the electrolyte return conduits, the electrolyzer can operated at part load, for example below 10% of the nominal load.
Resumen de: EP4563523A1
The invention relates to a process (100) for the production of hydrogen from ammonia comprising the following steps:- providing a water feed stream to a water electrolyzer (101);- performing a water electrolysis (102) of the water feed stream in the electrolyzer, producing an oxygen product stream and an electrolysis hydrogen stream;- providing an ammonia feed stream to an ammonia cracking reactor (103);- providing an oxidant stream (105) and performing a combustion reaction (106) with said oxidant stream, thereby generating heat;- in the ammonia cracking reactor, performing an endothermic reaction of ammonia cracking (104) of the ammonia feed stream with said generated heat;characterized in that the oxidant stream comprises at least a portion of the oxygen product stream produced by the water electrolysis of the water feed stream.
Resumen de: AU2023359996A1
The invention relates to an electrolysis system (1) for generating hydrogen and oxygen as product gases, comprising an electrolysis module (3) and a process unit (5), wherein the process unit (5) has a reactant line (7) for supplying process water and a product line (9), each of which is connected to the electrolysis module (3), and the process unit (5) is equipped with a thermally insulating insulation device (11), comprising a thermal insulating material (17), such that a slow cooling of the process water is produced during a standstill operation.
Resumen de: WO2024023030A2
A method of electrolysing hydrogen bromide comprising the steps i) synthesizing sulfuric acid such that hydrogen bromide is produced, ii) providing an electrolytic cell comprising an anode, a cathode, and a membrane sandwiched between the anode and the cathode, iii) feeding a first composition comprising hydrogen bromide and water to the anode, iv) feeding a second composition comprising hydrogen bromide and water to the cathode, and v) operating the electrolytic cell to produce hydrogen at the cathode.
Resumen de: WO2024023030A2
A method of electrolysing hydrogen bromide comprising the steps i) synthesizing sulfuric acid such that hydrogen bromide is produced, ii) providing an electrolytic cell comprising an anode, a cathode, and a membrane sandwiched between the anode and the cathode, iii) feeding a first composition comprising hydrogen bromide and water to the anode, iv) feeding a second composition comprising hydrogen bromide and water to the cathode, and v) operating the electrolytic cell to produce hydrogen at the cathode.
Resumen de: CN119604644A
A process for producing hydrogen and/or bromine by electrolyzing hydrogen bromide in the electrolysis of hydrogen bromide using a fluoropolymer membrane having a glass transition temperature Tg > = 110 DEG C, wherein the hydrogen bromide is derived from the bromination of hydrocarbons.
Resumen de: CN119604644A
A process for producing hydrogen and/or bromine by electrolyzing hydrogen bromide in the electrolysis of hydrogen bromide using a fluoropolymer membrane having a glass transition temperature Tg > = 110 DEG C, wherein the hydrogen bromide is derived from the bromination of hydrocarbons.
Resumen de: US2025171388A1
The disclosure provides a process for producing methanol and hydrogen from methane. The process of the disclosure comprises the steps of: •a) providing a gaseous feed stream comprising methane: •b) reacting said gaseous feed stream with at least one halogen reactant •under reaction conditions effective to produce an effluent stream comprising methyl halide, hydrogen halide •optionally poly halogenated alkanes •and optionally unreacted methane: •c) recovering said an effluent stream •d) reacting the recovered effluent stream with water and at least one organic base under reaction conditions effective to produce an aqueous solution of hydrogen halide •and a methanol stream comprising methanol (MeOH) and dimethyl ether (DME) and/or optionally unreacted methane, and, c) decomposing by means of electrolysis said aqueous solution of hydrogen halide under conditions effective to produce a gaseous hydrogen stream and a stream comprising halogen reactant.
Resumen de: US2025171388A1
The disclosure provides a process for producing methanol and hydrogen from methane. The process of the disclosure comprises the steps of: •a) providing a gaseous feed stream comprising methane: •b) reacting said gaseous feed stream with at least one halogen reactant •under reaction conditions effective to produce an effluent stream comprising methyl halide, hydrogen halide •optionally poly halogenated alkanes •and optionally unreacted methane: •c) recovering said an effluent stream •d) reacting the recovered effluent stream with water and at least one organic base under reaction conditions effective to produce an aqueous solution of hydrogen halide •and a methanol stream comprising methanol (MeOH) and dimethyl ether (DME) and/or optionally unreacted methane, and, c) decomposing by means of electrolysis said aqueous solution of hydrogen halide under conditions effective to produce a gaseous hydrogen stream and a stream comprising halogen reactant.
Resumen de: CN119698495A
A process for the production of hydrogen comprising the steps of: a) providing a starting mixture comprising bromine, water and a sulfur-containing compound, b) reacting the starting mixture provided in step a) to produce a reaction mixture effluent comprising sulfuric acid and hydrogen bromide, c) separating the reaction mixture effluent obtained in step b) into one or more hydrogen bromide-enriched compositions and one or more sulfuric acid-enriched compositions, where at least one hydrogen bromide-enriched composition contains up to 1,000 ppm sulfuric acid, where step c) comprises at least two distillation steps, d) separating the reaction mixture effluent obtained in step c) containing up to 1,000 ppm sulfuric acid, at least a portion of the at least one hydrogen bromide-enriched composition comprising at least one hydrogen bromide-enriched composition comprising at least 50,000 ppm sulfuric acid and at least 50,000 ppm sulfuric acid is subjected to electrolysis to obtain hydrogen and a bromine-containing composition wherein the electrolysis cell is operated at an operating temperature of at least 70 DEG C, and e) recycling at least a portion of the bromine-containing composition obtained in step d) back to step a).
Resumen de: EP4563524A1
The present invention relates to a method and device for producing hydrogen by dissociating the water molecule through thermochemical reactions, using a small amount of active material. The thermochemical reactions are induced by solar energy with a moderate concentration of up to 50 suns, which can be achieved through linear or parabolic concentrators.
Resumen de: EP4563494A1
The present invention provides a container and a hydrogen production system. The container includes a bottom base, an upper cover, a first side plate, and a driving device. The first side plate is arranged between the bottom base and the upper cover, and is connected to the bottom base and the upper cover separately; and the driving device is connected to the first side plate and is configured to drive the first side plate to rotate relative to the bottom base, and the first side plate drives the upper cover to move, to switch the container from a closed state to an open state. The container in the present invention can implement hoisting of a device, so that a process in which the device is placed in the container is simplified, and the design efficiency of the hydrogen production system is improved. In addition, it is convenient for personnel to enter the container for device overhaul and maintenance, thereby effectively resolving the problem of inconvenient maintenance on the device after the device is placed in the container.
Resumen de: EP4564633A1
Disclosed in the present application are a power system and a frequency modulation control method therefor. The method comprises: first, determining whether the current power grid frequency of a power system falls within a preset allowable frequency deviation range; if not, performing calculation according to the current power grid frequency and a power grid rated frequency to obtain an input current change value of a hydrogen production power generation unit in the power system; on the basis of the size relationship between the input current change value and limit values thereof and the size relationship between the changed input current value and limit values thereof, determining a target input current of the hydrogen production power generation unit; and finally, adjusting an input current of the hydrogen production power generation unit according to the target input current, so as to allow the power grid frequency of the power system to fall within the preset allowable frequency deviation range. Therefore, by means of the relationship between system power consumption and frequency fluctuation, the present application can guide input current setting for the hydrogen production power generation unit on the basis of a measured system frequency to achieve frequency modulation control of the power system, thus solving the problem of frequency fluctuation of power grid systems caused by randomness and fluctuation of renewable energy power generation.
Resumen de: EP4563350A1
An electrolysis device configured to produce hydrogen gas from water, the electrolysis device comprising a container (4), the container accommodating an aqueous alkaline solution (5), a cathodic electrode (1), and an anodic electrode (2), an electrical current being selectively applied between the cathodic electrode and the anodic electrode, wherein the cathodic electrode and possibly the anodic electrode, is made of a nickel alloy, with a nickel base alloyed with at least one element chosen among chromium, molybdenum, cobalt and iron, wherein the cathodic electrode and the anodic electrode are manufactured by an additive manufacturing process, from respective first and second mixed metallic powder compounds, wherein the cathodic and anodic electrodes exhibit an outer surface comprising a plurality of first surface patterns (6,7).
Resumen de: EP4563725A1
Es wird ein Verfahren (100) zur Herstellung eines Syntheseprodukts (6) vorgeschlagen, bei dem gasförmiger Wasserstoff (3) durch Elektrolyse (10) von Wasser (1) bereitgestellt und mit einem oder mehreren gasförmigen Reaktionspartnern (4) einer Umsetzung (30) zu dem Syntheseprodukt (6) unterworfen wird, wobei während eines ersten Verfahrensmodus der Wasserstoff (3) und der eine oder die mehreren Reaktionspartner (4) unter Erhalt eines Reaktionsgemischs (5) vermischt werden und das Reaktionsgemisch (5) oder ein Teil hiervon in einer Speichereinheit (20) druckgespeichert wird, und wobei während eines zweiten Verfahrensmodus das in dem ersten Verfahrensmodus druckgespeicherte Reaktionsgemisch (5) oder ein Teil hiervon aus der Speichereinheit (20) entnommen und der Umsetzung (30) zu dem Syntheseprodukt (6) zugeführt wird. Eine entsprechende Anlage wird ebenfalls vorgeschlagen.
Resumen de: WO2025109126A1
Water electrolyser stack having a range of half-cell frames which each circumscribes one of an anolytic or a catholytic process chamber and which half-cell frames are arranged and aligned in an array between a proximal electric current injector/collector plate and a distal electric current injector/collector plate, and where each half-cell frame comprises an embedded furrow flow channel adapted to serve an electrolyte flow from a stack internal inflow manifold channel to a corresponding anolytic or catholytic reaction chamber and an embedded furrow flow channel adapted to serve an electrolyte and gas outflow from a corresponding anolytic or catholytic reaction chamber to a corresponding stack internal manifold channel wherein each of the embedded furrow flow channels comprise at least one fluid and/or gas trap section.
Resumen de: KR20250076726A
본 발명은 온사이트형 수소 충전소에 관한 것으로, 보다 구체적으로 생산 설비의 효율을 극대화하여 생산 설비를 간소화하고 실시간으로 수소의 생산과 충전이 가능한 온사이트형 수소 충전소에 관한 것이다.
Resumen de: WO2025109158A1
A process for the recycling of plastic waste containing at least one of polyethylene or polypropylene comprising the steps a) thermal pyrolysis in an inert atmosphere of the plastic waste to obtain a pyrolysis oil, b) optionally purifying the pyrolysis oil obtained in step a), c) fractionating the pyrolysis oil to obtain at least one fraction of lower boiling hydrocarbons that can be further processed in a cracker, in particular a steam cracker, to give hydrocarbons of lower molecular weight, and at least one fraction of high-boiling residues, d) incinerating high-boiling residues obtained in step c) with an oxygen containing gas, wherein a carbon dioxide containing flue gas stream is obtained, e) purifying the carbon dioxide containing flue gas stream obtained in step d), wherein a purified carbon dioxide containing gas stream is obtained, f) reduction of the carbon dioxide contained in the gas stream obtained in step e) to obtain a gas stream containing carbon monoxide, optionally carbon dioxide and optionally hydrogen, g) optionally admixing hydrogen, preferably produced by water electrolysis, to the gas stream obtained in step f), h) reacting a gas mixture containing carbon monoxide, hydrogen and optionally carbon dioxide obtained in step f) or g) to give methanol, i) manufacturing C2-C4-olefins by a methanol to olefin-process from methanol obtained in step h), j) polymerizing ethylene and/or propylene manufactured in step i) to give polyethylene and/or polypropylene, res
Resumen de: CN113666650A
The invention provides a method for preparing an auxiliary cementing material from extracted titanium slag, and the auxiliary cementing material. The method comprises the steps that the extracted titanium slag is washed with water till soluble chloride ions in the extracted titanium slag are completely dissolved out to obtain first filter residues and first filtrate, wherein the first filtrate mainly comprises calcium chloride and magnesium chloride; the first filter residues are dried and then ground to obtain powder with the first particle size; the powder with the first particle size is continuously washed with water to reduce the content of chloride ions in the powder to 2/10000 or below, and filtering is performed to obtain a second filter residue and a second filtrate; and the second filter residues are dried and mechanically activated to obtain second-particle-size powder, wherein the second-particle-size powder can be used as an auxiliary cementing material. The method has the advantages that chloride ions in the titanium extraction slag are removed through water leaching, secondary water leaching is carried out by means of the characteristic that filter residues obtained after water leaching do not absorb moisture, residual chloride ions are fully removed, the super-active superfine slag powder with the high activity reaching up to the S105 level or above is prepared, energy is saved, environment friendliness is achieved, and the added value of products is increased.
Resumen de: US2024044023A1
Zero-gap electrochemical cell architectures that employ molecular-level capillary and/or diffusion and/or osmotic effects to minimize the need for macroscopic external management of the electrochemical cell. Preferably, these effects intrinsically respond to the electrochemical cell conditions, making them self-regulating. In one example is disclosed an electro-synthetic or electro-energy cell, and method of operation, including a reservoir for containing a liquid electrolyte, a first gas diffusion electrode positioned outside of the reservoir, and a second electrode positioned outside of the reservoir. A porous capillary spacer is positioned between the first gas diffusion electrode and the second electrode, the porous capillary spacer having an end that extends into the reservoir. Preferably, the porous capillary spacer is able to fill itself with the liquid electrolyte when the end of the porous capillary spacer is in liquid contact with the liquid electrolyte in the reservoir.
Resumen de: US2024044023A1
Zero-gap electrochemical cell architectures that employ molecular-level capillary and/or diffusion and/or osmotic effects to minimize the need for macroscopic external management of the electrochemical cell. Preferably, these effects intrinsically respond to the electrochemical cell conditions, making them self-regulating. In one example is disclosed an electro-synthetic or electro-energy cell, and method of operation, including a reservoir for containing a liquid electrolyte, a first gas diffusion electrode positioned outside of the reservoir, and a second electrode positioned outside of the reservoir. A porous capillary spacer is positioned between the first gas diffusion electrode and the second electrode, the porous capillary spacer having an end that extends into the reservoir. Preferably, the porous capillary spacer is able to fill itself with the liquid electrolyte when the end of the porous capillary spacer is in liquid contact with the liquid electrolyte in the reservoir.
Resumen de: US2024044023A1
Zero-gap electrochemical cell architectures that employ molecular-level capillary and/or diffusion and/or osmotic effects to minimize the need for macroscopic external management of the electrochemical cell. Preferably, these effects intrinsically respond to the electrochemical cell conditions, making them self-regulating. In one example is disclosed an electro-synthetic or electro-energy cell, and method of operation, including a reservoir for containing a liquid electrolyte, a first gas diffusion electrode positioned outside of the reservoir, and a second electrode positioned outside of the reservoir. A porous capillary spacer is positioned between the first gas diffusion electrode and the second electrode, the porous capillary spacer having an end that extends into the reservoir. Preferably, the porous capillary spacer is able to fill itself with the liquid electrolyte when the end of the porous capillary spacer is in liquid contact with the liquid electrolyte in the reservoir.
Resumen de: US2025149602A1
A SOC stack system comprises one or more solid oxide cell stacks and multi-stream solid oxide cell stack heat exchanger(s).
Resumen de: CN119698389A
The invention relates to a method and a device for producing hydrogen by decomposing water molecules by thermochemical reaction using small amounts of active substances. The thermochemical reaction is initiated by solar energy having a medium concentration of up to 50 times sunlight, which may be effected by linear or parabolic concentrators.
Resumen de: MX2024010250A
The invention relates to a device for generating hydrogen gas and oxygen gas from water, comprising: a case, which forms a hydrolysis chamber designed to contain an amount of water; electrode means that act as a cathode and as an anode; and gas-separating means, disposed in the hydrolysis chamber between the cathode and the anode, which comprise a permeable membrane segment suitable for preventing the generated hydrogen gas and oxygen gas from passing through the permeable membrane segment and mixing together, the hydrolysis chamber being divided into a first portion that contains the cathode and a second portion that contains the anode, wherein the first and second chamber portions are in fluid communication with respective pipes for hydrogen gas and for oxygen gas. The invention also relates to a system for the same purpose, comprising at least one device as described above.
Resumen de: MA62942A1
This invention constitutes, in itself, an innovative solution for the production of hydrogen based on the phenomenon of water electrolysis by a flat electrode electrolyzer. The electrical energy used comes from the conversion of solar energy into electricity using a photovoltaic system. The adaptation between the photovoltaic source and the electrolyzer is done by means of a device that does not exchange any energy with the PV-electrolyzer system. The proposed technique is based on the search for the optimal operating point by varying the distance between the two flat electrodes placed opposite each other by fixing one of the two plates (electrodes) and moving the other plate in translation. Indeed, a change in the inter-electrode distance causes a change in the volume of water between them; which subsequently influences the value of the connected load (electrolyzer). The moving plate approaches or moves away from the fixed electrode depending on the optimal operating point of the photovoltaic source. This movement is driven by the action of a stepper motor that transforms the rotational movement into a translational movement of the plate. This coupling, with a minimum of interfacing electronics, would lead to a substantial reduction in costs and thus improve the economic viability of hydrogen solar systems.
Resumen de: CN119095792A
The present invention relates to a process for producing methanol by synthesis gas produced by combining electrolysis of a water feedstock for producing a stream comprising hydrogen with electrolysis of a carbon dioxide rich stream for producing a stream comprising CO and CO2 wherein the CO/CO2 molar ratio of the synthesis gas is greater than 2. The invention also relates to a method for producing syngas by subjecting a combined feed gas stream of CO2 and steam to one-way co-electrolysis in an SOEC unit.
Resumen de: WO2025109966A1
An ammonia decomposition system (100) comprises: a first line (L1) to which ammonia (X1) is supplied; a decomposition device (3) that is provided on the first line (L1) and generates a decomposition gas (X3) containing hydrogen from ammonia (X1); and a second line (L2) that is in fluid communication with the first line (L1) at a position downstream of the decomposition device (3), the second line (L2) supplying liquid ammonia (X2) to the decomposition gas (X3) flowing through the first line (L1) and generating a mixed gas (X4).
Resumen de: WO2025109618A1
A Green HYDROGEN production apparatus is provided having a modular reactor vessel. The reaction is managed to safely drive the reaction to completion to maximize HYDROGEN production. A HYDROGEN outlet provides for the collection of the generated HYDROGEN from the reactor vessel (e.g. 1)
Resumen de: WO2025108003A1
Provided are an iridium-oxide-based catalyst and a preparation method therefor and the use thereof, and a membrane electrode and a preparation method therefor and the use thereof. The catalyst comprises an oxide of iridium, wherein the oxide of iridium comprises an oxide of iridium having vacancies, the vacancies comprising iridium vacancies or oxygen vacancies; and iridium oxide comprises metastable-phase iridium oxide. A hydrogen-oxygen flame method is used as the preparation method for the catalyst, and can respectively regulate and control vacancies and crystal phases. The catalyst has both high-activity defect vacancies and stable high-activity crystal phases, and has a low overpotential and a high oxygen evolution catalyzing activity when being applied to water electrolysis.
Resumen de: KR20250077047A
본 발명은 수소 발생 반응용 촉매 및 이의 제조 방법에 관한 것으로서, 수소 발생 반응에 대한 촉매 활성이 높으며, 내구성이 우수한 수소 발생 반응용 촉매 및 이의 제조 방법을 제공한다.
Resumen de: KR20250077260A
본 발명은, 암모니아 기체를 상온 상압에서 액화시키는 방법; 상기 액체 암모니아와 촉매를 이용한 전기분해를 통해 고순도 수소를 생산하는 방법 및 수소 생산 장치에 관한 것이다.
Resumen de: KR20250077337A
본 발명은 신재생에너지 기반 수소 및 메탄올 생산 시스템 및 방법에 관한 것으로, 본 발명의 수소 및 메탄올 생산 시스템은 수소와 메탄올을 동시에 생산할 수 있고, 과잉 재생에너지를 제2 수전해장치를 이용하여 수소 및 산소 형태로 저장시킬 수 있다.
Resumen de: WO2025110878A1
An electrolyzer for generating hydrogen from water comprising electrodes and an electrically non-conductive separator layer extending in a substantially vertical plane comprising macroscopic through holes, and wherein the electrodes themselves comprise an anode and a cathode, characterized in that the electrodes are each furnished at opposite faces of the separator, and that the electrodes each comprise a plurality fins and wherein each fin of the plurality of fins projects outwardly from the layer for restricting the upward movement of electrode generated bubbles to a bubble stream that is substantially parallel to the vertical plane.
Resumen de: AU2023374771A1
Cell for forming an electrolyser comprising at least one diaphragm or membrane having a first side and a second side opposite the first side, a first cell plate, arranged on the first side of the diaphragm, provided with a first electrode, provided with an inlet channel for supplying or draining electrolyte to or from the electrode, provided with a first discharge channel for discharging oxygen from the electrode, at least one second cell plate, arranged on the second side of the diaphragm, provided with a second electrode and provided with a second discharge channel for discharging hydrogen from the electrode wherein the at least one first and second cell plate are made of a polymer material.
Resumen de: US2025174692A1
Provided are methods, comprising applying a voltage to a first parent mixture comprising (a) a first material and (b) a second metal, the first material optionally comprising a metal having a standard reduction potential less than the standard hydrogen electrode (SHE) at 0 V vs SHE, the applying being performed in the presence of a counter electrode that comprises the second metal, the first parent mixture and the counter electrode contacting an electrolyte, the applying being performed under such conditions that the second metal is selectively removed from the first parent mixture so as to leave behind a nanoporous portion of the first material, the nanoporous portion of the first material comprising interconnected ligaments defining pores therebetween, the pores being open to the environment exterior to the nanoporous portion of the first material, the pores being characterized as having an average cross-section in the range of from about 5 to about 100 nm, the applying optionally being performed in an inert environment.
Resumen de: US2025171911A1
The present application relates to a hydrogen production system, and a thermal management method and apparatus therefor. The hydrogen production system includes: at least two electrolytic cells; and a post-treatment device, the at least two electrolytic cells sharing the post-treatment device, and the post-treatment device including first electrolyte inflow branch pipes and second electrolyte inflow branch pipes, wherein the first electrolyte inflow branch pipes share a single cooling apparatus and are used for guiding a cold electrolyte into a corresponding electrolytic cell, and the second electrolyte inflow branch pipes are bypass branch pipes of the cooling apparatus and are used for guiding a hot electrolyte into a corresponding electrolytic cell. Compared with the prior art, embodiments of the present invention implement accurate control on the temperature of each electrolytic cell and improve system efficiency.
Resumen de: US2025171920A1
An electrolyzer system comprises one or more electrolyzer cells each comprising a first half cell with a first electrode and a second half cell with a second electrode and a controller to control a current applied through the one or more electrolyzer cells, wherein the controller is configured to dynamically set the current density within a current density range of from about 150 mA/cm2 to about 3000 mA/cm2, and wherein the controller is configured to set the current density to a first value when a first condition is met and to a second value when a second condition is met.
Resumen de: US2025171910A1
This invention discloses a method, device, and system for the direct electrolysis of seawater without desalination for hydrogen production. By immersing the direct electrolysis device for hydrogen production from seawater without desalination directly into seawater, driven by the pressure difference at the interface between seawater and the self-driven electrolyte, seawater continuously enters the device through the solution mass transfer layer. The self-driven electrolyte induces the water to enter the electrolyte solution, while the hydrophobic action of the solution mass transfer layer effectively blocks non-water impurities in the solution. During electrolysis, the water in the self-driven electrolyte is consumed to produce hydrogen and oxygen, inducing the regeneration of the electrolyte, maintaining the pressure difference at the interface, and achieving a self-circulating excitation drive without additional energy consumption.
Resumen de: US2025171921A1
The present invention relates to a system and method for producing hydrogen gas. The system comprises at least one gas transport vessel which is arranged to transport at least hydrogen up through water by buoyancy, a heat transfer unit connected to an electrolysis unit and arranged to transfer at least a portion of the waste heat from the electrolysis unit to the hydrogen gas that is to be transported by the gas transport vessel.
Resumen de: US2025171918A1
A separator for alkaline electrolysis (1) comprising a porous support (10), a first porous layer (20b) provided on one side of the porous support and a second porous layer (30b) provided on the other side of the porous support, wherein the first and the second porous layer are partially impregnated into the porous support and each have an overlay thickness d1 and d2 respectively, said overlay thickness being defined as the part of each porous layer which is not impregnated into the porous support, characterized in that a) d1 is smaller than the overlay thickness of the second porous layer (d2), and b) d1 is at least 20 μm.
Resumen de: AU2023381476A1
A cell frame adapted for use in a pressurised electrolyser cell stack is provided. From an inner circumferential rim of the cell frame, a circumferential radial shelf with inwardly tapering thickness is provided, such that an annular space between a circumferential radial shelf and a neighbouring circumferential radial shelf is provided when cell frames are stacked in alignment with each other, and that outwardly of the circumferential radial shelf, a mobility link is provided which connects the radial shelf to the remaining cell frame.
Resumen de: KR20250075817A
본 발명은 우수한 물분해 수소발생반응(Hydrogen evolution reaction, HER) 활성을 갖는 합금 나노시트 및 이의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 전기화학적 물분해 반응 수소발생 촉매 활성을 갖는 텅스텐 나이오븀 디셀레나이드 (W1-xNbxSe2, 0 < x ≤ 1) 합금 나노시트 또는 텅스텐 나이오븀 바나듐 디셀레나이드(W1-(y+z)NbyVzSe2, 0 < y ≤ 1, 0 < z ≤ 1) 및 이들의 조성비를 정량적으로 조절 가능한 콜로이드 용액 반응 제조방법에 관한 것이다.
Resumen de: KR20250075808A
본 발명은 바닷물을 이용한 소금과 수소의 생산시스템에 관한 것으로, 원수(바닷물 또는 해변염지하수)에 포함된 부유물, 실트, 금속, 플라스틱을 차압에 의해 셀프클리닝필터에의한 여과, 마이크로 플라스틱, 미생물, 유기성 물질을 제거하는 정밀 및 한외여과막 및 역삼투막분리에 의한 1가의 나트륨 및 칼륨, 2가의 칼슘 및 마그네슘, 3가이온의 알루미늄 등의 금속성 양이온과 염소이온, 황산이온, 질산이온,인산이온, 탄산이온등의 음이온을 제거하여 농축수는 농축수저장조로 보내고 역삼투분리막을 통과한 물은 투과수저장조로 보내는 전처리부와; 농축수저장조로부터 공급되는 농축수를 돔하우스로 공급하여 열에 의해 수분을 증발시켜 응축수저장조로 공급하고, 수분이 증발하여 생산되는 고체소금과 액체소금을 생산하는 소금생산부와; 응축수저장조에 저장된 물을 수처리장치를 통해 총용해성고형물질이 설정 ppm 이하로 걸러진 순수한 물을 전기분해장치로 공급하여 전기분해에 의해 수소를 생산하는 수소생산부;를 포함하는 것을 특징으로 하며, 전처리하여 얻어지는 바닷물을 열에 의해 고체소금과 소금물을 생산하고, 소금물은 재처리를 통해 기능성 액체소금을 생산하며, 액체소금에 특정 첨가제를 투입하여 기�
Resumen de: US2025171917A1
Disclosed herein are a defect-rich molybdenum disulfide (MoS2) monolayer, its production method and uses thereof. The defect-rich MoS2 monolayer is characterized in having a vacancy density up to 3.35×1014/cm2, and is produced by vapor deposition on a substrate in the presence of potassium chloride (KCl). The defect-rich MoS2 monolayer could serve as an electrocatalyst in hydrogen evolution reaction (HER) to convert proton into hydrogen. Also disclosed herein is a MoS2-based microelectroactalysis cell, which is a three-electrode system, comprising a working electrode, a counter electrode, a reference electrode and an electrolyte; in which the working electrode, the counter electrode or both independently comprises the vacancy-rich MoS2 monolayer coated thereon.
Resumen de: US2025171915A1
A method by which an environmental energy (e.g., wave energy) is harvested, converted into electrical power, and thereafter used to electrolyze seawater into hydrogen and chlorine gases. Those gases are recombined into hydrogen chloride from which is formed hydrochloric acid solution which is diluted and deposited at a depth sufficient to ensure its neutralization and sequestration for a significant period of time (e.g., for over a millennium). By removing chloride ions from a portion of the sea adjacent to its upper surface and depositing them into a portion of the sea more adjacent to its bottom, acidity is shifted from the surface to base of the sea, and the surface ocean is given a greater ability to absorb and buffer atmospheric carbon dioxide without a corresponding increase in acidity.
Resumen de: US2025171300A1
The present invention relates to a process for the reforming of ammonia, wherein the process comprises(i) providing a reactor containing a catalyst comprising Ru supported on one or more support materials, wherein the one or more support materials display a BET surface area of 20 m2/g or more, and wherein the catalyst contains 1 wt.-% or less of Ni and Co;(ii) preparing a feed gas stream comprising NH3;(iii) feeding the feed gas stream prepared in (ii) into the reactor and contacting the feed gas stream with the catalyst at a pressure of greater than 10 bara and at a temperature in the range of from 200 to 750° C.;(iv) removing an effluent gas stream comprising H2 and N2 from the reactor.
Resumen de: US2025170522A1
The present invention relates to the use, for the drying of wet gas comprising traces of alkaline hydroxide, of a solid desiccant comprising at least one kaolin compound.The invention also relates to the process for drying wet gas comprising traces of alkaline hydroxide, comprising at least one stage of bringing said wet gas into contact with a solid desiccant comprising at least one kaolin compound.
Resumen de: US2025171919A1
A membrane electrode assembly for a water electrolysis cell includes a polymer electrolyte membrane having a first main surface and a second main surface, a first electrode catalytic layer on the first main surface of the polymer electrolyte membrane, a second electrode catalytic layer on the second main surface of the polymer electrolyte membrane, an annular outer peripheral film disposed to surround an outer peripheral surface of the polymer electrolyte membrane, and a first adhesive film having a substrate layer and an adhesive agent layer. The first main surface has a first annular non-covered section not covered with the first electrode catalytic layer along an outer periphery, and the adhesive agent layer of the first adhesive film is adhered to the first annular non-covered section of the polymer electrolyte membrane and to a main surface of the outer peripheral film at the same side as the first main surface.
Resumen de: US2025171922A1
An air separation system includes an air separation unit and at least one solid oxide electrolyser cell, the air separation unit including a source gas infeed, the at least one solid oxide electrolyser cell including an anode, a cathode and an electrolyte, a steam input and an oxygen rich gas output, where the oxygen rich gas output connects to the source gas infeed of the air separation unit.
Resumen de: WO2024068362A1
Wind turbine, comprising a rotor, a generator (6) driven by the rotor for producing energy, and an energy conversion device (7) comprising at least one energy conversion module (10) operatable both in an electrolyzer mode to produce hydrogen by electrolyzing water using energy provided by the generator (6) in a first operational mode of the wind turbine (1) and in a fuel cell mode to produce energy by reacting hydrogen and oxygen in a second operational mode of the wind turbine (1), wherein the energy conversion module (10) is switchable between the electrolyzer mode and the fuel cell mode.
Resumen de: WO2024068185A2
The invention relates to an electrolyser for splitting water into hydrogen (H2) and oxygen (O2) by means of an electric current, said electrolyser comprising: a plurality of electrolysis cells (2) which are divided into electrolysis stacks, each electrolysis cell (2) having a proton-permeable polymer membrane (4), on both sides of which are electrodes (6, 8) to which an external voltage is applied during operation, a first water supply line (10) for supplying water to an anode chamber (12) being provided on the anode side, an oxygen product line (14) for discharging the generated oxygen (O2) from the anode chamber (12) being connected, and a hydrogen product line (16) for discharging the generated hydrogen (H2) from a cathode chamber (18) being provided on the cathode side; and a control system (22) for controlling the operation of the electrolysis stacks. In order to ensure safe operation of the electrolyser and to minimise the negative consequences of membrane damage during operation of an electrolyser, the control system (22) is designed to set a higher pressure (pa) in the anode chamber (12) than in the cathode chamber (18), the pressure (pa) in the anode chamber (12) being 2 times to 20 times higher, in particular 4 times to 7 times higher, than the pressure (pk) in the cathode chamber (18).
Resumen de: JP2025082253A
【課題】本発明は、水素ガス発生装置を提供する。【解決手段】本発明は、上方に開口を有する貯水タンクと、前記貯水タンクと連接されると共に、陽極側と陰極側を有し、前記陽極側と前記貯水タンクの内壁が第1液体収容空間を画定する隔離フィルムと、前記隔離フィルムの前記陽極側に設けられる陽極電極と、前記隔離フィルムの前記陰極側に設けられる陰極電極と、前記隔離フィルムと連接されることにより、前記隔離フィルムの前記陰極側とその内壁が水素ガス収容空間を画定する水素ガスガイド装置とを有し、前記水素ガスガイド装置には、水素ガスを排出するための第1ガス排出孔が設けられ、前記隔離フィルムは、前記貯水タンクと直接に流通可能に連接される、水素ガス発生装置を提供する。本発明に係る水素ガス発生装置は、水素ガスを発生するために用いられ、簡単の構造及び小さい体積を有する。【選択図】図1
Resumen de: EP4560052A1
A catalyst and anode for hydrogen production by electrolysis as well as a preparation method, activation method and use thereof are provided. In one embodiment, the anode for hydrogen production by electrolysis includes a catalyst which is nickel iron barium hydrotalcite with a nano hexagonal sheet structure and a thickness of 100-200 nm. The catalyst can be prepared by a one-step solvothermal reaction method. In the present disclosure, alkaline-earth metal ions are evenly doped in the nickel iron barium hydrotalcite and are in atomic level dispersion, so that the anode for hydrogen production by electrolysis based on the catalyst, when being applied to a process for hydrogen production by electrolysis of an aqueous solution containing chlorine ions, not only can maintain good catalytic performance, but also has greatly improved chlorine ion corrosion resistance, leading to significant improvement of working stability and service life.
Resumen de: AU2022470695A1
A water electrolysis system including a container; a plurality of microcells located inside the container; the microcells are centered around a central axis of the container; a first bracket located on a first side of the microcells; a second bracket located on a second side of the microcells; a plurality of magnets mounted on the first and the second brackets, the magnets are placed in parallel to the microcells; a liquid inside the container. The first and the second brackets are adapted to be connected to a motor. The first and the second brackets rotate during the electrolysis process. The magnets on the first bracket produce a first magnetic field and the magnets on the second bracket produce a second magnetic field; and the first and the second magnetic fields have opposite polarity.
Resumen de: JP2025080819A
【課題】水素分離水を再び水電解槽での電解に用いる場合に、コストの増大を抑制しながらセルの劣化を抑制することができる水電解システムを提供する。【解決手段】水電解システムであって、水電解スタックと、水電解スタックにて生成された酸素と水との混合物を酸素と水とに分離する酸素気液分離器と、水電解スタックにて生成された水素と水との混合物を水素と水とに分離する水素気液分離器と、酸素気液分離部と水電解スタックとの間で水を循環させる循環流路と、循環流路の外部に配置され、外部から循環流路へ供給する供給水の導電率をイオン交換によって低下させるイオン交換器と、水素気液分離部にて水素から分離された水である水素分離水をイオン交換部よりも上流側に送る還流流路と、を備え、循環流路には、供給水として、イオン交換器によって導電率が低下された上水および水素分離水が供給される。【選択図】図1
Resumen de: CN120040795A
本发明涉及制氢的技术领域,公开了一种基于大豆蛋白和海藻酸钠的复合水凝胶的制备方法及其应用,包括如下步骤:(1)将海藻酸钠和大豆蛋白纳米纤维分别溶于水中,分别得到SA溶液和SPN溶液;并将两者按比例混合,再通过注射器将混合溶液滴入CaCl2溶液中进行交联,待其凝胶化结束后,用去离子水清洗,得到SPN/SA水凝胶珠;(2)将光催化剂均匀分散在海藻酸钠溶液中,随后将SPN/SA水凝胶珠加入分散液中,搅拌均匀;再将该溶液加入CaCl2溶液中进行交联,最终得到复合水凝胶。本发明将SPN/SA水凝胶珠嵌入海藻酸钠水凝胶中得到复合水凝胶,借助折射率差异和分子间氢键实现高光吸收和长保水性,改善了制氢效率。
Resumen de: CN120046837A
本发明公开了一种基于风速波动的孤岛风电制氢系统制氢效率高敏感影响因素分析方法,该分析方法步骤如下:A、基于制氢装置的制氢效率特性及风速波动特性确定制氢效率影响因素,并构建考虑制氢效率影响因素的孤岛风电制氢系统模型;B、赋值制氢效率影响因素并带入孤岛风电制氢系统模型获取对应的制氢效率,将制氢效率影响因素的值和对应的制氢效率的值对应组合作为灰色关联分析的样本数据;C、依据样本数据对孤岛风电制氢系统进行灰色关联分析,获得制氢效率影响因素与制氢效率间的关联度;D、取关联度不低于0.8的制氢效率影响因素作为制氢效率高敏感影响因素。本发明基于多变量、通过灰色关联分析法确定制氢效率高敏感影响因素。
Resumen de: CN120041882A
本发明提供了一种PEM电解水阳极浆料及膜电极。该阳极浆料包括:铱基催化剂、阴离子表面活性剂、阳离子表面活性剂、树脂、溶剂;其中,阴离子表面活性剂和阳离子表面活性剂的质量之和与铱基催化剂的质量比为1‑20:100;铱基催化剂包含铱元素和非贵金属元素;铱基催化剂包括第一催化剂和第二催化剂,第一催化剂包括铱单质和/或铱与非贵金属的合金,第二催化剂包括铱的氧化物和/或铱与非贵金属合金的氧化物。本发明还提供了包含上述阳极浆料或者由该阳极浆料制成的膜电极。该阳极浆料的铱基催化剂兼具高催化活性和高催化稳定性,同时具有较高的悬浮稳定性,可提高膜电极的质量比活性,降低铱单质的载量、进而降低膜电极的成本。
Resumen de: SA521430292B1
Methods and systems for producing hydrogen substantially without greenhouse gas emissions, the method including producing a product gas comprising hydrogen and carbon dioxide from a hydrocarbon fuel source; separating hydrogen from the product gas to create a hydrogen product stream and a byproduct stream; injecting the byproduct stream into a reservoir containing mafic rock; and allowing components of the byproduct stream to react in situ with components of the mafic rock to precipitate and store components of the byproduct stream in the reservoir. Fig 1.
Resumen de: CN120041853A
本发明公开了一种晶态与非晶态耦合的电催化电极的制备方法及应用,包括以下步骤:将六水合硝酸镍溶于水中,将二茂铁甲酸和对苯二甲酸溶于N,N‑2甲基甲酰胺中,两种溶液混合后加入泡沫镍进行溶剂热反应,清洗和干燥后得到中间产物;对所述中间产物在六水合硫酸镍的水溶液中进行电沉积,清洗和干燥后得到所述的晶态与非晶态耦合的电催化电极。本发明所述的晶态与非晶态耦合的电催化电极在1mol/L KOH溶液和碱性海水中具有优异的电催化水/海水分解活性和长时间工作稳定性。
Resumen de: CN120042993A
本发明公开了用于电解水制氢气液分离系统的管道振动消除系统,涉及电解水制氢管道振动消除技术领域,包括:压力控制器、电磁阀、气缸、液压缸、阻尼调节装置和驱动气源;压力控制器与电磁阀电连接,电磁阀与气缸的进气阀电连接,气缸与液压缸机械连接,液压缸与阻尼调节装置机械连接,驱动气源与气缸机械连接,阻尼调节装置与电解水制氢系统和气液分离系统之间的气液混合管道固定连接;压力控制器用于监测气液混合管道是否振动。本申请通过结合压力控制器、电磁阀、气缸、液压缸、阻尼调节装置和驱动气源消除电解水制氢的管道振动,提高了电解水制氢气液分离系统的稳定性、生产效率和分离效果。
Resumen de: CN120041876A
本发明提供一种用于电催化析氧反应的铁钴镍粒子/碳复合材料催化剂及其制备方法和应用,属于电催化技术领域。该催化剂的制备方法包括:(1)在去离子水溶剂中,加入二水合柠檬酸钠、六水硝酸钴、六水硝酸镍、三水亚铁氰化钾制备悬浮液;(2)将悬浮液上层清液倒掉,沉淀洗涤后置于烘箱中干燥得前驱体;(3)将前驱体进行退火处理后可获得该催化剂。本发明制备的铁钴镍粒子/碳复合材料作为一种高效的析氧催化剂具有优异的析氧性能。
Resumen de: CN120041892A
本发明公开了一种新型阵列‑模块化电解槽中气液分流循环装置,属于电解水技术领域,阵列‑模块电解槽与气液分离器连接;气体处理模块与气液分离器的气体出口连接;碱液箱与气液分离器的液体出口连接;碱液循环泵与碱液箱的出口连接,且碱液箱与阵列‑模块电解槽的液体进口连接。本发明的气液分流循环工艺在电解水系统中优势显著。其能提升电解效率,反应后气体分别排出,避免电极反应不充分。本发明还能提高碱液循环效率,减少气阻与能耗。安全性上,使阴、阳极液独立循环,杜绝氢气和氧气混合的爆炸风险。本发明的方案能有效控制碱液浓度,确保系统稳定运行,为电解水系统高效、安全运作筑牢根基。
Resumen de: CN120043112A
本发明涉及一种掺氨燃烧器氨分解的方法和装置,涉及掺氨燃烧技术领域,包括如下步骤:通过设置在燃烧器喷嘴前端的内壁上的催化剂层,在温度为350℃~500℃条件下,使氨气转化为氮气和氢气。本发明利用燃烧器入口处的350℃~500℃的自然温度,实现氨气在贫氧条件下高效分解为氢气和氮气,同时显著减少NOx的生成量,无需额外的能量输入即可达到理想的氨气转化率;该方法突破了现有技术中需要外部加热源才能达到催化分解所需温度的限制,大幅降低了运行成本。
Resumen de: CN120039827A
本发明公开了一种多级选择性氢气氧化促进氨裂解制氢方法及绝热反应系统。A、将氨加热转化为氨气,然后通过首个绝热催化反应单元促进氨的分解,得到含有氢气和未转化的氨进入后续的绝热催化反应单元中;B、在各个后续的绝热催化反应单元中通入含氧气体,通入的氧化气氛与输出的物料中的氢气反应,并且放出热量促进物料升温,从而促进氨的分解;C、重复步骤B的过程,经过多次在各个后续的绝热催化反应单元通入含氧气体进一步促进氨分解,直到氨的分解率达标。优点是:可以满足下游不同流量的氢气的需求,具有造价低,结构紧凑,操作灵活等优点,不仅适合于移动式制氢也适合固定式制氢,既可以采用空气,也可以采用氧气作为氧化介质。
Resumen de: CN120037948A
本发明属于催化剂技术领域,提供了一种Cu3P/三维石墨烯复合催化剂及其制备方法和应用。本发明的复合催化剂包括基底(泡沫金属),沉积在基底上的石墨烯,及沉积在石墨烯上的Cu3P纳米颗粒。本发明以泡沫金属为基底,并在泡沫金属上沉积石墨烯,石墨烯具有优异的稳定性,能够提高复合催化剂的稳定性;Cu3P纳米颗粒可以提供丰富的反应位点;同时,Cu3P和石墨烯之间的界面相互作用可以促进电子转移速率。实施例表明:本发明的复合催化剂在1M KOH条件下,在10mA/cm2条件下显示出73mV的优异HER活性。重要的是,复合催化剂在1M KOH的析氢条件下也表现出优异的耐久性(>90小时)。
Resumen de: EP4252775A2
The invention provides compositions for producing hydrogen rich water, nutraceuticals, cosmetics, pharmaceuticals, and other products. In one embodiment, the invention provides a composition, e.g., a tablet, including magnesium metal, at least one water-soluble acid, and a binding agent. The magnesium metal and at least one water-soluble acid may be present in amounts sufficient to maintain a pH of less than 7, e.g., at a specific time period after reaction, and a concentration of at least 0.5 mM H<sub>2</sub> after reaction in 50 mL water in a container e.g., a sealed or an open container, e.g., at least 0.5 mM H<sub>2</sub> after reaction in 100 mL water or at least 0.5 mM H<sub>2</sub> after reaction in 500 mL water. The composition may also include a lubricant.
Resumen de: CN120037895A
本发明涉及一种SrTiO3/Bi2O3异质结光催化剂的制备方法和应用,属于光催化材料技术领域。本发明采用固相法制备SrTiO3,然后将SrTiO3和Bi2O3充分研磨,煅烧获得SrTiO3/Bi2O3异质结光催化剂,其可以应用于光催化整体水分解领域。相较于现有的光催化剂,本发明SrTiO3/Bi2O3异质结光催化剂可控性良好,稳定性强,具有良好的光吸收特性,有利于防止光生电子和空穴复合,进一步提升载流子的分离效率。本发明绿色环保、方法简单,操作方便,材料制备成本低廉,符合绿色环保理念,具有广阔的应用市场前景。
Resumen de: CN120041890A
本发明一种PEM及ALK电解槽复合测试台,包括阳极去离子水供液单元、阳极碱液供液单元和阴极碱液供液单元。本发明具有阳极去离子水供液、阳极碱液供液和阴极碱液供液功能,能够完成PEM电解槽测试、ALK电解槽双侧混合供液测试,满足PEM电解槽及ALK电解槽复合测试。
Resumen de: CN120041884A
本发明涉及碱性水电解制氢技术领域,尤其是涉及一种高性能碱性水电解复合隔膜及其制备方法与应用。制备方法包括以下步骤:S1、将有机聚合物基体浸泡在溶胀溶剂中,得到溶胀后的有机聚合物基体;S2、另取溶胀溶剂与前驱体水溶液混合,得到功能性无机物母液;S3、将步骤S1中溶胀后的有机聚合物基体加入步骤S2的功能性无机物母液中静置,原位生长反应,洗涤、干燥得到有机‑无机复合隔膜,即高性能碱性水电解复合隔膜,完成。与现有技术相比,本发明可有效增强复合隔膜的牢固性,提高复合隔膜的亲水性,降低复合隔膜的面电阻,增强复合隔膜的电解性能和电解稳定性。
Resumen de: CN120037942A
本发明提供了一种BiVO4/CuS/NiFeCoOx光电催化材料及其制备方法与应用,涉及光电催化技术领域。所述光电催化材料的制备方法,包括以下步骤:在衬底表面电沉积BiOI薄膜,在其表面滴加乙酰丙酮氧钒溶液后依次进行高温煅烧、碱液浸泡,得到BiVO4基底层;将硫化铜的氯仿溶液涂覆到上述基底层表面,得到BiVO4/CuS复合材料;然后将其在pH值为4.5~5.5的铁镍钴溶液中进行第一阶段浸泡,再调节溶液pH值为6~8后进行第二阶段浸泡,最后得到BiVO4/CuS/NiFeCoOx光电催化材料。该材料具有良好的光电催化活性和稳定性。
Resumen de: CN120041869A
本发明属于电极材料技术领域,具体涉及一种含有钝化层结构的材料及其制备方法和用途。所述材料包括:位于内部的金属磷化物/金属硫化物/金属硅酸盐,包覆在所述材料表面的表面钝化层,和所述金属磷化物/金属硫化物/金属硅酸盐和金属氧化物之间的中间钝化层;所述表面钝化层为第一金属氧化物层或复合钝化层;所述中间钝化层选自:第二金属氧化层、非金属阴离子盐层中的一层或多层;所述金属磷化物/金属硫化物/金属硅酸盐为金属磷化物、金属硫化物或金属硅酸盐。本发明首次提出了一种多层复合的金属氧化物与非金属阴离子盐钝化层结构在电解水/海水阳极侧防氧化和抗腐蚀、阴极侧耦合波动性可再生能源析氢中的应用。
Resumen de: CN120041871A
本发明公开了一种负载钌基合金的1T相二硫化钼纳米片、合成工艺与应用,合成工艺包括:(1)将钼源和硫源溶于水,水热处理后获得1T相MoS2纳米花;(2)将1T相二硫化钼纳米花分散于有机溶液中,并经过超声处理,随后洗涤干燥后获得1T相二硫化钼纳米片;(3)将1T相二硫化钼纳米片分散在水中,获得悬浊液I;(4)将钌源与过渡金属源加入到悬浊液I中,得到悬浊液Ⅱ;(5)将悬浊液Ⅱ与还原剂混合后在超声条件下反应,反应结束后洗涤干燥,得到负载钌基合金的1T相二硫化钼纳米片。本发明简化了生产工艺,减少了贵金属的使用,降低了生产成本。
Resumen de: CN120041881A
本发明提供了一种PEM电解水阳极浆料及膜电极。该阳极浆料包括:铱基合金催化剂、阴离子表面活性剂、阳离子表面活性剂、树脂、溶剂;所述阴离子表面活性剂和阳离子表面活性剂的质量之和与铱基合金催化剂的质量比为1‑25:100;所述铱基合金催化剂包括铱与非贵金属的合金和铱与非贵金属合金的氧化物。本发明还提供了包含上述阳极浆料或者由该阳极浆料制成的膜电极。该阳极浆料的铱基合金催化剂兼具高催化活性和高催化稳定性,同时具有较高的悬浮稳定性,可提高膜电极的质量比活性,降低铱单质的载量、进而降低膜电极的成本。
Resumen de: CN120041888A
本发明涉及制氢技术领域,尤其涉及多类型电解槽协同运行的混合电解水制氢系统及方法。包括:碱性电解槽阵列和阴离子交换膜电解槽阵列构成的混合电解单元,两阵列通过多通道气液分离器并联接入氢气纯化系统;与电解单元电气连接的智能电源模块,其具备动态调压功能,输出电压范围覆盖20‑100V,并集成有谐波抑制电路;多维度传感网络,包括嵌入电解槽极板的分布式温度传感器阵列、电解液循环管道的多相位压力检测单元、以及产氢管路的激光气体分析仪;分级控制器,内置高速DSP芯片和实时操作系统,本方案提供一种能够实现多类型电解槽高效协同、动态优化电流分配新型制氢系统,从根本上解决宽范围负载适应性与运行能效难以兼得的技术困局。
Resumen de: CN120041887A
本申请公开了一种电解槽气体控制系统及其控制方法。本申请通过在电解槽的阳极侧的纯水供应管路上设置第一吹扫气供应管路,并在电解槽的阳极侧的氧气输出管路上设置氢气浓度检测器用于检测所述氧气输出管路内气体的实时氢气浓度,在实时氢气浓度大于预设氢气浓度限值时,控制所述第一吹扫气供应管路打开向所述电解槽内注入吹扫气,直至所述实时氢气浓度小于预设氢气浓度限值,可以有效控制氧气输出管路内气体的氢气浓度来延长电解槽运行时间,可以提升电解槽在低负荷运行时长。
Resumen de: CN120041845A
本发明提供了一种降低单晶硅含氧量的方法及装置,包括将金属导体电连接电源的正极,以及,将制备的单晶硅电连接电源的负极;将所述金属导体和所述单晶硅插入电解液中,进行电解,在电解过程中,所述单晶硅中的氧元素与电解液中氢离子形成水,从而一定程度上降低了单晶硅中氧元素的含量,降低了电池片端是存在同心圆的风险。
Resumen de: CN120042651A
本发明涉及新能源技术领域,具体是一种将水蒸汽直接转化为氢能源利用的方法及装置。本发明采用高温高压下对水蒸气进行点火反应从而生成高温高压气体,然后进行做功,将水蒸气的化学能转化为动能。具有能源清洁,无污染,能源转化率高的优势。本发明设计的氢能转化装置结构合理、紧凑,各组件协同工作,能够稳定、高效地完成能量输出。水蒸气生成器能够生成纯净的水蒸气,为后续反应提供高质量的原料;反应器通过动力组件带动压缩活塞实现水蒸气的加压,并配备点火器进行点火反应,确保反应顺利进行。本发明中反应器设有多个反应室,可同时进行多组反应,提高了做功效率,增强了装置的功率。同时反映的连续性好,可以不间断持续的进行做功。
Resumen de: CN120041873A
本发明公开了一种铝掺杂氧化钼‑碳化钼催化剂、其制备方法及应用,所述铝掺杂氧化钼‑碳化钼催化剂包括铝掺杂碳化钼薄膜和铝掺杂氧化钼薄膜,所述铝掺杂氧化钼薄膜位于铝掺杂碳化钼薄膜上。本发明的铝掺杂氧化钼‑碳化钼催化剂具有更高的HER反应活性,且稳定性更好,在电解水制氢领域有着广泛的应用前景。
Resumen de: CN120041737A
本发明提供了一种电催化高熵合金及其制备方法和应用。本发明提供的电催化高熵合金,按摩尔百分含量计,包括11.11%‑42.86%的Fe,11.11%‑42.86%的Co,11.11%‑42.86%的Ni,11.11%‑20%的Cr,11.11%‑20%的Mn;所述电催化高熵合金,耐腐蚀性好,在大电流密度和长时间工作情况下稳定性好,能满足海水电解的应用要求。本发明提供的所述电催化高熵合金的制备方法,采用感应熔炼法在一定条件下对金属单质进行熔炼;采用感应熔炼,且在氩气气氛下进行熔炼,可有效避免金属氧化,提高高熵合金纯度。根据所述制备方法,可进一步采用单辊旋淬加工成条带状高熵合金,提高机械强度、柔韧性及耐腐蚀性。本发明提供的高熵合金用于海水电解,特别地可用作自支撑电催化电极。
Resumen de: CN120041889A
本发明一种AEM及PEM电解槽复合测试台,包括去离子水供液单元和碱液供液单元。本发明具去离子水供液和碱液供液功能,能够完成AEM电解槽碱液测试、PEM/AEM电解槽去离子水测试,满足AEM电解槽及PEM电解槽复合测试。
Resumen de: CN120037993A
本发明公开了一种氨分解制氢催化剂及其制备方法与应用,涉及氨分解制氢技术领域,包括一种氨分解制氢催化剂,所述氨分解制氢催化剂为金属纤维材料,所述金属纤维材料中纤维的平均直径为0.03mm,所述金属纤维材料的形貌为多孔形貌,所述金属纤维材料的活性组分为过渡金属单质或其氧化物;该氨分解制氢催化剂及其制备方法与应用,通过氨分解制氢催化剂表面的活性位点,Fe原子能够与NH3中的N原子反应,提供活性位点的同时形成Fe‑N化合物,重构催化剂表面性质,强化NH3在催化剂表面吸附,降低反应能垒;通过深度氧化和氮化处理,催化剂表面结构发生物理改变,形成大量空穴,有利于氨气的吸附和电子传递,强化氨气的热裂解反应。
Resumen de: CN120041865A
本发明公开了一种贵金属纳米催化剂的制备方法和应用。所述方法为:1)在氮气或氩气气氛下,将载体在600~1100℃热处理0.5~2h,合成缺陷或掺杂的载体材料,所述的载体为磷原子掺杂碳材料;2)将缺陷或掺杂的载体材料浸入贵金属盐溶液中,超声后置于微波反应器中,于100~300℃反应60~120s,使贵金属在载体表面还原沉积,得到初产物;3)将初产物洗涤、烘干,得到贵金属纳米催化剂。本发明所合成的贵金属纳米催化剂可应用于水分解、小分子氧化以及杂化电解水的催化反应或电催化反应,实现比商业贵金属更优的性能,具有较广阔的应用前景。
Resumen de: CN120041858A
本发明提供了一种PEM电解水阳极浆料及膜电极。该浆料包括:催化剂、阴离子表面活性剂、阳离子表面活性剂、树脂、溶剂;其中,所述阴离子表面活性剂和阳离子表面活性剂的质量之和与催化剂的质量比为1‑30:100,催化剂包括铱单质和铱的氧化物。本发明还提供了一种膜电极,其包含上述PEM电解水阳极浆料或者由上述PEM电解水阳极浆料制成。该阳极浆料兼具高催化活性和高催化稳定性,同时具有较高的悬浮稳定性,提高膜电极的质量比活性,可降低铱单质的载量、进而降低膜电极成本。
Resumen de: CN120037944A
本发明涉及一种W18O49/Zn0.1Cu0.9InS2异质结光催化剂的制备方法和应用,属于光催化材料技术领域。本发明采用两步水热法制备W18O49/Zn0.1Cu0.9InS2光催化剂,其可以应用于光催化析氢领域。相较于现有的光催化剂,在本发明制备的W18O49/Zn0.1Cu0.9InS2光催化剂中,Zn的掺杂可以减少电子空穴对的复合,提高光电子注入效率。构建异质结提升了光生载流子的分离效率,显著提高材料的光响应能力,增强了光催化活性。本发明绿色环保、方法简单,操作方便、材料制备成本低廉,符合目前所倡导的绿色环保理念,具有广阔的应用市场前景。
Resumen de: CN120041856A
本发明公开了一种表面活性剂改性钛阳极涂层及其制备方法和应用,属于电极材料涂层技术领域,表面活性剂改性钛阳极涂层包括添加了表面活性剂的铱钽氧化物涂层,表面活性剂为聚丙烯酰胺或聚乙二醇;表面活性剂的用量为其30~70%的临界胶束浓度。其制备方法包括如下步骤:将表面活性剂和活性铱钽氧化物涂液混合均匀;将含表面活性剂的铱钽氧化物涂液按沉积法沉积于含有中间层的钛基材上;重复沉积操作,直至铱钽氧化物涂层中的铱含量达标。本发明提供的涂层表面为孔径合适的三维多孔形貌,显著提高了钛阳极表面涂层催化剂的电化学活性和寿命。本发明提供的制备工艺简单易行、安全绿色、成本低廉,有利于工业化生产。
Resumen de: CN120046473A
本申请提供PEM电解槽建模方法、性能预测方法、相关系统及设备,属于计算机技术领域。该建模方法包括:根据当PEM电解槽在若干个不同实验条件下运行时获取的第一数据集,对预设神经网络模型进行训练,得到电压预测模型,其输入为PEM电解槽的工作电流和工作温度、输出为PEM电解槽的工作电压;根据当PEM电解槽在特定实验条件下运行时获取的第二数据集,通过参数拟合方式确定温度预测模型,其用于表征PEM电解槽的工作温度与工作电流、工作电压、入口流量、入口温度和环境温度之间的函数关系;将电压预测模型和温度预测模型进行集成,得到PEM电解槽模型。本申请有利于提高PEM电解槽性能参数的预测准确性。
Resumen de: CN120042671A
本发明公开了种非含硫井井口余压利用的系统及方法,涉及天然气技术领域,一级分离装置用于接收井口来气,并将井口天然气分离为气相和液固相;气相发电装置包括有膨胀机,膨胀机用于接收气相,并发电产生电能和冷能;液固相处理装置包括液固分离装置和电解装置,液固分离装置用于接收液固相,并将液固相分离为液体和固体;电解装置用于接收分离的液体,并通过膨胀机产生的电能进行电解制氢;温差发电装置用于接收膨胀机产生的冷能、所述电解装置中液固相自身携带的热能和液固分离装置中液相自身携带的热能,并进行温差发电。能在不阻断气田正常生产流程的情况下,简化非含硫井口天然气处理过程,最大化利用井口压力能,从而不影响气井正常生产。
Resumen de: EP4219794A2
A method for producing a new electrolyzer by arranging an electrode for electrolysis or a laminate of the electrode for electrolysis and a new membrane in an existing electrolyzer comprising an anode, a cathode that is opposed to the anode, and a membrane that is arranged between the anode and the cathode, wherein the electrode for electrolysis or the laminate, being in a wound body form, is used.
Resumen de: CN120041849A
本申请公开了一种模块化电解水制氢系统,属于制氢技术领域。模块化电解水制氢系统包括:总控制器模块、用于提供纯水的纯水模块、用于电解水产生氢气和氧气的制氢模块和用于提纯产生的氢气的纯化模块;纯化模块包括电连接的纯化模组和第一控制模组;制氢模块包括电连接的制氢模组和第二控制模组;纯水模块包括电连接的纯水模组和第三控制模组;第一控制模组包括第一电源和与第一电源电连接的第一控制器,第二控制模组包括第二电源和与第二电源电连接的第二控制器,第三控制模组包括第三电源和与第三电源电连接的第三控制器,总控制器模块分别与第一、第二、第三控制器电连接。本申请解决了集中供电和控制难以适应模块化、通用化发展趋势的问题。
Resumen de: CN120037932A
本发明属于光催化技术领域,涉及一种MgCo‑LDH/ATP/BiVO4三元复合光催化材料及其制备方法和应用,制备方法包括以下步骤:S1、预处理;S2、采用MgCl2·6H2O、CoCl2·6H2O、尿素、脱水ATP和水,得到MgCo‑LDH/ATP;S3、合成BiVO4电极片;S4、取Mg(NO3)2·6H2O、异丙醇和MgCo‑LDH/ATP超声混合;并以BiVO4电极片构建电沉积体系进行电泳沉积,得到复合光阳极材料。本发明制备的三元复合光催化材料具有优异的催化活性,极大的提升光电催化水分解的速率,提升催化效果;此外,制备过程操作简单,合成周期较短。
Resumen de: CN120048396A
本发明公开了一种AEM电解水制氢设备的运行状态监测方法及系统,具体涉及电解槽运行监测控制技术领域,用于解决现有技术中低电流密度工况下因极化模式交替主导及微观结构劣化引发的效率非线性波动问题;通过生成动态响应序列提取极化波动特征并计算动态耦合度以识别极化交替主导模式;基于频率特征解析局部阻塞概率结合温度梯度空间分布特性定位活性位点稀疏区并生成效率波动评估系数;通过构建活性位点稀疏区与阴极流场压力梯度的动态补偿因子矩阵协同调节阳极电流密度分布权重及阴极压力梯度参数,使调节量与局部阻塞概率及动态耦合度精准匹配;实现了电解槽微观劣化状态与宏观效率波动的多尺度关联分析,显著提升低电流密度下的运行稳定性。
Resumen de: EP4219794A2
A method for producing a new electrolyzer by arranging an electrode for electrolysis or a laminate of the electrode for electrolysis and a new membrane in an existing electrolyzer comprising an anode, a cathode that is opposed to the anode, and a membrane that is arranged between the anode and the cathode, wherein the electrode for electrolysis or the laminate, being in a wound body form, is used.
Resumen de: CN120039969A
本发明涉及一种基于疏水引力的氢气浮选油田污水处理装置,包括电解水装置,电解水装置内设置有电解液;氧气污水处理装置和氢气污水处理装置,二者通过连通管连接,氧气污水处理装置通过一条气体入口通道与电解水装置的正极端连接,氢气污水处理装置通过另外一条气体入口通道与电解水装置的负极端连接,氧气污水处理装置上设置有油田污水入口;氧气污水处理装置与氢气污水处理装置分别通过气体出口通道与燃烧装置连接,燃烧装置通过循环管路与电解水装置连接;氧气污水处理装置与氢气污水处理装置均设置有微气泡发生通道,微气泡发生通道与气体入口通道连通。该装置处理效果优异,有利于实现油田生产降本增效,节能减排。
Resumen de: KR20250074514A
본 발명은 수소생성용 광촉매의 제조방법에 관한 것으로 구체적으로, 산소와 인이 도핑된 질화탄소 지지체 표면에 조촉매가 결합한 수소생성용 광촉매의 제조방법에 관한 것 이다. 본 발명에 따르면, 도핑 효과로 밴드갭(band gap)이 감소하여 광촉매 효율이 개선될 수 있다. 또한, 전하 분리가 개선되고 전자-정공 재결합이 억제되어 광촉매 활성이 향상될 수 있다.
Resumen de: US2025153146A1
An ammonia oxidation catalyst and a catalyst system and method using the ammonia oxidation catalyst are provided. The catalyst comprises a metal oxide including titanium and chromium, wherein an energy band gap of the metal oxide measured by UV-Vis DRS is less than 1.4 eV. The catalyst system comprises an ammonia decomposition reactor and a catalyst unit which is located downstream from the ammonia decomposition reactor, and includes the above-described ammonia oxidation catalyst.
Resumen de: KR20250072633A
낮은 재료비용 및 간단한 공정으로 우수한 품질을 갖는 촉매복합체를 제조할 수 있는 탄소계 담지체에 8원계 촉매금속이 담지된 수전해용 촉매복합체 제조방법이 개시된다. 본 탄소계 담지체에 8원계 촉매금속이 담지된 수전해용 촉매복합체 제조방법은 탄소계 담지체를 촉매금속 전구체를 포함하는 용액에 분산시키는 단계; 및 용액을 불활성 분위기 및 800 내지 1,000℃의 온도로 가열하여 탄소계 담지체에 8종이상의 촉매금속을 담지시키는 단계;를 포함한다.
Resumen de: KR20250072185A
본 발명은 수전해 시스템에 관한 것으로서, 본 발명에 따른 수전해 시스템은 단위셀 및 분리판이 적층된 구조로 이루어지며 물의 전기분해 반응으로 수소를 생산하는 수전해 스택, 상기 수전해 스택에 공급되는 물 및 전기분해 과정에서 생성된 물이 순환하는 순환라인, 상기 순환라인에 형성되어 외부로부터 공급되는 물을 저장하는 물 저장탱크, 상기 물 저장탱크로부터 상기 수전해 스택으로 공급되는 물의 유량을 측정하는 유량계 및 상기 수전해 스택의 작동 사이클에 있어서, 상기 물 저장탱크의 유량 변화와 상기 유량계로 측정되는 유량을 비교하여 상기 유량계의 고장 여부를 실시간으로 감지하는 유량계 고장 실시간 판단부를 포함하는 것을 특징으로 한다.
Resumen de: CN120026338A
本申请公开了一种PEM电解槽制氢系统和控制方法,该系统包括:电解槽,设置有氧气出口、第一氢气出口和循环水入口;氧气支路,设置有氧气气液分离器,氧气支路用于输送电解槽生成的氧气;氢气支路,设置有氢气气液分离器,氢气支路用于输送电解槽生成的氢气;循环水回路,用于将氧气气液分离器分离出的水输送至电解槽;检测气体支路,用于将预设检测气体经氧气支路通入电解槽、或将预设检测气体经氧气支路和氢气支路通入电解槽,通过设置检测气体支路,将预设检测气体通入电解槽,实现了在不拆卸电解槽的前提下,准确的对电解槽进行内漏和外漏检测,提高了PEM电解槽制氢系统的运行可靠性。
Resumen de: CN120026340A
本发明涉及制氢电解槽技术领域,且公开了一种基于圆柱形的电解槽结构,包括电解槽主体,电解槽主体包括圆柱形外壳、隔膜、外电极与内电极,圆柱形外壳一端设置有一号端盖,圆柱形外壳远离一号端盖一端设置有二号端盖,一号端盖中心设置有内电极出水口,二号端盖中心设置有内电极进水口,内电极出水口一侧设置有外电极极耳,内电极出水口远离外电极极耳一侧设置有内电极极耳,圆柱形外壳靠近二号端盖一端侧壁上设置有外电极进水口,圆柱形外壳靠近一号端盖一端侧壁上设置有外电极出水口。该基于圆柱形的电解槽结构,圆柱式结构由于压力分布均匀,自身就可以承受高压,液体渗漏风险大大降低,且不需要厚重钢板,适用于高压运行。
Resumen de: CN120026360A
本发明公开了一种负载硼酸镍的磷掺杂氮化碳复合钒酸铋光电极及其制备方法,属于电极材料技术领域。本发明提供了包含BiVO4层、P‑C3N4层和硼酸镍(NiBi)层的光电极,其中,P‑C3N4层作为空穴传输层,可以快速导走在光照下发生分离的电子和空穴,减少表面电荷的复合,钝化BiVO4界面缺陷,极大的提升了光电极的性能;NiBi层作为助催化剂,可以有效隔绝光生电子,减少BiVO4光电极的光生电子空穴对复合,同时提升了BiVO4的表面催化产氧效率,最终得到了具有较强光生载流子传输能力与良好稳定性的负载硼酸镍的磷掺杂氮化碳复合钒酸铋光电极。
Resumen de: CN120026370A
本发明公开一种高性能IT/PANI/CoPi光电极薄膜及其制备方法和应用。通过水热的方法制备IT光电极,后将苯胺溶于去离子水中,使用盐酸将溶液的pH值调节至3获得PANI的电沉积溶液。将IT光阳极在三电极体系中电沉积后,清洗,烘干得到IT/PANI光电极。将磷酸氢二钾、磷酸二氢钾和六水合硝酸钴溶于去离子水得到CoPi电沉积液。将得到的IT/PANI光电极,通过电沉积后,清洗,烘干得到IT/PANI/CoPi光电极。此时,PANI作为空穴传输层,加速IT光电极的光生载流子的分离与传输,同时表面的CoPi助催化剂的存在,加速了表面水氧化动力学。这项工作可能会启发合理设计的高性能的光阳极可行的太阳能转换。
Resumen de: CN120026341A
本发明涉及氢气生产技术领域,尤其涉及一种混联电解系统和混联电解方法,混联电解系统包括:PEM电解装置,包括PEM电解槽、第一氢分离器、第一氧分离器、纯水冷却器和纯水循环泵;碱性电解装置,包括碱性电解槽、第二氢分离器、第二氧分离器、碱液冷却器和碱液循环泵;换热器,在PEM电解装置中,换热器连接于纯水冷却器和纯水循环泵之间,在碱性电解装置中,换热器连接于碱液冷却器和碱液循环泵之间,PEM电解装置的纯水和碱性电解装置的碱液在换热器内热交换。本方案用以解决现有技术中成本效益与功率适应性难以兼顾的缺陷,实现高效且经济的绿色氢气生产。
Resumen de: CN120023070A
本发明涉及粘结碱性水电解催化剂技术领域,尤其涉及一种粘结碱性水电解催化剂的制备装置及制备方法,包括制备装置本体,所述制备装置本体包括原料储存单元及与原料储存单元相互配合设置的混合反应单元,所述混合反应单元连接设置有涂敷设备,所述原料储存单元包括纳米催化储罐,所述原料储存单元除纳米催化储罐外还设置有异丁烯溶液储罐、异戊二烯溶液储罐、四氟乙烯储罐、全氟烷基乙烯基醚储罐、乙烯基碳化氟储罐及六氟丙烯储罐,所述制备装置本体还配合设置有清洗单元及物料输送设备,所述涂敷设备末端配合设置有干燥单元,本发明通过选择配料与碱性纳米催化等作为粘结剂成分,从而确保了粘结剂在碱性水电解过程中的长期耐用性。
Resumen de: CN120030734A
本发明提供一种质子交换膜电解水制氢系统启动过程优化方法及装置首先,建立系统的集总参数模型,包括质子交换膜电解槽的电压模型、制氢装置的温度模型、产氢功率模型和消耗电能模型;然后,采用庞特里亚金极小值原理优化启动过程中的制氢效率,得到最优的电流变化曲线,并将其输入到模型中得到装置温度变化曲线,基于优化得到的电解电流和装置温度数据制成MAP表;最后,在制系统启动过程中,根据当前系统温度查询MAP表得到电解电流,控制电源以该电流电解,该方法通过适当延长启动过程中系统温度上升时间,有效提高了启动过程中的制氢效率。
Resumen de: CN120026366A
本发明公开了一种具有导电高分子插层的催化阳极及其制备方法和应用,涉及电解制氢技术领域,包括如下步骤:步骤1、通过化学沉积法在泡沫镍上生长导电高分子有机物,制备电极;步骤2、配置含有硝酸镍水溶液和硝酸铁水溶液的混合溶液作为电解液,转移到三电极电解池中,以步骤1制备得到的电极作为电解池阴极、铂丝电极作为电解池阳极,进行电沉积;步骤3、取出经过电沉积后的泡沫镍,洗涤,去除表面水分,得到具有导电高分子插层的催化阳极。本发明提高了海水直接电解催化稳定性(500+小时),并提高了催化活性、降低了海水电解制氢成本(降低37.5%),电极合成过程安全环保、操作简单、成本低廉、便携性好。
Resumen de: CN120026355A
本发明公开了一种壳聚糖调控生成单斜相钒酸铋光阳极及其制备方法与应用,钒酸铋光阳极采用壳聚糖、钒源、铋源共存的均一铸膜溶胶经旋涂、薄膜预固定、煅烧制备而成。铸膜溶胶中的壳聚糖促进形成单斜相BiVO4,表面拥有发达的蠕虫状孔道,表现出优异的固液传质和体相载流子分离能力。壳聚糖调控的单斜相钒酸铋光阳极在一个太阳光照强度(100mW/cm2)下,光电催化亚硫酸盐处理的天然海水可彻底抑制析氯反应,光电流密度可达6.03mA/cm2(1.23V vs.RHE),同时阴极能稳定析出氢气。本发明光阳极制备方法对设备要求低,过程简单,可控性和重现性强,在光电催化分解海水制氢领域展现出较大的应用潜力。
Resumen de: CN120024941A
本发明属于纳米材料制备及新能源领域技术领域,具体涉及一种熔盐保护法制备高熵尖晶石氧化物纳米材料的方法及应用。本发明利用熔盐保护法将普鲁士蓝类似物转化成尖晶石氧化物纳米材料,熔盐保护法可以提高纳米材料中高价离子的含量,增加活性位点的数量,从而使材料的析氧性能得到大幅度提升,并且可以选择不同的熔盐和控制反应条件,可以对产物的结构进行调控,以满足不同的应用需求,在工业电解水应用中有广阔的前景,有助于实现大规模氢气生产。
Resumen de: CN120026373A
本发明属于新材料技术领域,公开了一种碱性水电解的层状双氢氧化物膜,所述层状双氢氧化物膜是以聚四氟乙烯为粘接剂将层状双氢氧化物颗粒连接成连续薄膜得到的。本发明以聚四氟乙烯(PTFE)为粘接剂,采用压延方法将层状双氢氧化物(LDH)颗粒连接为连续的致密薄膜。该制备方法不需要或很少需要使用有机溶剂,并且易于连续性工业化生产。将制备的层状双氢氧化物膜用于碱性水电解时,表现出明显低于商品Zirfon膜的面电阻和氢气透气率,可以广泛应用于工业生产且兼具较高离子电导率。
Resumen de: CN120026342A
本发明涉及可再生能源利用技术领域,公开了一种电解槽、电解制氢系统及控制方法。该电解槽本体包括多个电解单元;电解单元包括多个双极板,用于独立电解制氢;至少两个电解单元的双极板的数量不等。在本发明中,通过设置多个可以独立电解制氢的电解单元,且至少两个电解单元的双极板的数量不同,双极板数量较少的电解单元的功率运行下限较小,从而降低了电解槽整体的运行功率下限,拓宽了电解槽整体的运行功率范围,在将电解槽与可再生发电系统结合时,可以使电解槽适应可再生发电系统的波动性,解决了现有技术中的电解制氢技术存在的无法适应可再生发电系统的波动性的问题。
Resumen de: CN120022923A
本发明公开了一种配体调控析氧催化剂表面重构的方法及催化剂和应用。该方法涉及配体调谐的表面重建,能够同时掺入掺杂的阳离子和氧空位,以提高OER的催化活性。通过使用碲化镍、氧化镍、硫化镍或硒化镍作为预催化剂,基于在碱性电解质中利用氨络合物的配体诱导的延迟掺杂效应,开发了由镍基预催化剂和(氧)氢氧化物组成的表面工程异质界面结构。本发明方法工艺简单,易于操作,可工业化推广;且制得的析氧催化剂具有活性位点和氧空位丰富,化学活性表面积大,稳定性好,可调控,成本低廉的特点。
Resumen de: CN120022907A
一种核壳结构的长余辉@硫铟化锌复合光催化材料和制备方法及其应用,具体公开了一种核壳结构的PLNPs@ZIS复合光催化材料,其中,核为长余辉纳米颗粒(PLNPs),壳为硫铟化锌纳米片(ZIS),化学式为(x)Zn2SiO4:Ga3+@(y)ZnIn2S4,1≤x≤16,15≤y≤30。该复合材料采取溶剂热法制备,先合成单独的PLNPs,将PLNPs充分分散后与ZIS的前驱体混合均匀,经溶剂热反应原位生长形成核壳结构的PLNPs@ZIS复合材料。本发明制备的复合光催化材料具有良好的吸附性和氧化还原能力,表现出良好的光催化制氢性能,在能源领域具有良好的应用前景。
Resumen de: CN120026358A
本发明公开了一种Bi2SiO5/碳泡沫复合光电催化材料及其制备方法及应用,首先制备Bi2SiO5粉体,再将Bi2SiO5粉体、异丙醇溶液、聚苯醌溶液和碘单质按例比配制成Bi2SiO5前驱体溶液,将预处理后的碳泡沫基底置于水热电泳沉积仪的负极,将Bi2SiO5前驱体溶液置入沉积,在15~30V电压下沉积1~20min,之后关闭设备,取出碳泡沫基底,干燥后即可得到所需的Bi2SiO5/碳泡沫光电催化剂;该材料具有良好的光吸收和优异的电导性,大幅度提高了光电催化水裂解的效率,解决了Bi2SiO5纯相电导率低的问题,突破了自身材料限制,具有优异的光电催化前景;碳泡沫材料的一体式光电极比传统的光电极更加稳定,具有广泛的适应性,可以长时间稳定工作,过程易控,工艺简单、周期短、能耗低。
Resumen de: CN120023948A
本申请公开了一种制氢电解槽用密封垫矫正装置及矫正方法,密封垫矫正装置用于将处于变形状态的密封垫矫正为标准状态,密封垫上具有多个通孔,矫正装置包括环座、筒体、多个定位柱和压环,环座具有相对设置的第一侧面与第二侧面;筒体固定于第一侧面背离第二侧面的一侧,筒体的轴向与环座的轴向重合;多个定位柱均设置于第一侧面背离第二侧面的一侧且绕环座的轴向环绕分布于筒体的外周,定位柱沿环座的轴向延伸;压环套设于筒体的外周且具有沿环座的轴向滑动的自由度,压环上设置有多个定位孔,其中,多个定位柱一一对应地穿过多个定位孔。本申请可以将处于变形状态的密封垫矫正为标准状态,使密封垫可以重复利用。
Resumen de: CN120026352A
本发明属于无机先进纳米材料技术领域,具体涉及一种铁掺杂的钼酸盐纳米复合材料及其制备与电催化碱性盐水析氧的方法。所述铁掺杂的钼酸盐纳米材料包含:导电基底、生长或涂覆在所述导电基底表面的铁掺杂的钼酸盐纳米材料。本发明首次应用非贵金属掺杂且拥有高活性的铁掺杂的钼酸盐纳米材料。本发明首次应用铁掺杂的钼酸盐纳米材料作为海水电解阳极催化剂。该催化剂主要通过包覆在阳极上的钼酸铁保护性物质以及钼酸盐转变为活性物质——羟基氧化物时释放的钼酸盐,两者协同作用达到抵御卤素离子的排斥效果;并且由于铁的掺入,改善单一钼酸盐的电子结构,使得其有卓越的活性。
Resumen de: CN120023342A
本发明公开了一种PtRhTe三元合金纳米纤维材料及其制备方法与应用,该制备方法包括以下步骤:1)以Na2TeO3为原料,水合肼作为还原剂,PVP作为分散稳定剂,采用水热法,随后洗涤、离心,溶解于水中得到Te纳米线前驱体溶液;2)将Te纳米线前驱体经过离心,洗涤,得黑色前驱体,溶解于水中得前驱体溶液;3)取前驱体溶液,以乙二醇作为溶剂,将氯化铑溶液加入,高温油浴反应后,再加入氯铂酸溶液,再反应1h,并对沉淀进行洗涤、干燥得到所述PtRhTe三元合金纳米纤维材料。本发明方法采用了自牺牲的模板策略,制得的纳米纤维材料具有独特的一维线状结构,与传统制备析氢电催化剂材料的方法相比,该方法工艺步骤简单、操作容易、可实现大规模生产。
Resumen de: CN120026364A
本发明属于电化学双功能全解水催化剂材料技术领域,具体涉及一种双功能硼掺杂钼钴微米球全解水催化剂及其制备方法和应用,将七钼酸铵和四水合乙酸钴按照一定的摩尔比在少量硫酸和硼酸柠檬酸钠体系中溶解于水中,恒温加热至透明液体,以泡沫镍作为工作电极,铂片和Ag/AgCl电极作为对电极和参比电极,电流密度为‑300~‑200mA cm‑2,在20‑50℃下沉积10‑30分钟,电沉积完成后,用去离子水冲洗泡沫镍表面,真空干燥得到负载在泡沫镍上的黑色微米球硼掺杂MoCo材料。本发明制备的催化剂具有低成本,无毒且高化学活性和稳定性的特点,表现出高的析氢析氧活性和低的过电位。
Resumen de: CN120028488A
本发明属于PEM制氢技术领域,公开了一种中压小功率PEM制氢电解水的测试装置。包括氢气分气罐、去离子水供水罐、被测物中压PEM电解槽循环连接,在去离子水供水罐上接有氧气分水罐,所述氢气分水罐上设有H2进入管路,H2进入管路上设有氢中氧在线分析仪,氧气分水罐上设有O2进入管路,O2进入管路上设有氧中氢在线分析仪;有N2进入管路分别接入氢气分气罐与被测物中压PEM电解槽之间的管路、去离子水供水罐与被测物中压PEM电解槽之间的管路。本发明可以满足小功率PEM制氢电解槽的中压测试需求,可以快速精准的调节从低压到中压的测试压力,而且可以精确的测试带压状态下的制氢量。
Resumen de: CN120026359A
本发明涉及的是一种高活性过渡金属磷化物催化剂的制备方法,包括:以原位生长在泡沫镍上的碱式碳酸镍钴NiCo‑OH/NF为前驱体,将其置于管式炉下游,NaH2PO2置于上游,在氮气氛中在350℃下退火2小时,自然冷却,获得NiCoP/NF;将NiCoP/NF在硼化物的钾盐溶液中浸泡,洗涤、真空干燥,得到硼‑钾改性的催化剂前驱体NiCoP‑BK/NF;在三电极体系中,在含有Ni源、Fe源以及去离子水组成的电解液中进行电沉积,得到高活性过渡金属磷化物‑镍铁氢氧化物NiCoP‑BK@NiFe‑LDH/NF异质结复合催化剂。本发明能够显著提高过渡金属磷化物催化剂的活性和稳定性,制备方法简捷、成本低。
Resumen de: CN120022480A
本发明涉及呼吸治疗机技术领域,公开了一种氢氧治疗机的呼吸控制结构及其控制方法,解决了现有氢氧治疗机在人体循环吸气、呼气中,鼻吸管都有气体输出,呼气时,鼻吸管输出的气体易产生浪费的问题,通过在鼻吸管内通入具有流速的气体,流动的气体流入鼻吸组件内,并由内侧开设的通气孔A排入鼻腔,在鼻吸组件内还设置检测鼻腔呼吸状态的橡胶膜,以及和橡胶膜配合的定位组件,其中定位组件根据鼻腔呼吸状态控制截流罩表面的对位孔和通气孔A进行连通或错开,以实现吸气时排气,呼气时闭合的效果,节省气体。
Resumen de: CN120026349A
本发明提供了一种基于阴离子交换膜电解水阳极催化剂的热转印方法,包括以下步骤:A)将非晶镍铁复合阳极催化剂、粘结剂和溶剂混合,得到阳极催化剂分散液,所述粘结剂选自PTFE溶液;B)将所述阳极催化剂分散液涂覆于转印基底表面,再覆盖阴离子交换膜后进行热压转印。本发明提供的方法可以改善催化剂与膜之间的接触,提升催化剂层的稳定性,并有效避免阴离子交换膜的溶胀现象,同时降低膜电极制备成本,确保性能。
Resumen de: CN120026353A
本发明公开了一种载体稳定化钌基催化剂及其制备方法和应用,该催化剂包括非贵金属氧化物载体及负载于其上的钌基析氧活性成分,通过利用非贵金属氧化物载体结构缺陷和氧空位提升催化活性,同时通过低沸点醇类处理钌前驱体盐和非贵金属氧化物载体和两段连续温度烧结,加强了非贵金属氧化物载体与钌前驱体盐的结合,在非贵金属氧化物载体和混合晶相钌基氧化物之间构筑异质结以及微晶结构,实现催化剂的稳定化,得益于这种独特的形貌,本发明催化剂表现出非常优异的OER性能和长期稳定性。
Resumen de: CN120025040A
本发明公开了一种用于污水厂出水电解制氢的水处理装置,包括装置主体、过滤组件及沉降机构,所述装置主体包括外壳、隔板及泵体,所述隔板固定于所述外壳内,以将所述外壳的内腔分隔为上容纳腔及下容纳腔,所述隔板上开设有第一安装孔,所述第一安装孔内设置有第一控制阀;所述沉降机构设置于所述下容纳腔内。本发明的有益效果是:通过碱性电解过程中自带的碱性条件,将碱性电解液提前与尾水混合,促使尾水中的金属阳离子提前沉淀并通过膜过滤去除,再将混合液通入电解槽,从而高效且经济地去除杂质,无需依赖昂贵的反渗透装置,并且减少了电解槽中沉淀的产生量,提高了电极的催化活性和稳定性。
Resumen de: CN120026363A
本发明属于新能源电催化材料领域,尤其是一种富氧碳限域镍纳米片电极材料的制备方法及其应用,S1、将镍盐、对苯二甲酸溶解于去离子水、乙醇和N,N‑二甲基甲酰胺的混合溶剂中,得到前驱体溶液;S2、将泡沫镍基底放置于步骤S1所得的前驱体溶液中进行一步水热反应,再经过洗涤、干燥处理后得到镍基金属有机框架纳米片前驱体;S3、将步骤S2得到的前驱体在惰性气氛下经过高温热解碳化得到所述富氧碳限域镍纳米片电极材料。本发明还提供了上述制备方法制备得到的富氧碳限域镍纳米片电极材料在碱性电解液中电催化水分解析氢的应用。该催化材料在碱性电解液中展现出优异的电催化析氢活性和良好的催化稳定性。
Resumen de: CN120026354A
本发明涉及催化剂制备技术领域,本发明提供一种含氮分子改性MXene以负载Pt单原子催化剂、制备方法及应用,制备方法包括:S1、制备NH2/CC电极;S2、将NH2/CC电极室温下浸渍于MXene悬浮液与六水合氯铂酸的混合溶液中进行反应,然后用汞灯照射干燥,得到NH2‑MX/Pt‑CC电极;S3、进行二次氨基修饰,得到含氮分子改性MXene以负载Pt单原子的催化剂。本发明所述的一种含氮分子改性MXene以负载Pt单原子催化剂的制备方法,不仅有效的提升了材料的原子利用率,增加了反应活性位点,同时还增强了二维材料与Pt原子之间的相互作用,提升了该催化剂在工业及电流密度下的稳定性。
Resumen de: WO2024155125A1
The present invention relates to a catalyst for an ammonia decomposition reaction, a method for preparing same, and a method for producing hydrogen by using same. More specifically, the present invention relates to a method for preparing a catalyst for an ammonia decomposition reaction, which economically and efficiently supports highly active ruthenium on a lanthanum-cerium composite oxide support, thereby preparing a catalyst that exhibits a higher ammonia conversion rate than conventional catalysts for an ammonia decomposition reaction, to a catalyst for an ammonia decomposition reaction prepared by the same method, and a method for producing hydrogen by using the same.
Resumen de: CN120026361A
本发明属于光电化学技术领域,本发明提供了一种硅基光电极及其制备方法与用途,所述制备方法通过紫外臭氧氧化工艺直接在去除了自然氧化层后的硅基底上制备致密SiOx层,将其作为绝缘层,然后通过集成双层金属结构起到收集器和催化作用,获得了经济高效的MIS结构光电极。采用紫外臭氧氧化工艺不仅简单方便、容易操作,成本较低,且制得的硅氧化物孔洞缺陷更少,更加致密,使所得硅基光电极作为光电阴极时得以有效改善PEC析氢反应(HER)。
Resumen de: CN120026369A
本发明涉及催化剂技术领域,具体涉及一种钌镍共掺杂氧化钛基纳米颗粒催化剂及其制备方法与应用。其中制备方法包括以下步骤:(1)溶解浸渍:以氯化钌、氯化镍、氧化钛为前驱体以及去离子水作为溶剂,在50~80℃搅拌6~8小时至蒸干,得固体中间产物1;(2)研磨:将固体中间产物1与一水合次磷酸钠混合后研磨,得固体中间产物2;(3)退火:将固体中间产物2在Ar/H2混合气下500~800℃加热2~4小时,自然冷却,得到产物。本发明采用两步合成法,原料原子利用率接近100%,反应过程中未使用有机试剂,绿色安全,反应级别为克级别,具有放大反应的潜力,并且贵金属含量仅为2.5%,极大的降低了催化剂的成本。
Resumen de: AU2023359996A1
The invention relates to an electrolysis system (1) for generating hydrogen and oxygen as product gases, comprising an electrolysis module (3) and a process unit (5), wherein the process unit (5) has a reactant line (7) for supplying process water and a product line (9), each of which is connected to the electrolysis module (3), and the process unit (5) is equipped with a thermally insulating insulation device (11), comprising a thermal insulating material (17), such that a slow cooling of the process water is produced during a standstill operation.
Resumen de: WO2025104428A1
The invention provides a device for hydrogen production comprising a reaction chamber containing one or more catalysts disposed therein, a fuel gas inlet, and a hydrogen-rich gas outlet; a first reactant gas chamber having a first reactant gas inlet for conveying a first reactant gas and being in fluid communication with an exhaust; and a second reactant gas chamber having a second reactant gas inlet for conveying a second reactant gas; wherein the reaction chamber and the first reactant gas chamber share a first wall therebetween, the first wall comprising a thermally conductive substrate having a reaction chamber face and a first reactant gas chamber face, wherein the first reactant gas chamber face of the first wall has a reaction surface which is coated with a reactant gas decomposition catalyst; wherein the first reactant gas chamber further comprises a second wall opposite the first wall defining a volume therebetween, the second wall being shared between the first reactant gas chamber and the second reactant gas chamber; wherein the second wall comprises one or more apertures disposed in an aperture-containing area along a length and width of the second wall such that the second reactant gas chamber and the first reactant gas chamber are in fluid communication with one another, wherein the aperture-containing area has a first section, a second section, and a third section, the first section being a third of the aperture-containing area distal to the fuel gas inlet and
Resumen de: AU2023405114A1
The invention relates to an electrolysis system (1) comprising an electrolyser (3) for producing hydrogen (H
Resumen de: WO2025103851A1
The invention relates to a method for operating an electrolysis plant (1) comprising at least one stack (2) which has a plurality of electrolysis cells and has an anode (3) and a cathode (4), wherein in normal operation of the electrolysis plant (1), water is supplied to the anode (3) via a water circuit (5) having an integrated pump (6), said water being split in the at least one stack (2) into hydrogen and oxygen by electrolysis, and wherein the hydrogen produced by electrolysis is discharged via a cathode outlet (9) of the stack (2) and a media line (7) connected to said cathode outlet. According to the invention, a reduced stack flow is maintained when the electrolysis plant (1) is shut down and, by means of the stack flow and a cell-side recombination catalyst (10), oxygen present on the anode side is recombined with hydrogen, which diffuses from the cathode side to the anode side, to form water. The invention further relates to an electrolysis plant (1) that is suitable for carrying out the method or can be operated according to the method.
Resumen de: WO2025104097A1
Process for the production of a fuel. In a conversion step carbon dioxide is reacted with hydrogen to form a liquid carrier. The carbon dioxide is for instance collected with a direct air capture system. The hydrogen can for example be generated using renewable sources. After storage and transport to a site of use, the liquid carrier is mixed with water to form a ready mix. During a break-up step, the liquid carrier is converted to a fuel while the temperature and the pressure of the ready mix are maintained at sub- or supercritical conditions.
Resumen de: WO2025103570A1
A method of producing hydrogen by reacting silicon powder and water, comprises providing water in a reactor (120), providing loose silicon powder in the reactor (120), dispersing the silicon powder in the water in the reactor (120), and5 collecting hydrogen gas from the reactor (120). The silicon powder is provided as a plurality of silicon doses, each silicon dose comprising a predetermined amount of the silicon powder. The disclosure provides methods systems and energy carriers which are suitable in the context of production of hydrogen by reacting silicon powder and10 water. (Fig. 1) 15
Resumen de: WO2025106146A2
One embodiment is directed to an integrated energy storage and distribution system, comprising: an electrolysis module configured to utilize intake electricity and intake water to output hydrogen gas, oxygen, and surplus water; a metal hydride hydrogen storage module configured to controllably store, or alternatively release, hydrogen gas; a fuel cell module configured to controllably intake hydrogen gas and output electricity and water vapor; and a computing system operatively coupled to the electrolysis module, storage module, and fuel cell module and configured to coordinate operation of these modules relative to each other; wherein the electrolysis, storage, and fuel cell modules are thermally coupled such that heat energy released from one or more modules which may be at least transiently exothermic may be utilized by one or modules which may be at least transiently endothermic.
Resumen de: WO2025104825A1
This electrolysis cell (10) is provided with: a support substrate (12) that has a first through hole (40a); and a hydrogen electrode collector layer (13) that has a first embedded part (70a) which is embedded in the first through hole (40a). A first layered part (80) includes a first gap (81) that is in contact with a first surface (T1) of the support substrate (12), the first surface being on the hydrogen electrode active layer (14) side. The first embedded part (70a) includes a first gap (71a) that is in contact with the inner peripheral surface (T1) of the first through hole (40a). The first gap (71a) extends along the thickness direction of the support substrate (12).
Resumen de: WO2025105666A1
The present invention relates to an apparatus for manufacturing a water electrolysis membrane and method for manufacturing a water electrolysis membrane using same, and can provide a water electrolysis membrane having excellent physical properties, such as low sheet resistance, low hydrogen permeability, and excellent durability, compared to conventional commercial membranes.
Resumen de: WO2025104823A1
An electrolytic cell device (1) is provided with a current collector member (25) and an electrolytic cell (10) that is electrically connected to the current collector member (25). The electrolytic cell (10) is provided with a hydrogen electrode current collector layer (13), a support substrate (12) that is embedded within the hydrogen electrode current collector layer (13) and has through-holes (40), and a hydrogen electrode active layer (14) disposed on the hydrogen electrode current collector layer (13). The current collector member (25) includes overlapping parts (25a) that overlap the through-holes (40) in a thickness direction, and non-overlapping parts (25b) that do not overlap the through-holes (40) in the thickness direction. The density of the overlapping parts (25a) is greater than the density of the non-overlapping parts (25b).
Resumen de: WO2025104826A1
In the present invention, an electrolysis cell (10) is provided with: a support substrate (12) having a through-hole (40); a hydrogen-pole current collector layer (13) having an embedded section (70) which is embedded in the through-hole (40), and a first layer section (80) continuous with the embedded section (70) and disposed above the support substrate (12); and a hydrogen-pole active layer (14) disposed above the hydrogen-pole current-collector layer (13). The first layer section (80) includes a void (81) that adjoins a first surface (T1) on the hydrogen-pole active layer (14) side of the support substrate (12).
Resumen de: US2025160931A1
A nasal turbinate hemostatic electrode includes a main body, where an end of the main body is fixedly connected to a tip; the tip includes a first electrode and a second electrode; side walls of the first electrode and the second electrode are rounded; the first electrode and the second electrode are spaced apart, and have a same surface area; an end of the main body adjacent to the tip is provided with an outlet hole; the outlet hole is connected to an inlet pipe; the outlet hole is configured to deliver an electrolyte to the tip; and the first electrode and the second electrode are configured to conduct a plasma current in the electrolyte. The nasal turbinate hemostatic electrode prevents the surgical electrode from causing a secondary injury to the patient during an operation process, further improving the use safety of the surgical electrode.
Resumen de: US2025162961A1
Systems and methods for producing methanol using syngas, which is a primarily a mixture of hydrogen and carbon monoxide, hydrogen and a carbon dioxide by-product that significantly reduce carbon dioxide emissions and/or sequestration. The syngas may be produced, for example, by an autothermal reactor, a steam methane reformer, or a gasifier. The hydrogen may be produced by an electrolyzer.
Resumen de: US2025162922A1
A the plant for producing glass and hydrogen includes: a glass melting furnace that melts a glass raw material with combustion heat of fuel to generate molten glass; an exhaust passage which extends from the glass melting furnace and through which exhaust gas generated in the glass melting furnace passes; a boiler that is provided in the exhaust passage and conducts heat exchange between the exhaust gas and water to generate steam; and an electrolyzer that electrolyzes the steam to generate hydrogen and oxygen.
Resumen de: US2025162701A1
The present invention relates to an autonomous captive aerostat (2) of the type comprising a closed hydrogen-reservoir volume (24) providing lift, an outer membrane (40) equipped with photovoltaic cells (8) for collecting solar radiation, and a ground tether (20) comprising a cable for transmitting the electrical energy produced by the cells (8). The captive aerostat according to the invention is notable in that it comprises devices (4) for capturing water or moisture contained in the atmosphere constituting its outer membrane (40), means enabling this water to be converted into at least one form of energy selected from hydrogen, oxygen and heat, and pipes each enabling some of the collected water and at least one of the forms of energy generated or converted within the aerostat to be distributed to the ground. Applicable notably to the distribution of energy to urban environments.
Resumen de: US2025162891A1
The present invention relates to systems and processes for utilizing produced water and captured carbon dioxide to produce high-value products. The system includes a produced water processing system, a carbon capture system, an electrolyzer, and a conversion chamber. The electrolyzer includes a first chamber, a second chamber, and a semi-permeable membrane and first electrode in the first chamber and a second electrode in the second chamber. The first chamber receives treated saturated produced water. The second chamber is operated at a second operating pressure that is less than the first operating pressure and facilitates the passage of sodium ions across the membrane. A current is applied to the electrodes such that the first electrode functions as an anode and the second electrode functions as a cathode, producing hydrogen gas and sodium hydroxide in the second chamber and chlorine gas in the first chamber. The polarity of the electrodes and the flow of reagents into the first and second chambers and the flow of products out of the first and second chambers may be reversed.
Resumen de: US2025162866A1
A method for producing hydrogen using a feed stream comprising ammonia is provided. The method can include the steps of: heating the feed stream in a first heat exchanger to produce a heated feed stream, wherein the heated feed stream is at a temperature above 500° C.; introducing the heated feed stream into a first reaction zone under conditions effective for catalytically cracking the heated feed stream to produce a raw hydrogen stream, wherein the raw hydrogen stream comprises hydrogen and nitrogen; cooling the raw hydrogen stream by indirect heat exchange against a first cooling fluid to form a cooled hydrogen stream; and purifying the raw hydrogen stream to produce a hydrogen product stream and a tail gas, wherein the tail gas has a higher concentration of nitrogen as compared to the hydrogen product stream.
Resumen de: US2025161923A1
Tantalum nitride and specifically a novel Ta3N5 nanoparticles, such as single crystalline Ta3N5 nanoparticles, are disclosed. The nanoparticles used with a co-catalyst is further disclosed. The present invention also relates to Ta3N5 nanoparticles modified with a metal oxide, such as a CoOxcocatalyst, wherein Ox represents an oxide that is part of the cobalt oxide. A catalyst, such as for water oxidation to produce O2, is disclosed. The nanoparticles can further be modified to include a water reducing catalyst. A water splitting catalyst is further disclosed. Methods of making the nanoparticles and catalyst are also disclosed. Methods to split water utilizing the catalyst are further described.
Resumen de: US2025163597A1
A method of operating an electrolyzer system includes providing steam from a steam source through a system steam conduit to module steam conduits located in respective electrolyzer modules, controlling a flow rate of the steam through the system steam conduit using a system mass flow controller located on the system steam conduit, providing portions of the steam to the module steam conduits and providing steam in the module steam conduits to respective stacks of electrolyzer cells located in respective hotboxes in the respective electrolyzer modules, and operating the stacks to generate a hydrogen product stream and an oxygen exhaust stream.
Resumen de: US2025163593A1
A wind power plant is provided, including: one or more generator devices for generating electrical power from wind power; a plurality of hydrogen production units for producing hydrogen from the generated electrical power; a plurality of DC-DC converters each being electrically connected with the one or more generator devices and with a respective one of the plurality of hydrogen production units, and each DC-DC converter being configured for supplying power with a tunable output voltage to the respective hydrogen production unit; and a control device for controlling the power supplied by each DC-DC converter to the respective hydrogen production unit based on a current power output of the one or more generator devices. With the proposed wind turbine plant the supply of power to the plurality of hydrogen production units can be improved.
Resumen de: US2025163586A1
The invention relates to a method for operating an electrolysis plant having an electrolyser for generating hydrogen (H2) and oxygen (O2) as product gases, with water being supplied as starting material and being split at a proton-permeable membrane into hydrogen (H2) and oxygen (O2), a product gas stream being formed in a phase mixture comprising water (H2O) and a relevant product gas, and a product gas stream being supplied to a gas separator arranged downstream of the electrolyser, characterized in that the fluoride release of the membrane is determined on the basis of the operating time, the temporal progression of the fluoride concentration being ascertained, with a measure for the operation-induced degradation of the proton-permeable membrane being ascertained as the result of a release of fluoride. The invention furthermore relates to a corresponding electrolysis plant and to a measuring device for carrying out the method.
Resumen de: US2025163830A1
An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
Resumen de: US2025163587A1
An electrolyzer or unitized regenerative fuel cell has a flow field with at least one channel, wherein the cross-sectional area of the channel varies along at least a portion of the channel length. In some embodiments the channel width decreases along at least a portion of the length of the channel according to a natural exponential function. The use of this type of improved flow field channel can improve performance and efficiency of operation of the electrolyzer device.
Resumen de: US2025163594A1
An electrolyzer system includes stacks of electrolyzer cells configured receive steam and air, and output a hydrogen product stream and an oxygen exhaust stream, and a first heat pump configured to extract heat from the oxygen exhaust stream to generate a first portion of the steam provided to the stacks.
Resumen de: US2025163592A1
A wind-powered electrolysis arrangement is provided including a plurality of wind turbines of an offshore wind park; a distributed electrolyzer plant including a plurality of electrolyzers, wherein each electrolyzer is arranged on a wind turbine platform; a balance of plant of the distributed electrolyzer plant, installed on a main platform in the wind park; and a plurality of product pipelines, wherein each product pipeline is arranged to convey a number of products between the balance of plant and a distributed electrolyzer. A method of operating such a wind-powered electrolysis arrangement is also provided.
Resumen de: US2025167271A1
An integrated energy system comprising a power plant including at least one nuclear reactor and electrical power generation system, the at least one nuclear reactor being configured to generate steam, and the electrical power generation system being configured to generate electricity, a desalination system configured to receive at least a portion of the electricity and steam to produce brine, an electrolysis process configured to process the brine into Sodium Hydroxide (NaOH), a Sodium Formate (HCOONa) production process configured to receive the Sodium Hydroxide (NaOH) to produce Sodium Formate (HCOONa), a Hydrogen (H2) extraction reactor configured to receive the Sodium Formate (HCOONa) and produce Hydrogen (H2), and a fuel cell configured to receive the Hydrogen (H2).
Resumen de: WO2025104824A1
An electrolysis cell (10) is provided with: a support substrate (12) having a through hole (40); a hydrogen electrode current collector layer (13) having an embedded part (70) embedded in the through hole (40); a hydrogen electrode active layer (14) disposed on the hydrogen electrode current collector layer (13); an oxygen electrode layer (17); and an electrolyte layer (15) disposed between the hydrogen electrode active layer (14) and the oxygen electrode layer (17). The embedded part (70) includes a cavity (71a) that is in contact with a first end region (43) of an inner peripheral surface (41) of the through hole (40).
Resumen de: WO2025103494A1
The present invention relates to the field of water electrolysis and hydrogen production. Disclosed is a carbon nanotube-supported nitrogen-doped catalyst. The catalyst has a carbon nanotube structure as a support, and cobalt and ruthenium as active components, wherein the content of the cobalt element is 30-45w%, the content of the ruthenium element is 1-7wt%, and the proportion of the ruthenium element present in the form of RuN is 60-90wt% relative to the total ruthenium element. A graphitized structure of the catalyst is conducive to charge conduction, Ru is uniformly loaded on the surface of the support by means of a low-temperature reduction process and interaction with defect sites on the surface of the support, and then after high-temperature roasting, Ru interacts with the N element and the metal Co, thereby improving the hydrogen evolution catalytic activity of the catalyst.
Resumen de: WO2025103558A1
Porous hydrophilic separator, its method of production, and an alkaline electrolyzer with such separator In an alkaline electrolyzer (12), especially for production of hydrogen gas, the separator (11) has larger pores in layers (8, 9) on its outer sides (7A, 7C), facing the electrodes (13, 14), than in the bulk layer (10). In a practical embodiment, the separator (11) is composed of two diaphragms (7, 7'), each with asymmetric pore structure, where the diaphragms (7, 7') are oriented such that largest pores are on the outer sides of the sep- arator (11).
Resumen de: WO2025103448A1
A method for generating hydrocarbon molecules by magnetic field-assisted energy radiation, comprising: in the presence of an external magnetic field, making a composite catalyst come into contact with at least one hydrogen-containing source; and performing energy radiation on the composite catalyst and the hydrogen-containing source to generate hydrogen molecules, wherein the composite catalyst comprises at least one nano-substrate structure and at least one atomic site, and the atomic site comprises one or more chemical elements selected from the group consisting of Mn, Co, Fe, Al, Cu, Ni, Zn, Ti, La, Ru, Rh, Ag, Au, Pt, Pd, Os, and Ir.
Resumen de: WO2025103030A1
Disclosed in the present invention are an electrolytic hydrogen production system capable of continuously adapting to power supply fluctuation, and an electrolytic hydrogen production method. An electrolytic cell of the electrolytic hydrogen production system comprises n electrolytic sections (6); each electrolytic section (6) comprises 2y electrolytic chambers (5), two cathode end plates (2) and an anode middle plate (1); the two cathode end plates (2) are located at two ends of the electrolytic section (6), and the anode middle plate (1) is located in the middle of the electrolytic section (6); each electrolytic section (6) is divided into a left part and a right part, and each part comprises y electrolytic chambers (5), wherein n is greater than 1, y is greater than 1, and the n electrolytic sections (6) are continuously arranged in series from 1 to n. The electrolytic cell of the electrolytic hydrogen production system of the present invention comprises n electrolytic sections (6), and the temperature of an electrolyte in each electrolytic section (6) of the electrolytic cell is constant during operation, so that the electrolytic hydrogen production system of the present invention can be continuously regulated and controlled in a fluctuating power supply state, has high adaptability, is more adaptable to variable and fluctuating power supply input conditions, and has better safety performance.
Resumen de: WO2025103048A1
Provided are a composite catalyst containing molybdenum oxide, a preparation method therefor, and a use thereof. The preparation method comprises: (1) mixing a molybdate and a ligand to obtain a mixed solution; (2) soaking nickel foam in the mixed solution, to obtain a suspension, the soaking time being not less than 1 hour; (3) performing a hydrothermal reaction and calcination. The preparation method utilizes the etching effect of molybdate on nickel foam, and immerses nickel foam in the mixed solution containing the molybdate and that ligand to cause nickel in the nickel foam to dissolve in the form of ions, which, along with molybdate ions and the ligand, grow a nickel-molybdenum complex transition layer in situ on the surface of nickel foam; by means of the hydrothermal reaction, a nickel-molybdenum-based catalyst precursor is grown on the complex transition layer, and a composite catalyst is obtained after calcination, causing the catalyst to be firmly anchored on the nickel foam substrate, thereby improving the stability and impact resistance of the catalyst, and preventing the active components in the catalyst from falling off or reducing the risk of the active components falling off from the catalyst.
Resumen de: WO2025103029A1
Disclosed in the present invention are a multi-section water electrolysis hydrogen production electrolyzer and a method for adjusting a load thereof. The multi-section water electrolysis hydrogen production electrolyzer comprises a left electrode plate (5) and a right electrode plate (9) that are located at two ends, and at least one middle anode plate (7) and at least one middle cathode plate (8) that are located between the two electrode plates, wherein the middle anode plate (7) and the middle cathode plate (8) divide an electrolytic chamber into a plurality of electrolytic cell groups (24). In the present invention, the load power and start/stop of electrolytic cell groups (24) are group-controlled by controlling the magnitudes of a current flowing through a middle anode plate (7) and a voltage applied thereto, such that the change in the load power of the multi-section water electrolysis hydrogen production electrolyzer is realized, and when the load power of some cell groups changes, the remaining cell groups produce hydrogen at an optimal load power.
Resumen de: WO2025102226A1
Disclosed is a respiratory system with the adjustable concentration of a hydrogen-oxygen generator, which is used for changing the concentration of the breathing gas of an assisted person, and comprises: a hydrogen-oxygen supply auxiliary device (13), a pure water electrolysis hydrogen-oxygen manufacturing machine (1, 1'), a wet bottle (3), and a hydrogen concentration detector (14). The pure water electrolysis hydrogen-oxygen manufacturing machine (1, 1') comprises: an ion exchange membrane (10, 10'), wherein the two sides of the ion exchange membrane (10, 10') are respectively coated with an oxidation catalyst layer (100, 100') and a reduction catalyst layer (102, 102'); a pair of an anode metal layer (110, 110') and a cathode metal layer (112, 112') with pores (114); an anode (120, 120') for guiding the anode metal layer (110, 110') and a cathode (122, 122') for guiding the cathode metal layer (112, 112'); and a sealed container body (2, 2') for containing the above-mentioned structure of the pure water electrolysis hydrogen-oxygen manufacturing machine (1, 1'), the sealed container body (2, 2') being provided with a water injection hole (20), a hydrogen hole (22, 22'), and an oxygen hole (24, 24'). The wet bottle (3) comprises: an oxygen transmission pipe (32), a hydrogen transmission pipe (30), a mixing and humid output pipe (34) connected to the hydrogen-oxygen supply auxiliary device (13), and a bottle body (36), wherein one end of the oxygen transmission pipe (32) and
Resumen de: AU2024227784A1
An apparatus and process for the activation of catalyst material utilized in ammonia cracking can include an initial use of hydrogen and heat to perform an initial stage of catalyst activation and a subsequent use of ammonia and heat to perform a subsequent state of catalyst activation. The subsequent use of ammonia can be configured so that different catalytic material at different plant elements are activated in a pre-selected sequence to provide activation of the catalytic material utilized in different plant elements. Some embodiments can be configured to avoid excess temperatures that can be detrimental to equipment that can be positioned upstream of a furnace in some embodiments while also avoiding sintering of the catalytic material.
Resumen de: WO2025104195A1
The present invention relates to a process for the preparation of an electrode or a precursor thereof comprising sulfurizing a metal layer deposited on an electrode substrate, said metal layer comprising nickel, iron or a mixture of iron with nickel or cobalt. The invention also relates to the electrode or a precursor thereof obtainable by said process, the use thereof in electrocatalysis, for instance in alkaline water electrolysis, and to a device comprising said electrode.
Resumen de: EP4556456A1
The present invention relates to a process for making ethylene glycols, selected from mono ethylene glycol, oligo ethylene glycols, poly ethylene glycols, and mixtures thereof, and alkanol ethoxylates, based on non-fossil energy, ethylene glycols, selected from mono ethylene glycol, oligo ethylene glycols, poly ethylene glycols, and mixtures thereof, and alkanol ethoxylates, having a low molar share of deuterium, the use of the molar share of deuterium in hydrogen and downstream compounds based on hydrogen for tracing the origin, especially the energetic origin, of the hydrogen and downstream compounds based on hydrogen, wherein the compounds are ethylene glycols, selected from mono ethylene glycol, oligo ethylene glycols, poly ethylene glycols, and mixtures thereof, and alkanol ethoxylates, a process for tracing the origin, especially the energetic origin, of hydrogen and downstream compounds based on hydrogen by determining the molar share of deuterium in hydrogen and said downstream compounds based on hydrogen, wherein the compounds are ethylene glycols, selected from mono ethylene glycol, oligo ethylene glycols, poly ethylene glycols, and mixtures thereof, and alkanol ethoxylates, coolants, comprising such mono ethylene glycol, brake fluids comprising such oligo ethylene glycols and/or such alkanol ethoxylates, cosmetics, shampoos, or nonionic or ionic detergents comprising such poly ethylene glycols and/or such alkanol ethoxylates, poly ethylene terephthalate, comprising
Resumen de: US2025153146A1
An ammonia oxidation catalyst and a catalyst system and method using the ammonia oxidation catalyst are provided. The catalyst comprises a metal oxide including titanium and chromium, wherein an energy band gap of the metal oxide measured by UV-Vis DRS is less than 1.4 eV. The catalyst system comprises an ammonia decomposition reactor and a catalyst unit which is located downstream from the ammonia decomposition reactor, and includes the above-described ammonia oxidation catalyst.
Resumen de: WO2024013139A1
The invention relates to a facility comprising: - a series of n electrolysers (4) designed to electrolyse water (1) and produce a hydrogen-aqueous solution mixture (5), the series having an overall capacity greater than 40 MW; - a gas-liquid separation device (8) configured to remove the aqueous solution contained in the mixture (5) produced by the series of n electrolysers (4) and produce a hydrogen stream (9). The gas-liquid separation device (8) comprises two flow conveying lines (21, 22) arranged one above the other; either or both of the two conveying lines being supplied with the mixture (5) and the two conveying lines being in fluid communication with one another via one or more segments (23) so that the hydrogen passes from the lower line (22) to the upper line (21) and/or the aqueous solution passes from the upper line to the (21) lower line (22).
Resumen de: CN119497764A
The present invention relates to a method for operating a high temperature solid oxide electrolysis system suitable for converting a fuel stream into a product stream and a system for implementing the method. The method includes drying the moist purge gas and using the waste purge gas as a regeneration gas in the drying unit.
Resumen de: EP4556437A1
The present invention relates to a system for producing blue hydrogen, capturing carbon dioxide and sulfur oxide, recycling carbon and storing reactants, generating power by using a fuel cell, and creating an artificial forest. One embodiment of the present invention comprises: a natural gas storage that stores liquefied natural gas (LNG) including shale gas; a hydrocarbon reformer that reacts the natural gas or the shale gas supplied from the natural gas storage with externally injected water to produce a gaseous mixture containing hydrogen and carbon dioxide; a hydrogen charging station that receives and stores the hydrogen generated from the hydrocarbon reformer; a reactor that receives at least one of carbon dioxide generated from the hydrocarbon reformer or carbon dioxide generated from an exhaust gas source including a power plant, a steel mill, or a cement factory, reacts same with a basic alkali mixture to capture carbon dioxide, collects a reactant containing the collected carbon dioxide, and separates a carbon dioxide reactant and waste solution from the reactant; a carbon resource storage that stores the carbon dioxide reactant separated at the reactor; a hydrogen generator that directly receives the separated carbon dioxide reactant from the reactor or generates hydrogen by using the carbon dioxide reactant delivered via the carbon resource storage, and transfers the generated hydrogen to the hydrogen charging station; a fuel cell that receives the hydrogen from t
Resumen de: EP4556436A1
The present disclosure relates to a system for generation of blue hydrogen through natural gas reforming, carbon dioxide capture, carbon resource utilization, and reaction product storage. According to an embodiment of the present invention, the system comprises: a natural gas storage container for storing liquefied natural gas (LNG) including shale gas; a hydrocarbon reformer in which a gas mixture containing hydrogen and carbon dioxide is produced by a reaction between water supplied from outside and the natural gas or shale gas supplied from the natural gas storage container; a hydrogen filling station in which hydrogen produced from the hydrocarbon reformer is received and stored; a reactor in which carbon dioxide produced from the hydrocarbon reformer is received and reacted with a basic alkali mixed solution to capture carbon dioxide, and a reaction product comprising the captured carbon dioxide is collected, and a carbon dioxide reaction product and a waste solution are separated from the reaction product; a carbon resource storage container storing the carbon dioxide product separated from the reactor; and a hydrogen generator in which the carbon dioxide reaction product separated from the reactor is directly received or the carbon dioxide reaction product received via the carbon resource storage container is used to product hydrogen, and the produced hydrogen is delivered to the hydrogen filling station.
Resumen de: EP4557412A1
A method for generating power or producing hydrogen from a carbon source, the method including a chemical conversion step of making, in a chemical conversion unit, a mixture obtained by mixing a solution containing an intermediate medium with a carbon source to react at a temperature at which chemical exergy of the carbon source exceeds chemical exergy in a reduced state of the intermediate medium to reduce the intermediate medium while oxidizing the carbon source, an electrochemical conversion step of bringing the intermediate medium reduced at the chemical conversion step into contact with an anode of a battery structure in an electrochemical conversion unit including the battery structure, and bringing oxygen or air into contact with a cathode of the battery structure to generate power, or bringing water into contact to produce hydrogen, and a reuse step of returning a solution containing the intermediate medium after the electrochemical conversion step to the mixture, and an energy conversion system.
Resumen de: EP4556596A1
Provided is an operation support apparatus including: a calculation unit which calculates, based on an electricity cost or an amount of power consumption for each of predetermined times associated with operation of a plurality of electrolyzers operating in parallel, an amount of production of a product for each of the times that satisfies a target amount of production of the product, the product being produced by the plurality of electrolyzers over a predetermined period of time; and a specification unit which specifies an electrolyzer to be operated among the plurality of electrolyzers, based on the amount of production calculated by the calculation unit. The calculation unit may calculate the amount of production that satisfies the target amount of production of the product over the period of time and minimizes an electricity cost or an amount of power consumption over the period of time.
Resumen de: EP4556454A1
A methane synthesis system according to the present invention includes: a co-electrolysis part that obtains hydrogen and carbon monoxide by electrolyzing water and carbon dioxide, a methanation reaction part that obtains a product gas containing methane by a methanation reaction that uses the hydrogen and the carbon monoxide, and a cooler having a distribution channel in which a refrigerant capable of phase transition, is distributed. The cooler cools the methanation reaction part using heat of vaporization from vaporizing at least a portion of the refrigerant on an inside of the distribution channel.
Resumen de: WO2024041728A1
A control unit (40) for a Power-to-Hydrogen (PtH) plant (100) is provided. The control unit (40) includes at least one model (41) and is configure to: calculate maximum efficiency point tracking of the PtH plant (100) by solving an objective function having a predetermined hydrogen production rate of the PtH plant or a predetermined amount of energy input to the PtH plant using the at least one model, wherein the control unit receives measured parameters indicative of status of components of the PtH plant as an input to the at least one model; determine one or more set points for a coordinated operation of the components of the PtH plant based on a solution obtained by solving the objective function; and provide the one or more set points to one or more of the components of the PtH plant to operate the PtH at the maximum efficiency point.
Resumen de: EP4556114A1
According to embodiments of the present disclosure, the ammonia oxidation catalyst includes a metal oxide including titanium and chromium, wherein an energy band gap of the metal oxide measured by UV-Vis DRS is less than 1.4 eV. The catalyst system according to embodiments of the present disclosure includes: an ammonia decomposition reactor; and a catalyst unit which is located in a downstream region of the ammonia decomposition reactor, and includes the above-described ammonia oxidation catalyst.
Resumen de: EP4556547A1
Process for the production of a fuel. In a conversion step carbon dioxide is reacted with hydrogen to form a liquid carrier. The carbon dioxide is for instance collected with a direct air capture system. The hydrogen can for example be generated using renewable sources. After storage and transport to a site of use, the liquid carrier is mixed with water to form a ready mix. During a break-up step, the liquid carrier is converted to a fuel while the temperature and the pressure of the ready mix are maintained at sub- or supercritical conditions.
Resumen de: EP4556594A1
The invention describes a wind-powered electrolysis arrangement (1) comprising a plurality of wind turbines (100) of an offshore wind park (10); a distributed electrolyser plant (11) comprising a plurality of electrolysers (110), wherein each electrolyser (110) is arranged on a wind turbine platform (100P); a balance of plant (11BoP) of the distributed electrolyser plant (11), installed on a main platform (10P) in the wind park (10); and a plurality of product pipelines (12), wherein each product pipeline (12) is arranged to convey a number of products (20, 21, 22, 23, 24, 25) between the balance of plant (11BoP) and a distributed electrolyser (110). The invention further describes a method of operating such a wind-powered electrolysis arrangement (1) .
Resumen de: EP4556708A1
A wind power plant (1), comprising:one or more generator devices (7) for generating electrical power (P<sub>G</sub>) from wind power,a plurality of hydrogen production units (15) for producing hydrogen from the generated electrical power (P<sub>B</sub>),a plurality of DC-DC converters (16) each being electrically connected with the one or more generator devices (7) and with a respective one of the plurality of hydrogen production units (15), and each DC-DC converter (16) being configured for supplying power (P<sub>a</sub>) with a tunable output voltage (U<sub>a</sub>) to the respective hydrogen production unit (15), anda control device (28) for controlling the power (P<sub>a</sub>) supplied by each DC-DC converter (16) to the respective hydrogen production unit (15) based on a current power output (P<sub>G</sub>) of the one or more generator devices (7).With the proposed wind turbine plant the supply of power to the plurality of hydrogen production units can be improved.
Resumen de: CN119546546A
The invention relates to a method for producing hydrogen by photodissociation of water, comprising at least one step of contacting an aqueous solution with oxidized nanodiamonds under solar, natural or artificial illumination (or light).
Resumen de: KR20250069750A
본 발명은, 제조방법이 간단하고, 바인더를 사용하지 않아 성능 저하의 우려가 없고, 금속 원소 비율을 용이하게 조절할 수 있는 이중층 수산화물 구조체, 이를 포함하는 전극 및 수전해 시스템, 및 그 제조방법을 제공한다 본 발명의 일실시예에 따른 이중층 수산화물 구조체의 제조방법은, 금속 전구체 화합물이 용매에 용해된 금속 전구체 용액을 베이스 기판 상에 도포하는 단계; 상기 금속 전구체 용액을 건조시켜 금속 전구체층을 형성하는 단계; 상기 금속 전구체층에 수산화물 용액을 투입하여 유지함으로써, 이중층 수산화물 구조체를 형성하는 단계; 및 상기 이중층 수산화물 구조체를 세정 및 건조하는 단계를 포함한다.
Resumen de: AU2023272285A1
The invention relates to a water electrolyzer system (1) for producing hydrogen. The water electrolyzer system (1) comprises an electrolysis stack (8) for converting water into hydrogen, power electronics (12) for transforming the alternating current into a direct-current in order to supply the electrolysis stack (8), components (56, 64, 72, 80) for preparing the process media supplied to and discharged from the electrolysis stack (8), and a control unit (18) for controlling the electrolysis stack (8), the power electronics (12), and the components (56, 64, 72, 80) for preparing the media. At least the electrolysis stack (8), the power electronics (12), and the control unit (18) are formed together as an electrolyzer module (36), and the components (56, 64, 72, 80) for preparing the media and for conveying the media are formed together as a process module (52). The modules (36, 52) are equipped with connection possibilities (32, 40, 48, 84), via which the individual modules (36, 52) can be fluidically and electrically connected together.
Resumen de: MX2024012569A
Two phased production of hydrogen involving an electrolytic cell containing first and second electrodes and a solution comprising a metal salt. The first and second electrodes are connected to an external electric energy source during a charging phase, which deposits the metal of the metal salt on the first electrode and evolves oxygen on the second electrode. Once the charging phase has been completed the first and second electrodes are disconnected from the external electric energy source with the cell containing the deposited metal kept in a standby condition until hydrogen production is required. During a discharging phase, the first and second electrodes are short circuited, whereby the metal is dissolved from the first electrode and hydrogen is evolved from the second electrode without any appreciable simultaneous withdrawal of electrical energy. The production of hydrogen is thereby increased accordingly. Variations of the above are also provided.
Resumen de: CN119213172A
The invention relates to a solid oxide electrolysis unit for industrial hydrogen, carbon monoxide or synthesis gas production, comprising at least two solid oxide electrolysis cores, an electrical supply for managing electrical power to the solid oxide electrolysis cores, and a conduit connected to the solid oxide electrolysis cores, and each solid oxide electrolysis core comprises a plurality of solid oxide electrolysis stacks of solid oxide electrolysis cells. According to the invention, the solid oxide electrolysis unit comprises a power supply module comprising a transformer and at least one power supply unit, and a pipe module comprising pipe headers and fluid connections to and from the solid oxide electrolysis core, wherein the power supply module and the pipe module are arranged adjacent to each other, and the solid oxide electrolysis core is arranged above the power supply module and/or the pipe module.
Resumen de: TW202403105A
An electrolyzer system comprising an electrochemical cell and an electrolyzer fluidic member utilized to supply a fluid to the electrochemical cell is provided. The electrolyzer fluidic member comprises a polymer composition that includes a polyarylene sulfide.
Resumen de: CN120020278A
本申请公开了一种PEM电解槽测试系统及方法,应用于水电解制氢技术领域,PEM电解槽测试系统包括:储水排气单元的出水口与PEM电解槽的去离子水进口连接,储水排气单元的进气口与PEM电解槽的氧气出口连接;水供应测试单元设置于储水排气单元底部;气体含水测试单元的进气口与储水排气单元的排气口连接;氢气产出测试单元的进气口与PEM电解槽的氢气出口连接;测试数据记录单元分别与水供应测试单元、气体含水测试单元和氢气产出测试单元连接。这样可以实现对PEM电解槽的运行时间和工作电流、去离子水供应量、去离子水剩余量、混合气体中的水含量和氢气含量的测量与记录,从而可以实现阳极渗水量和阴极渗氢量的精准测量。
Resumen de: CN119317735A
The invention relates to a device (1) for supplying hydrogen (H2) by means of an electrolysis unit (2), which enables the service life of the electrolysis unit (2) to be as long as possible even in the event of fluctuations in the energy supply of the electrolysis unit (2), a reciprocating piston compressor (3) is provided for compressing hydrogen (H2) generated by the electrolysis unit (2), the reciprocating piston compressor (3) has at least one automatic suction valve (5), is provided with a lifting gripper (6) for selectively holding the suction valve (5) in an open position, is provided with an electrically actuatable actuator (7) for actuating the lifting gripper (6), and is provided with a control unit (4) for controlling the actuator (7), which control unit (4) is designed to actuate the actuator (7) in such a way that the actuator (7) can be actuated by the lifting gripper (6). In this way, the output pressure (p1) of the hydrogen gas (H2) at the output of the electrolysis unit (2) or the pressure difference (p) between the anode and the cathode of the electrolysis unit (2) can be adjusted to a predetermined setpoint value (p1soll, psoll).
Resumen de: AU2024227784A1
An apparatus and process for the activation of catalyst material utilized in ammonia cracking can include an initial use of hydrogen and heat to perform an initial stage of catalyst activation and a subsequent use of ammonia and heat to perform a subsequent state of catalyst activation. The subsequent use of ammonia can be configured so that different catalytic material at different plant elements are activated in a pre-selected sequence to provide activation of the catalytic material utilized in different plant elements. Some embodiments can be configured to avoid excess temperatures that can be detrimental to equipment that can be positioned upstream of a furnace in some embodiments while also avoiding sintering of the catalytic material.
Resumen de: KR20250069163A
본 발명은 암모니아 분해 반응용 촉매 및 이를 이용한 수소 생산방법에 관한 것으로, 보다 상세하게는 기존의 귀금속 촉매에 비해 경제적이고, 저온 영역에서 암모니아 분해 반응 효율이 우수한 암모니아 분해 반응용 촉매 및 이를 이용한 수소 생산방법에 관한 것이다.
Resumen de: CN120001367A
本发明公开了一种用于氨分解制氢的Ru基催化剂制备方法,属于催化剂技术领域,通过溶胶‑凝胶法分别制备得到了活性组分Ru和助剂金属的络合金属凝胶,同时采用简单的球磨混捏法将两组分混合,经焙烧后实现了活性组分Ru金属与助剂金属在载体CeO2上的高度分散。催化剂中Ru与助剂金属以及CeO2载体之间的协同作用的能够大幅改变催化剂性质,促进载体与活性金属之间的电子转移,提高了催化剂表面碱性,减弱了氨分解过程中Ru‑N键的相互作用。所制备催化剂具有贵金属Ru负载量低,分散性好,成本相对低廉,低温氨分解活性高以及长期运行稳定性好的优势。
Resumen de: CN120009483A
本申请涉及一种两相流中气体纯度检测装置,包括若干电解槽,若干所述电解槽上均设置有排放管,若干所述排放管远离电解槽一端均连接于同一个后处理设备,排放管上均设置有两相流取样管路,所述两相流取样管路包括两相流管、取样管和控制阀门,所述两相流管一端连接于排放管靠近电解槽处,另一端连接于排放管靠近后处理设备处,所述取样管于两相流管中部连接于两相流管,所述控制阀门不少于三个,两相流管两端以及取样管上均至少设置一个控制阀门。本申请具有降低纯度测量滞后性的效果。
Resumen de: CN120006312A
本发明公开了一种基于长、短侧链不同的离聚物按比例混合制备的膜电极及其制备方法,属于电解水膜电极制备技术领域。该方法通过将长侧链离聚物、短侧链离聚物、催化剂及溶剂混合,并在适当条件下进行超声处理至分散均匀。随后,将其涂覆到质子交换膜上,经热压处理,使其更紧密的与膜表面结合,形成膜电极。在此过程中,长、短侧链离聚物通过协同作用,提高了催化层的结构稳定性和催化剂的分散性,优化了膜电极的性能。
Resumen de: CN120006313A
本发明公开了一种质子交换膜电解水膜电极及其制备方法,先将催化剂、造孔剂、离聚物及溶剂混合后在冰水浴中超声至分散均匀,随后将其涂覆到聚四氟乙烯膜上得到催化层,再经过热压,将催化层转印到质子交换膜的两侧,得到膜电极。本发明制得的膜电极的催化层具有造孔剂在热压转印过程中热解离去时原位形成的交联多孔网络结构,提高了三相界面比表面积和贵金属催化剂利用率,降低了膜电极的气、液传质阻力,改善了物质传输能力;膜电极性能获得提升并具有更优异的稳定性。
Resumen de: CN120006333A
本发明涉及电解水制氢领域,公开了浆料和析氢电极和电解槽以及Co基催化剂及其制备方法。所述浆料含有Co基催化剂和粘结剂;其中,所述浆料中Co基催化剂和粘结剂的重量比为(7‑9):(1‑3);所述Co基催化剂由Co基类沸石咪唑骨架材料经退火而制得,或者,所述Co基催化剂含有管状石墨化碳结构、层状石墨化碳结构和无定形石墨化碳结构。Co‑基催化剂的高催化活性和结构中的孔隙度,使其在碱性膜电解水体系中展现出优异的析氢性能和持久的稳定性。通过调节喷涂浆料中各组分的浓度,改善了膜电极材料表面的形态和孔隙的大小,使Co‑基析氢电极在碱性膜电解槽制氢中展现出优异的析氢性能和持久的稳定性。
Resumen de: CN120006350A
本发明涉及一种超亲水碱性电解水制氢气复合隔膜及其制备方法,产品包括聚苯硫醚支撑网以及涂层浆料,涂层浆料由聚砜树脂、聚乙烯吡咯烷酮、季铵盐功能化的金属氧化物和有机溶剂组成;涂层浆料中,聚砜树脂的质量分数为5~15%,聚乙烯吡咯烷酮的质量分数为0.1~5%,季铵盐功能化的金属氧化物的质量分数为20~40%,有机溶剂的质量分数为30~50%;制备时先按照上述原料配制得到涂层浆料,然后将聚苯硫醚支撑网浸润涂层浆料中,接着用刮刀进行刮涂,将刮涂后的聚苯硫醚支撑网在空气中静置,进行预蒸发,之后置入乙醇的水溶液中进行相转化,制得产品。产品具有优异的离子传导性能、机械强度和耐碱性;制备方法简单。
Resumen de: CN120006310A
本发明涉及水解制氢技术领域,特别涉及一种可在平衡式或差压式两种工况下切换运行质子交换膜水电解制氢工艺系统及控制方法。该制氢系统是将平衡式或差压式两种工况下运行所需的不同工艺路线的设备和控制进行了创新设计,并在一个质子交换膜水电解制氢工艺系统中实现,其优点是充分发挥了质子交换膜水电解槽的高电流密度、高效率、快速动态响应以及对风光等可再生能源波动性的适应能力,同时利用了质子交换膜本身两侧耐压差的特性,可适应制氢后续使用场景不同的要求,此工艺系统可在平衡式和差压式两种工况下运行,适用场景宽、操作灵活、动态响应能力高效、系统维护简单、安全性好、环境友好性好。
Resumen de: CN120006330A
本发明公开一种超薄镍钴铜纳米带及其制备方法和应用,包括:将NiCl2·6H2O、CoCl2·6H2O、CuCl2·2H2O和对苯二甲酸加入由N,N‑二甲基甲酰胺、无水乙醇和去离子水组成的溶液中,超声处理均匀后,加入三乙胺,搅拌均匀,制得混合液;将混合液转移到聚四氟乙烯内衬的高压反应釜中,加热反应;反应结束后冷却至室温取出反应釜,将反应物离心、洗涤、干燥,即得产物。本发明在以对苯二甲酸为配体的NiCo双金属MOFs的基础上,引入金属Cu制备出超薄二维材料NiCoCu‑BDC,将其应用于电催化氧析出反应中,解决了一元和二元MOFs材料电解水催化性能稍弱、动力学略显迟缓的问题。
Resumen de: CN120006311A
一种膜电极及其制备方法、电解水制氢装置,属于膜电极技术领域。本发明膜电极包括依次设置的阴极催化层、质子交换膜、功能层和阳极催化层;所述功能层包括第一含铂物质;所述阳极催化层包括含铱物质和第二含铂物质。本发明能够在降低Ir载量的情况下,保证膜电极的电化学性能、降低氧中氢的数值,降低PEM电解槽的成本。
Resumen de: CN120001321A
一种以液态金属作为催化剂的氨分解反应器,涉及氨分解制氢技术领域。反应器包括液态金属,多孔金属管,反应腔。实际应用中,加热反应器后从多孔金属管中通入氨气,通过多孔金属管对氨气进行分布进气,在液态金属的催化作用下,氨气分解为氢气与氮气。工业上氨分解需要高温,本反应器采用液态金属作为催化剂,并通过多孔金属管对氨气进行分布进气,加大反应气与液态金属的接触面积,提高反应效率,降低反应温度。
Resumen de: CN120001364A
本发明公开了一种用于光催化制氢的金属钌催化剂的合成方法,包括如下步骤:(1)将TiO2纳米片加入到有机溶剂中超声分散,形成悬浊液;(2)将金属前驱体和表面活性剂加入到步骤(1)的悬浊液中,在室温下搅拌至完全溶解,得到混合液;(3)将混合液在油浴下高温反应,反应结束过后所得沉淀离心、洗涤、干燥,得到Ru/TiO2材料。本发明方法可实现金属钌在半导体载体(TiO2)表面的均匀负载,使反应活性位点更好的暴露出来,增大反应活性位点的暴露面积,从而使其具有良好的催化活性,进而具有良好的光催化分解水产氢的效率。
Resumen de: CN120004328A
本发明公开了一种γ相羟基氧化铁的制备方法及其应用,属于无机材料技术领域。本发明提供的γ相羟基氧化铁的制备方法,包括以下步骤:将铁盐与含醇羟基化合物的混合溶剂混合,进行反应,得到所述的γ相羟基氧化铁;所述混合溶剂中,醇羟基化合物的体积百分比为75~85%。本发明通过采用特定的溶剂制备铁盐溶液,使得铁盐能够在简单的条件下反应生成γ相羟基氧化铁,且该生成的γ相羟基氧化铁具有特定的微观形貌以及高的反应活性,尤其是具有高的电催化析氧反应的活性,使得该γ相羟基氧化铁在电催化反应尤其在电催化析氧反应中具有广泛的应用。
Resumen de: CN120015164A
本发明属于但不限于光催化分解水制氢技术领域,公开了一种Janus GaSSe/g‑SiC异质结构设计及光催化分解水制氢性能的预测方法及系统,采用体相GaSe建立本征GaSe单层结构模型,利用S原子取代一层Se原子,构建GaSSe单层结构模型;石墨相结构通过切面获得相应的石墨烯单层结构,利用Si原子替代C原子建立g‑SiC单层模型;GaSSe和g‑SiC堆积,并根据原子排列依次构建Janus GaSeS/g‑SiC异质结构模型。本发明的异质结构表现出良好的结构稳定性、高界面电荷转移效率、表面活性、更高太阳光利用率。同时,缓解了g‑SiC单层由于其宽带隙特性,使在光吸收方面的性能表现不佳的问题。
Resumen de: CN120004399A
本发明公开了氢能量子技术应用水处理设备,主水箱和辅助水箱,主水箱和辅助水箱之间设有连通管道;所述的辅助水箱内设有加水腔体和金属氢储藏腔体,金属氢储藏腔体内设有电解槽,所述的连通管道包括氢气泡水管道和氧气泡水管道,所述的主水箱体设有进水管、出水管,主水箱内设有过滤装置,所述的过滤装置包括过滤网和过滤塞,所述的过滤网上设有过滤孔洞,所述的过滤塞上设有活性炭,本技术通过设置辅助水箱,在辅助水箱内添加制氢设备,先将主水箱内水源多级过滤区杂质,将过滤好的纯净水混合添加氢气泡或氧气泡,使水内附有大量氢气泡或氧气泡。
Resumen de: CN120006324A
本发明涉及析氢反应电催化剂领域,公开了析氢反应电催化剂及其制备方法和应用。所述方法包括:(1)在惰性气氛下,将金属有机框架材料进行焙烧,所述金属有机框架材料中的金属包括Co;(2)将焙烧产物与铂源接触。通过本发明的方法有利于Pt利用率的提升,可以有效地提高低Pt电解水催化剂活性,在10mA/cm2电流密度下,该催化剂的HER过电势不高于80mV。
Resumen de: AU2023343511A1
The problem addressed by the present invention is that of specifying a process for producing lithium hydroxide which is very energy efficient. The process shall especially operate without consumption of thermal energy. The process shall be able to handle, as raw material, Li-containing waters generated during digestion of spent lithium-ion batteries. The LiOH produced by the process shall have a high purity sufficient for direct manufacture of new LIB. The process shall achieve a high throughput and have small footprint in order that it can be combined with existing processes for workup of used LIB/for production of new LIB to form a closed, continuous production loop. The process according to the invention is an electrolytic membrane process operating with a LiSICon membrane. It is a special aspect of the process that the electrolysis is operated up to the precipitation limit of the lithium hydroxide.
Resumen de: AU2023343512A1
The present invention relates to the electrochemical production of hydrogen and lithium hydroxide from Li+-containing water using a LiSICon membrane. The problem addressed by the present invention is that of specifying a process which is operable economically even on an industrial scale. The process shall especially exhibit a high energy efficiency and achieve a long service life of the membrane even when the employed feed contains impurities harmful to LiSICon materials. A particular aspect of the process is that the cell simultaneously separates off the lithium via the membrane and effects electrolysis of water. An essential aspect of the process is that the electrochemical process is performed in a basic environment, more precisely at pH 9 to 13. The pH is adjusted by addition of a basic compound to the feed.
Resumen de: CN120006345A
本发明属于光电化学制氢的技术领域,公开了一种P掺杂镍层状双氢氧化物助催化剂异质结光阴极及制备与应用。所述P掺杂镍层状双氢氧化物助催化剂异质结光阴极包括Si衬底、Si衬底上设置的InN纳米柱层、InN纳米柱表面设置的PM6层及PM6层表面设置的P掺杂Ni LDH助催化剂层。本发明还公开了光阴极的制备方法。本发明的光阴极中P掺杂Ni LDH助催化剂不仅增加了反应的催化活性位点,降低了HER所需的活化能,同时有效降低异质结光电极的起始电位,促进了光生载流子的解离、传输及在电极/电解液界面发生还原反应。本发明的光阴极用于光电化学水分解制氢,解决了制氢过程中的起始电位高、光电转换效率低等问题。
Resumen de: CN120001406A
本发明公开一种产氢光触媒基板及其制造方法。制造产氢光触媒基板的方法包括提供基板;混合多孔黏合剂和光触媒,以形成光触媒溶液;将光触媒溶液涂布于基板上以在基板上形成平板化光触媒;制备金属助催化剂溶液并施用于平板化光触媒上;执行光沉积处理以形成产氢光触媒基板;以及纯化产氢光触媒基板。在执行光沉积处理之后,金属助催化剂溶液中的金属会附着在光触媒的表面,且金属的浓度分布自平板化光触媒的顶表面向下减少。本发明的制造产氢光触媒基板的方法可简化纯化步骤且提升产氢效率,适用于大量商品化制作。
Resumen de: CN120006327A
本发明涉及一种纳米笼结构铱黑催化剂及其制备方法与应用,该铱黑催化剂具有纳米笼结构,纳米笼是由直径为3‑5nm的纳米线交联而成。其制备方法包括:在水和异丙醇的混合溶剂中加入表面活性剂,搅拌均匀后加入氯铱酸和有机配体,一定温度下超声反应后进行离心,沉淀物依次用无水乙醇和超纯水洗涤后进行室温干燥,随后于400℃退火处理,冷却至室温后即得。本发明通过超声法合成MOF骨架,经过后续退火处理最终合成纳米笼结构的铱黑催化剂,合成方法简单,原料易得,成本低,易规模化生产,催化剂结构稳定,用作阳极电催化析氧和PEM电解槽阳极催化剂时,具有显著降低的过电位和在低电位下具有高电流的效果。
Resumen de: CN120008426A
本发明公布了一种基于电解水生成气体的静态与动态膨胀力发生装置,包括直流电源和薄壁容器,薄壁容器内部设有空腔,薄壁容器一端设有容器密封头,容器密封头与空腔形成密闭反应室,电解质溶液分布在反应室内,电解质溶液内部浸有正负固态电极,反应室内还设有电火花点火头,所述电火花点火头与电解质溶液不接触,正负固态电极和电火花点火头均与直流电源连接,薄壁容器内发生反应时,其内部容积可膨胀变大。本发明利用电解水产生的氢气和氧气,结合电火花点火头点燃,能提供较大的膨胀力,结构简单,易于控制。
Resumen de: CN120006308A
本发明涉及电解槽技术领域,特别涉及一种碱性水电解制氢电解槽的装配方法。该碱性水电解制氢电解槽的装配方法具体包括:通过第一定位仪、第二定位仪和第三定位仪搭配定位杆,可有效避免电解槽组装过程中出现内部流道错位、外部整体歪斜的情况。在装配过程中,提前测试未开孔的密封垫片的平面度,在密封垫片最厚和最薄的位置做好标记,每叠加一片极板之后,通过第一定位仪扫描组装中槽体的水平度,将槽体较低的位置与密封垫品较厚的位置对应后进行标记,再对密封垫片进行开孔加工,以达到内部流道对齐和外部整体对齐的效果,能够完全避免电解槽堆叠时出现扭曲、倾斜等问题。本发明具有保障电解槽组装质量和稳定性的优点。
Resumen de: CN120001392A
本发明公开了一种基于硫化镉量子点负载的金单原子材料及其制备方法和应用,属于催化剂技术领域。所述材料以含巯基的硫化镉量子点为载体,金单原子通过化学键配位锚定的方式负载于所述硫化镉量子点表面。本发明通过硫化镉表面巯基(‑SH)的配位锚定作用,快速还原合成金单原子材料;在光辐照、常温、常压条件下催化H2O分解制氢,在保证一定产率的同时还能显著缩短反应时间,并且,催化剂材料具有良好的稳定性,催化循环性能好,能保持48小时的稳定性能。
Resumen de: WO2025103494A1
The present invention relates to the field of water electrolysis and hydrogen production. Disclosed is a carbon nanotube-supported nitrogen-doped catalyst. The catalyst has a carbon nanotube structure as a support, and cobalt and ruthenium as active components, wherein the content of the cobalt element is 30-45w%, the content of the ruthenium element is 1-7wt%, and the proportion of the ruthenium element present in the form of RuN is 60-90wt% relative to the total ruthenium element. A graphitized structure of the catalyst is conducive to charge conduction, Ru is uniformly loaded on the surface of the support by means of a low-temperature reduction process and interaction with defect sites on the surface of the support, and then after high-temperature roasting, Ru interacts with the N element and the metal Co, thereby improving the hydrogen evolution catalytic activity of the catalyst.
Resumen de: CN120006314A
本发明涉及一种制氢系统,包括阳极腔室、阴极腔室、阳离子交换膜;阳极腔室与阴极腔室之间通过阳离子交换膜连通;阳极腔室内设有碱性溶液,阴极腔室内设有酸性溶液;阳极腔室内设有阳极板,阳极板上附着有氧析出反应的催化剂,在其作用下于阳极板产生氧气;阴极腔室内设有阴极板,阴极板上附着有氢析出反应的催化剂,在其作用下于阴极板产生氢气。优点是:本发明结合了PEM电解槽、ALK电解槽的优势,充分发挥了OER和HER催化剂的反应特点,具有高效率、高性能、响应速度快的优点。
Resumen de: CN120006335A
本发明涉及碱性体系电解水制氢领域,公开了电解水析氢催化剂及其制备方法和电解水制氢的方法。所述催化剂中含有Ru、Co、Ni、C和N;其中,C以碳纳米管的结构存在于所述催化剂中;所述催化剂中Ru的含量为0.1‑5wt%,Ru的平均粒径为2‑5nm。本发明采用ZIF热解产生的碳管复合结构为载体在提高Ru的负载量以及分散度基础上,提高了电荷转移能力,且Ru与Co、Ni的协同效应有效地提高了Ru‑Co‑Ni电解水析氢催化剂的电解水催化析氢活性。
Resumen de: WO2024068362A1
Wind turbine, comprising a rotor, a generator (6) driven by the rotor for producing energy, and an energy conversion device (7) comprising at least one energy conversion module (10) operatable both in an electrolyzer mode to produce hydrogen by electrolyzing water using energy provided by the generator (6) in a first operational mode of the wind turbine (1) and in a fuel cell mode to produce energy by reacting hydrogen and oxygen in a second operational mode of the wind turbine (1), wherein the energy conversion module (10) is switchable between the electrolyzer mode and the fuel cell mode.
Resumen de: CN120000527A
本发明公开了氢能量子技术应用与中药多功能一体机,机箱上层设有蒸煮结构和粉碎装置,机箱下层设有气泡水发生装置;蒸煮结构包括蒸煮腔体,蒸煮腔体内设有药材隔离罩,第二加水管路连接氢汽包水腔体,第三条加水管路连接氧气泡水腔体,所述的气泡水发生装置包括电解槽,电机槽设有纯净水加水口,电机槽包括阴极和阳极,阴极连接氢气管道,阳极连接氧气管道,氢气管道连通氢汽包水腔体,氧气管道连通氧气泡水腔体,本技术有非常明确的人体抗氧化效果,对许多慢性病的效应也进一步表明氢气抗氧化作用的可靠性和安全性,有神奇的疗效,量子活化康养富氢多功能智能一体设备容易操作更方便基层医院甚至家庭使用。
Resumen de: CN120006315A
本发明涉及户储氢能源储存转换技术领域,具体涉及一种户储氢能源储存转换装置,包括电解槽、设在电解槽中的极框以及连接在极框上且表面具有多个凸球状的阴极电极,阴极电极上设有摩擦组件,摩擦组件用于将阴极电极上产生的氢气气泡与阴极电极采用摩擦/刮擦的方式脱离,本发明通过设置摩擦组件使得连接杆转动带动转轴转动,使得圆弧刷在阴极电极表面的凸球状上进行摩擦以及支架板转动时使得钢丝刷对阴极电极其它位置进行摩擦,两者结合相配合使得对限位盒内部区域的氢气气泡与阴极电极发生分离,从而减少氢气气泡在阴极电极上的停留时间,使得阴极电极能够不受氢气气泡的影响及时与电解液发生反应,从而提高制氢效率。
Resumen de: CN120006349A
本发明涉及一种用于电解水制氢的界面改性复合膜的制备方法,其包括分别提供NiFe‑LDHs、多孔膜的支撑基底和离子传导聚合物;将NiFe‑LDHs分散到分散溶剂中得到分散液,将分散液倒在支撑基底上以通过真空过滤将NiFe‑LDHs负载到支撑基底上,得到负载膜;将离子传导聚合物溶解到溶解溶剂中得到聚合物溶液,将聚合物溶液浇筑在负载膜表面,用刮刀涂覆均匀,烘干得到界面改性复合膜,聚合物在烘干过程中浓缩并填充到支撑基底的微孔内以提供界面改性复合膜的离子通道。本发明还涉及由上述方法得到的界面改性复合膜。本发明的合成步骤简便,制备的复合膜具有电阻低、选择性高、机械性能好等优点。
Resumen de: CN120006340A
本发明申请属于电催化领域,具体公开一种高效自支撑双功能电解碱性海水催化剂的制备及应用,催化剂为纳米片状结构的FeOOH‑NiAl‑LDH负载在泡沫镍骨架上形成自支撑稳定结构,其制备包括如下步骤:(1)采用水热生长法,以泡沫镍为基底,称取六水合硝酸镍、九水合硝酸铝、尿素分散在去离子水中,搅拌均匀后转移至反应釜中,100~120℃下保持10~12h,自然降温后冲洗和干燥;(2)采用室温浸渍刻蚀法,取片状氢氧化钠溶于去离子水中充分溶解并加入高铁酸钾,形成紫红色FeOOH胶体,将步骤(1)制得的NiAl‑LDH电极置于上述胶体,25℃室温下浸渍刻蚀12~24h后,得到FeOOH‑NiAl‑LDH电极。本方案主要用于制备电解海水催化剂,解决了传统自支撑电解碱性海水催化剂结构不稳定的问题。
Resumen de: CN120005205A
本发明涉及电解水制氢催化剂领域,公开了钴镍双金属催化剂前驱体及其制备方法和钴镍双金属催化剂及其制备方法。所述前驱体的制备方法包括:将钴源、镍源和含氮有机配体进行混合,在溶剂存在下进行反应,得到所述前驱体。所述催化剂的制备方法包括:在保护气体和三聚氰胺存在下,将所述前驱体进行煅烧,得到所述催化剂。本发明提供的催化剂,Co元素和Ni元素通过配体彼此相连,在电催化过程中,可以进行电子的有效传递与转移。将前驱体进行高温煅烧,可有效提高催化剂的导电性并增强催化剂的循环稳定性。三聚氰胺的引入提高了催化剂的氮含量,调控了电解水产氢过程中电子的传导路径,从而提高了催化剂的析氢活性。
Resumen de: CN120006338A
本发明公开了一种用于真实海水体系下稳定电解产氢的镍基电极材料及其制备方法。制备方法为:泡沫镍浸没在过渡金属盐溶液中进行离子交换;离子交换后的泡沫镍低温烧结得到Ni基电极材料。本发明的电极材料具有高效电解海水析氧及析氢活性,改善了Ni基电极材料在碱性电解质中因自溶解而导致电解稳定性较差的现状。在析氧反应和析氢反应中,100mA/cm2下的过电位分别为314mV和338mV。将其同时作为阳极和阴极电极材料组装成全电解池全解海水,在1.90V电压下产生100mA/cm2的电流。组装的全解海水电解槽可在500mA/cm2的大电流密度下实现稳定电解真实海水700h,且电位无明显衰减。
Resumen de: CN120006343A
本发明公开了一种电解制氢用石墨基电极的制备方法,涉及电解制氢技术领域。本发明利用植酸钠作为磷源、β‑二甲基巯基丙酸内盐作为硫源、丝素蛋白作为碳源和氮源,通过三者良好的生物相容性,使得磷、硫、氮在基体中均匀分散,同时通过加入过渡金属盐,诱导碳原子定向排列,促使丝素蛋白基体实现石墨化,且过渡金属能够作为催化剂,增加基体的活性位点,而后通过微波等离子体处理,利用丝素蛋白极性基团的微波敏感性,并在惰性气体保护下,提高石墨基电极的制氢效率,再通过退火处理,提升石墨烯结晶度及其稳定性;最后负载电气石,协同基体中的石墨烯和过渡金属,增强电极制氢效果。
Resumen de: CN120001394A
用于光催化水分解制氢的WSTe‑MoSSe异质结构催化剂及其制备方法;WSTe‑MoSSe异质结构催化剂为金属氧化物半导体MoSSe与宽带隙半导体WSTe的组合。该材料通过优化金属氧化物半导体(MoSSe)与宽带隙半导体(WSTe)的组合,克服了现有技术中的缺陷。WSTe/MoSSe异质结能够改善带隙匹配,提高光催化效率,减少电荷复合,增强反应稳定性,同时降低反应过电位,延长催化剂使用寿命。此技术不仅提高了析氢效率,还具备较低的成本和较高的稳定性,为大规模绿色氢能生产提供了可行的解决方案。
Resumen de: CN120004436A
本发明涉及工业固废综合处置技术领域,公开了二次铝灰制氢后的水处理方法及系统,包括:收集二次铝灰制氢后的水解液,得到高盐碱氨氮水解液;将高盐碱氨氮水解液进行氨氮分离,得到气相和第一级液相;将二氧化碳溶解在第一级液相中直至达到规定pH值,得到第二级液相;在第二级液相中溶解二氧化碳直至达到规定pH值,得到第三级液相;在第三级液相添加萃取溶剂并且溶解二氧化碳直至达到规定pH值,萃取分离后得到有机相的第四级液相和无机相的第四级液相;将无机相的第四级液相的水分进行蒸发;对有机相的第四级液相进行反萃取分离,得到无机液相和有机液相。采用本发明,可以高效回收氢氧化铝和多种有价值盐,所得产品丰富,价值高。
Resumen de: CN120004214A
本发明公开了一种制氢和固态储氢撬装系统,包括框架,箱体,电解水制氢装置,固态储氢系统,冷热一体机系统,控制系统;所述框架内安装有电解水制氢装置,固态储氢系统,冷热一体机系统和控制系统,所述电解水制氢装置通过冷热一体机系统与所述固态储氢系统连接,所述电解水制氢装置,固态储氢系统,冷热一体机系统均与所述控制系统连接。本发明的制氢和固态储氢撬装系统结构紧凑,操作简单,安全性高,同时实现了制氢和储氢一体功能,经济效益显著,同时采用了固态储氢实现常温低压储氢,安全环保,使得整体结构紧凑,运输方便。
Resumen de: CN120006361A
本发明涉及纳米片材料的技术领域,具体涉及一种有序排列层状纳米片材料及其制备方法和应用。本申请公开了一种有序排列层状纳米片材料的制备方法,包括以下步骤:S1.对基底进行表面处理,获得处理后的基底;S2.制备晶面调节溶液,将处理后的基底置于晶面调节溶液中反应,以暴露晶面,获得暴露晶面的基底;S3.配置含金属离子的电镀液;S4.电沉积处理,进行电沉积处理,得到有序排列层状纳米片材料。本申请的纳米片材料具有优异的催化活性,能够在大电流密度下长期稳定服役,解决了传统催化剂其结构无法有效促进气体和液体的快速传输,也难以承受气泡排出的冲击的问题。
Resumen de: CN120006323A
本发明涉及电催化合金技术领域,具体涉及一种具有层状堆叠结构的电催化析氢柔性合金材料及其制备方法。制备方法包括:步骤1:利用电化学沉积方法将Cu和Ni依次叠加在Ti基底表面,沉积得到层状堆叠结构;步骤2:将层状堆叠结构沉积层的最底面与一根带有绝缘层的铜导线连接,然后利用环氧树脂封装,再使用线切割将横截面暴露;步骤3:将层状堆叠结构放置在Na2SO4和(NH4)2SO4的混合溶液中使用线性扫描伏安法将Cu去除掉,形成粗糙的凹槽结构,得到具有层状堆叠结构的电催化析氢合金材料。本发明通过电化学沉积以及去合金化形成柔性的层状堆叠结构,并增加表面积,可以形成电催化活性高、性能稳定且具有优异机械变形性能和综合功能的电催化析氢材料。
Resumen de: CN120006334A
本发明涉及析氧反应电催化剂领域,公开了析氧反应电催化剂及其制备方法和应用。所述方法包括:(1)将含镍基底与酸混合,得到腐蚀后的含镍基底;(2)将腐蚀后的含镍基底在含铁源的前驱液中进行水热结晶。通过本发明的方法制备的析氧反应电催化剂中片状结构与基底之间有着更紧密的连接,同时随着基底的孔隙率和面密度的不同,获得了更加高效、稳定和耐用的析氧反应电催化剂。当电流密度100mA/cm2时,电极析氧过电势不高于310mV。
Resumen de: CN120006331A
本发明涉及电解水制氢领域,公开了CoZn双金属催化剂及其制备方法和析氢电极和电解槽。所述催化剂的X射线粉末衍射谱图在2θ为25.94±0.18°、44.16±0.18°、51.44±0.18°和76.26±0.18°处具有特征峰;所述催化剂中Co元素和Zn元素的含量分别为36.3‑42.7wt%和0.03‑5.28wt%;所述催化剂的平均粒径为90‑110nm。该催化剂的粒径尺寸适宜,有利于制备结构稳定的电极材料,使其在长时间大电流条件下保持恒久稳定。适宜尺寸的催化剂结合恰当的催化层结构,使得制备的析氢电极展现出优异的活性和效率。
Resumen de: EP4556594A1
The invention describes a wind-powered electrolysis arrangement (1) comprising a plurality of wind turbines (100) of an offshore wind park (10); a distributed electrolyser plant (11) comprising a plurality of electrolysers (110), wherein each electrolyser (110) is arranged on a wind turbine platform (100P); a balance of plant (11BoP) of the distributed electrolyser plant (11), installed on a main platform (10P) in the wind park (10); and a plurality of product pipelines (12), wherein each product pipeline (12) is arranged to convey a number of products (20, 21, 22, 23, 24, 25) between the balance of plant (11BoP) and a distributed electrolyser (110). The invention further describes a method of operating such a wind-powered electrolysis arrangement (1) .
Resumen de: US2025153146A1
An ammonia oxidation catalyst and a catalyst system and method using the ammonia oxidation catalyst are provided. The catalyst comprises a metal oxide including titanium and chromium, wherein an energy band gap of the metal oxide measured by UV-Vis DRS is less than 1.4 eV. The catalyst system comprises an ammonia decomposition reactor and a catalyst unit which is located downstream from the ammonia decomposition reactor, and includes the above-described ammonia oxidation catalyst.
Resumen de: CN120006321A
本发明提供一种氮碳掺杂镍基析氢阴极及其制备方法,通过简单的水热‑浸渍‑高温热解法实现,催化剂为铬和钼掺杂镍基复合材料且其表面设有氮碳层。该材料具体制备步骤包括:通过水热法制备铬和钼掺杂镍金属复合氧化物前驱体,前驱体材料在含有一定浓度碳源和氮源的混合溶液中浸泡,干燥后在还原性和惰性混合气体中焙烧,得到氮掺杂碳包覆镍钼铬复合材料。本发明制备方法简单易行,铬掺杂不仅可以引入更多的晶格缺陷,优化镍钼的电子结构,而且防止镍钼材料的进一步氧化。具有适度缺陷密度的超薄氮掺杂碳层有效平衡了催化剂的活性和稳定性。因此,在涉及频繁启停操作的电解条件下,可以抵抗反极化电流和溶液中氧气引起的催化剂失活,表现出出色的耐用性以及作为可再生能源驱动的水电解催化剂极大的应用前景。
Resumen de: CN120006339A
Ru/NiCo@CNTs‑H2合金结构电催化剂的制备方法及其应用,属于电催化领域,本发明通过CNT、小分子H2调控水热法合成NiCo基前驱体,后通过浸渍氯化钌水溶液并进行旋蒸和焙烧,即得到Ru/NiCo@CNTs‑H2电催化剂。碳材料提供良好的导电性和分散性,小分子的原位调控使得活性金属分散更均匀且粒径更小。合成的Ru/NiCo@CNTs‑H2催化剂制备方法简单,并且该催化剂在1.0M KOH电解液中具有优异的HER活性和稳定性。
Resumen de: EP4556708A1
A wind power plant (1), comprising:one or more generator devices (7) for generating electrical power (P<sub>G</sub>) from wind power,a plurality of hydrogen production units (15) for producing hydrogen from the generated electrical power (P<sub>B</sub>),a plurality of DC-DC converters (16) each being electrically connected with the one or more generator devices (7) and with a respective one of the plurality of hydrogen production units (15), and each DC-DC converter (16) being configured for supplying power (P<sub>a</sub>) with a tunable output voltage (U<sub>a</sub>) to the respective hydrogen production unit (15), anda control device (28) for controlling the power (P<sub>a</sub>) supplied by each DC-DC converter (16) to the respective hydrogen production unit (15) based on a current power output (P<sub>G</sub>) of the one or more generator devices (7).With the proposed wind turbine plant the supply of power to the plurality of hydrogen production units can be improved.
Resumen de: CN120006328A
本发明属于新能源电催化材料领域,尤其是一种富缺陷硫化镍负载多孔碳纳米片电极材料的制备方法及其应用,针对现有硫化镍基催化剂的微观结构调控的研究仍然较为有限,导致其析氢活性仍然与铂基贵金属催化剂有较大距离的问题,现提出如下方案,其包括S1将镍盐、2,5‑噻吩二羧酸溶解于去离子水、乙醇和N,N‑二甲基甲酰胺的混合溶剂中,得到前驱体溶液;S2将石墨基底放置于步骤S1所得的前驱体溶液中进行一步水热反应。本发明还提供了上述制备方法制备得到的富缺陷硫化镍负载多孔碳纳米片电极材料在碱性电解液中电催化水分解析氢的应用。该催化材料在碱性电解液中展现出优异的电催化析氢活性和良好的催化稳定性。
Resumen de: CN120006320A
本发明涉及碱性电解水装置技术领域,特别是涉及一种基于毛细供液的制氢电解槽。本发明的左端极板设置在所述左端压板的一侧;两个相邻的极板之间构成一个电解小室,多个极板设置在左端极板远离左端压板的一侧;右端极板设置在多个极板远离左端极板的一侧;右端压板设置右端极板远离极板的一侧;极板的四周设置紧固孔,通过紧固件穿过紧固孔将左端压板、右端压板、左端极板、右端极板、极板紧固连接;碱液进口设置在左端压板下方;氢气出口、氧气出口均设置在左端压板上方。本发明根据隔膜的毛细作用可将电解液自发不断的从储液腔中吸收至反应室,电解液在外电路的作用下,直接电解为氢气和氧气,可以减少氢氧分离器等设备使用。
Resumen de: CN120006337A
本发明公开了一种负载于氮掺杂石墨烯管的Fe掺杂Ni3N/V2O5异质结构析氧电催化剂。首先通过水热法,在氮掺杂石墨烯管载体上原位生长Fe掺杂Ni‑V前驱体,随后在管式炉中加热至400℃,通氨气,氮化2h,获得由氮掺杂石墨烯管和原位生长在其表面的Fe掺杂Ni3N/V2O5异质结构组成的析氧电催化剂。基于Ni3N/V2O5异质界面和Fe掺杂对电子结构的有效调控,以及氮掺杂石墨烯管载体良好导电性等的协同作用,该电催化剂在碱性介质中表现出优异的电催化活性和稳定性。
Resumen de: DE102023211334A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage (1), umfassend mindestens einen eine Vielzahl von Elektrolysezellen aufweisenden Stack (2) mit einer Anode (3) und einer Kathode (4), wobei im Normalbetrieb der Elektrolyseanlage (1) der Anode (3) über einen Wasserkreislauf (5) mit integrierter Pumpe (6) Wasser zugeführt wird, das in dem mindestens einen Stack (2) durch Elektrolyse in Wasserstoff und Sauerstoff aufgespalten wird, und wobei der durch Elektrolyse erzeugte Wasserstoff über einen Kathodenauslass (9) des Stacks (2) und eine hieran angeschlossene Medienleitung (7) abgeführt wird. Erfindungsgemäß wird beim Abschalten der Elektrolyseanlage (1) ein reduzierter Stackstrom aufrechterhalten und mit Hilfe des Stackstroms sowie eines zellseitigen Rekombinationskatalysators (10) wird anodenseitig vorhandener Sauerstoff mit Wasserstoff, der von der Kathodenseite auf die Anodenseite diffundiert, zu Wasser rekombiniert.Die Erfindung betrifft ferner eine Elektrolyseanlage (1), die zur Durchführung des Verfahrens geeignet bzw. nach dem Verfahren betreibbar ist.
Resumen de: WO2025098664A1
The present invention relates to a powdered catalyst material which is particularly suitable for the oxygen generation reaction in the electrolysis of water. The catalyst material comprises an unsupported ruthenium-iridium oxide, wherein the ratio of the proportions by weight of iridium (Ir) to ruthenium (Ru), in relation to the total weight of the unsupported ruthenium-iridium oxide, is not greater than 4.5. The non-supported ruthenium-iridium oxide exhibits a powder conductivity of at least 30 S/cm. The invention also relates to a method for producing such a powdered catalyst material, a composition, a catalyst layer, an electrode and an electrochemical device containing the powdered catalyst material, as well as a method for producing hydrogen using the powdered catalyst material.
Resumen de: WO2025101433A1
A syngas generation system includes a molten carbonate fuel cell (MCFC) including a MCFC cathode configured to receive a MCFC cathode input stream including a flue gas stream and a MCFC anode configured to output a MCFC anode exhaust stream including carbon dioxide and steam. The syngas generation system further includes a solid oxide electrolysis cell (SOEC) including an SOEC cathode and an SOEC anode. The SOEC is configured to receive, at the SOEC cathode, an SOEC cathode input stream, the SOEC cathode input stream including at least a portion of the MCFC anode exhaust stream, co-electrolyze carbon dioxide and steam in the SOEC cathode input stream, and output, from the SOEC cathode, an SOEC cathode exhaust stream including carbon monoxide and hydrogen gas.
Resumen de: WO2025099113A1
The invention relates to an electrolysis system comprising an electrolyzer (1) that has an inlet (2) through which a liquid can be introduced and an outlet (3) through which the liquid or gas can be discharged. The outlet (3) is connected, via an outlet line (4), to a gas-liquid separator (5) in which the gas exiting the electrolyzer (1) is separated from the exiting liquid. The inlet (2) can be connected to a pressure tank (10) in which liquid is kept available under a flushing pressure.
Resumen de: WO2025099110A1
The invention relates to an electrolysis system comprising an electrochemical stack (1) that has an inlet (8) through which water can be introduced and comprising an outlet (9) through which water or gas can be discharged out of the stack (1). The outlet (9) is connected, via a line (10), to a gas-water separator (11) in which the gas exiting the stack (1) is separated from the exiting water. The gas-water separator (11) is connected to a water tank (20) via a discharge line (13) in order to store the separated water, wherein the water tank (20) is connected to the inlet (8) of the stack (1) via a flushing line (22).
Resumen de: WO2025099646A1
The present disclosure relates generally to integrated processes for producing a H2/CO stream from carbon dioxide and water through electrolysis, in particular using an electrolyzer cell. In particular, the disclosure relates to a process comprising: providing a electrolysis feed stream comprising carbon dioxide from biogas and methane from biogas; electrolyzing carbon dioxide of the electrolysis stream in an electrolyzer cell to form carbon monoxide; electrolyzing water to form hydrogen gas; providing a H2/CO stream comprising at least a portion of the carbon monoxide from the electrolysis of carbon dioxide and at least a portion of the hydrogen gas from the electrolysis of water to a Fischer-Tropsch reactor.
Resumen de: AT527689A1
Kühlsystem für eine Elektrolysevorrichtung zur Erzeugung von Wasserstoff, wobei die Elektrolysevorrichtung zumindest einen Elektrolysestack (1) und zumindest eine Anlagekomponente aufweist, wobei das Kühlsystem zumindest zwei voneinander getrennte Kühlmittelkreisläufe (2, 2‘) aufweist, wobei ein erster Kühlmittelkreislauf (2) nur für die Kühlung des Elektrolysestacks (1) der Elektrolysevorrichtung ausgebildet ist, und ein zweiter Kühlmittelkreislauf (2‘) nur für die Kühlung der Anlagekomponente der Elektrolysevorrichtung vorgesehen ist, und wobei sich die Temperatur des Kühlmittels im ersten Kühlmittelkreislauf (2) von der Temperatur des Kühlmittels im zweiten Kühlmittelkreislauf (2‘) unterscheidet.
Resumen de: DE102023211251A1
Die Erfindung betrifft ein Verfahren zum Betreiben einer Elektrolyseanlage (1), umfassend mindestens einen Stack (2) mit einer Anode (2.1) und einer Kathode (2.2), wobei im Normalbetrieb- der Anode (2.1) über eine Wasserleitung (3) Wasser, insbesondere deionisiertes Wasser, aus einer Wasseraufbereitung (4) zugeführt wird,- aus der Anode (2.1) über eine erste Auslassleitung (5) im Stack (2) produzierter Sauerstoff abgeführt wird und- aus der Kathode (2.2) über mindestens eine weitere Auslassleitung (6, 7) im Stack (2) produzierter Wasserstoff aus der Kathode (2.2) abgeführt wird. Erfindungsgemäß wird bzw. werden im stromlosen Zustand der Elektrolyseanlage (1), insbesondere bei einem Not-Aus, die Anode (2.1) und/oder die Kathode (2.2) gespült, wobei zum Spülen Wasser, insbesondere deionisiertes Wasser, verwendet wird, das in mindestens einem Wasserreservoir (8) vorgehalten und über mindestens eine Spülleitung (9) mit integriertem Ventil (10), das stromlos die Spülleitung (9) mit der Wasserleitung (3) oder einer von zwei kathodenseitigen Auslassleitungen (6, 7) verbindet, der Anode (2.1) und/oder der Kathode (2.2) zugeführt wird.Die Erfindung betrifft ferner eine Elektrolyseanlage (1), die zur Durchführung des Verfahrens geeignet bzw. nach dem Verfahren betreibbar ist.
Resumen de: DE102023211184A1
Elektrolysemodul (1) mit einem Elektrolysestack (2), der eine Vielzahl elektrolytischer Zellen (3) zur elektrochemischen Spaltung von Wasser in Wasserstoff und Sauerstoff, und mit einem Leistungselektronikmodul (5) zur Versorgung des Elektrolysestacks (2) mit einer elektrischen Spannung, wobei das Leistungselektronikmodul (5) und der Elektrolysestack (2) auf einem gemeinsamen Trägerrahmen (10) montiert sind. Im Trägerrahmen (10) ist zumindest ein Hohlrohr (20) ausgebildet zur Durchleitung von Flüssigkeiten, Strom und/oder elektrischen Signalen zur Versorgung des Leistungselektronikmoduls (5) und/oder des Elektrolysestacks (2).
Resumen de: US2025153146A1
An ammonia oxidation catalyst and a catalyst system and method using the ammonia oxidation catalyst are provided. The catalyst comprises a metal oxide including titanium and chromium, wherein an energy band gap of the metal oxide measured by UV-Vis DRS is less than 1.4 eV. The catalyst system comprises an ammonia decomposition reactor and a catalyst unit which is located downstream from the ammonia decomposition reactor, and includes the above-described ammonia oxidation catalyst.
Resumen de: US2025158098A1
The present invention relates to a process for the preparation of a membrane (M) containing a sulfonated polyarylenesulfone polymer (sP), the membrane (M) obtained by the inventive process, a fuel cell, an electrodialysis cell and an electrolytic cell comprising the membrane (M), the use of the membrane (M) in an electrolytic cell, an electrodialysis cell or a fuel cell and a process for the preparation of electrical energy and/or hydrogen.
Resumen de: US2025152354A1
A tubular system comprising a catheter is configured to deliver an implant into the heart. The implant comprises a coupling head and a tissue-engaging element that comprises a first electrode. A driver is configured to, via engagement with the coupling head, (i) advance the implant out of a distal end of the tubular system and place the tissue-engaging element in contact with tissue of the heart, and (ii) secure the implant within the heart by fastening the tissue-engaging element to the tissue. A control unit, electrically couplable to (i) the first electrode via the driver, and (ii) a second electrode contacting the subject, is configured, to (i) receive an electrical signal from the electrodes, and (ii) based on the electrical signal, display information indicative of contact between the first electrode and the tissue. Other embodiments are also described.
Resumen de: US2025155119A1
Combustion process, comprising: a) a production step of a binary fuel gas consisting of hydrogen and at least of between 5 and 50 vol % of nitrogen, preferably between 15 and 35 vol % nitrogen, and b) a combustion step using as only fuel gas the binary fuel gas at a combustion chamber able to receive as fuel gas the binary fuel gas, wherein the combustion chamber is selected from the group of furnaces and fired process heaters.
Resumen de: US2025154016A1
The present invention relates to a plant for the synthesis of ammonia, wherein the plant includes at least one reformer for converting a hydrocarbon into hydrogen, wherein the plant includes a converter for converting hydrogen and nitrogen into ammonia, wherein the converter is integrated into a recirculation loop, wherein a first carbon dioxide separator is arranged between the reformer and the recirculation loop, wherein the recirculation loop includes an ammonia separator.
Resumen de: US2025154670A1
An electrolysis cell comprises two elements, each comprising a central portion defining an anode chamber and a cathode chamber, respectively, and a circumferential flange portion, a sheet-like separator with a circumferential edge, the separator being disposed between the two elements and separating the anode and cathode chambers, and a sealing arrangement comprising at least a first and a second gasket, wherein the sealing arrangement is disposed in a gap between the flange portions, wherein the first gasket is an inner gasket positioned in a portion of the gap adjacent to the chambers and the second gasket is an outer gasket positioned in a portion of the gap distant to the chambers, wherein the gaskets are spaced apart from each other in the gap at an interval, and wherein the circumferential edge of the separator is located radially between a midpoint of the first gasket and a midpoint of the second gasket.
Resumen de: US2025154665A1
The present invention provides an oxyhydrogen preparation device capable of adjusting hydrogen content and a using method thereof. The device comprises a housing for accommodating an oxygen production device, a hydrogen production device, a control module (14), and a power supply module (19), wherein the power supply module (19) is configured to supply power to each said device; the oxygen production device is configured to separate oxygen from air and store the oxygen for backup supply; the hydrogen production device is configured to produce hydrogen or oxyhydrogen for backup supply based on the principle of water electrolysis; the control module (14) is configured to control and adjust the oxygen flow, detect the oxygen concentration, and adjust the flow of the oxyhydrogen and the hydrogen content to a preset range; and the oxygen produced by the oxygen production device converges with the hydrogen or the oxyhydrogen produced by the hydrogen production to a gas outlet (17) of the oxyhydrogen gas preparation device through a pipeline, and then discharged after humidification or discharged directly. Further disclosed is a using method of the device. The advantages such as long service life, adjustable hydrogen content, adjustable oxyhydrogen flow are achieved.
Resumen de: US2025154882A1
An energy storage system converts variable renewable electricity (VRE) to continuous heat at over 1000° C. Intermittent electrical energy heats a solid medium. Heat from the solid medium is delivered continuously on demand. An array of bricks incorporating internal radiation cavities is directly heated by thermal radiation. The cavities facilitate rapid, uniform heating via reradiation. Heat delivery via flowing gas establishes a thermocline which maintains high outlet temperature throughout discharge. Gas flows through structured pathways within the array, delivering heat which may be used for processes including calcination, hydrogen electrolysis, steam generation, and thermal power generation and cogeneration. Groups of thermal storage arrays may be controlled and operated at high temperatures without thermal runaway via deep-discharge sequencing. Forecast-based control enables continuous, year-round heat supply using current and advance information of weather and VRE availability. High-voltage DC power conversion and distribution circuitry improves the efficiency of VRE power transfer into the system.
Resumen de: US2025154002A1
A method for producing hydrogen, includes the steps of: providing a base material including magnesium; providing a carrier fluid, in particular water; providing a pH-lowering liquid; bringing together the base material and the carrier fluid in a suspension container to form a suspension; supplying the pH-lowering liquid to a reactor; continuously supplying the suspension to the reactor; discharging the hydrogen produced in the reactor in a reaction of the base material and the pH-lowering liquid from the reactor. Further, a corresponding device produces hydrogen.
Resumen de: US2025158099A1
Method of manufacturing of a membrane with surface fiber structure, in particular for use in an electrolyzer or fuel cell, by inserting the polymer membrane into the vacuum chamber equipped with a magnetron sputtering system with a cerium oxide target in which an atmosphere of O2 and inert gas is formed and igniting the plasma which leads to simultaneous plasma etching of the membrane surface and deposition of cerium oxide onto the surface of etched membrane resulting in formation of fibers. The membrane is made of polymer and on at least one of its sides features porous surface made of fibers, the cross-sectional dimensions of which are lower than their length and which are integral and inseparable part of membrane body.
Resumen de: JP2025075699A
【課題】優れた電極性能を発揮できる水電解装置用の電極を提供する。【解決手段】ここに開示される電極1は、導電性基材10と、少なくともNi-Fe酸化物と金属Niとを含む触媒層20とを備えている。この触媒層20は、導電性基材10の上に形成された第1層21と、第1層21の上に形成され、Fe元素の含有量が第1層よりも多い第2層22とを備えている。そして、導電性基材10から触媒層20の表面20aに向かう元素分析において、第1層21におけるFe率の増加割合が0.17%/nm以上であり、第2層22におけるFe率の増加割合が0.17%/nm未満である。そして、第1層21の厚みT1に対する第2層22の厚みT2の割合が0.9以下である。かかる構成の電極1は、水電解装置用の電極として優れた性能を発揮できる。【選択図】図2
Resumen de: JP2025076322A
【課題】親水性が高くイオン透過性が良好で、気泡の付着によりイオン透過性が阻害されることがなく、ガス遮断性が良好であり、長期の電解においてもその性能が維持でき、更に、取り扱い性に優れ、生産性にも優れたアルカリ水電解用隔膜を提供すること。【解決手段】多孔性支持体と多孔質層とを有するアルカリ水電解用隔膜であり、前記多孔質層は、前記アルカリ水電解用隔膜の少なくとも一方の表面を構成する層であり、前記多孔質層は有機ポリマーおよび親水性無機粒子を含み、前記有機ポリマーの量が、前記親水性無機粒子の総量に対して8質量%以下であることを特徴とする、アルカリ水電解用隔膜とする。【選択図】なし
Resumen de: AU2023374771A1
Cell for forming an electrolyser comprising at least one diaphragm or membrane having a first side and a second side opposite the first side, a first cell plate, arranged on the first side of the diaphragm, provided with a first electrode, provided with an inlet channel for supplying or draining electrolyte to or from the electrode, provided with a first discharge channel for discharging oxygen from the electrode, at least one second cell plate, arranged on the second side of the diaphragm, provided with a second electrode and provided with a second discharge channel for discharging hydrogen from the electrode wherein the at least one first and second cell plate are made of a polymer material.
Resumen de: WO2025101135A1
The invention relates to a pure hydrogen gas production system (A) for use in the field of hydrogen production technologies for various applications such as energy storage, fuel cells and industrial chemistry processes, characterized in that; at least a water inlet nozzle (30) for the introduction into the system (A) of water to which potassium hydroxide has been added, at least one anode acting as the positive pole (60) and at least one cathode (70) acting as the negative pole during the electrolysis process, conductive plates (100) that ensure efficient delivery of electric current to the electrolysis cell, at least one palladium alloy membrane (90) with high selectivity and permeability, which is positioned in the space (102) formed in the body of said conductive plates (100), and which enables the separation of pure hydrogen gas by purifying the HHO gas produced as a result of the separation of water molecules by the electric current passing between said anode (60) and cathode (70) during the electrolysis process.
Resumen de: WO2025099872A1
An electrolytic cell (3) comprises: a hydrogen electrode chamber (12); an oxygen electrode chamber (13); a metal support body (6) having a plurality of communication holes (6a) formed in a first main surface (6b); and a cell body section (7) disposed on the first main surface (6b). The cell body section (7) comprises: a hydrogen electrode (14) formed on the first main surface (6b) and disposed in the hydrogen electrode chamber (12); an oxygen electrode (15) disposed in the oxygen electrode chamber (13); an electrolyte (16) disposed between the hydrogen electrode (14) and the oxygen electrode (15); and a current collection member (18) disposed on the oxygen electrode (15) and inside the oxygen electrode chamber (13). The pressure in the oxygen electrode chamber (13) is higher than the pressure in the hydrogen electrode chamber (12).
Resumen de: WO2025099844A1
An electrolytic cell system (1) comprises: a plurality of cell stacks (11); a control device (40, 40a); and a power source (30). The plurality of cell stacks (11) generate a generated gas containing hydrogen by electrolyzing a raw material gas containing water. The plurality of cell stacks (11) are electrically connected in parallel. The control device (40, 40a) controls the operation of the plurality of cell stacks (11). The plurality of cell stacks (11) include two or more cell stacks (11) in which the steady power required for steady operation near thermal neutral voltage is mutually different. The control device (40, 40a) suspends the operation of at least one cell stack (11), of the two or more cell stacks (11), in a manner approximate to the amount of decrease in the power supplied from the power source (30).
Resumen de: WO2025100112A1
A production method for hydrogen according to the present invention includes a step for electrolyzing an electrolytic solution that has been heated to a temperature between a lower limit temperature that is at least 100°C and at least the melting point and an upper limit temperature that is less than the boiling point, the electrolytic solution being composed of sodium hydroxide, potassium hydroxide, and water and satisfying expressions (1)-(3). (1) 4≤x≤14. (2) 51≤y≤71. (3) 15≤z≤45.
Resumen de: WO2025099868A1
An electrolysis cell system (1) comprises an electrolysis cell (10), a first supply path (L1), a second supply path (L2), a first pressure adjustment unit (60), a second pressure adjustment unit (80), and a controller (130). The electrolysis cell (10) has a hydrogen electrode chamber (12) and an oxygen electrode chamber (13). The first supply path (L1) supplies a raw material gas containing water vapor to the hydrogen electrode chamber (12). The second supply path (L2) supplies compressed air to the oxygen electrode chamber (13). The first pressure adjustment unit (60) is provided in the first supply path (L1). The second pressure adjustment unit (80) is provided in the second supply path (L2). The controller (130) controls the first pressure adjustment unit (60) and the second pressure adjustment unit (80) to adjust a first pressure in the hydrogen electrode chamber (12) and a second pressure in the oxygen electrode chamber (13).
Resumen de: WO2025098180A1
A preparation method for a cobalt-iridium nanocrystal comprises: mixing an iridium salt, an organic ligand, a reducing solvent and a centrifugal liquid to form a first precursor, and maintaining the temperature of the first precursor; and mixing the first precursor with a cobalt salt in a protective atmosphere to form a second precursor, and maintaining the temperature to carry out a reaction to obtain the cobalt-iridium nanocrystal. According to the preparation method, a centrifugal liquid is used as a raw material, improving the yield, crystallinity and electrocatalytic activity of the cobalt-iridium nanocrystal, and reducing the synthesis cost. The present invention also relates to a cobalt-iridium nanocrystal and a water electrolysis catalyst.
Resumen de: WO2025098254A1
Provided in the present invention are an anode for a PEM water electrolytic cell and a preparation method for the anode. The anode comprises a stainless steel base body and a layered oxide structure generated on the surface of the stainless steel base body in situ, wherein the layered oxide structure comprises a manganese-deficient inner layer and a manganese-rich outer layer, the manganese-rich outer layer comprising a crystal manganese oxide secondary outer layer and an amorphous iron-containing manganese oxide outermost layer. The layered oxide structure of the surface of the anode of the present invention can maintain long-time catalytic activity for electrolysis of water and stability under acidic conditions, and an appropriate surface structural component selection solves the problems of corrosion and stability of self-catalysis and non-noble metal electrodes in an acidic environment. The anode provided in the present invention significantly reduces the present cost of hydrogen production based on a noble metal catalyst, and is expected to solve high-cost problem of PEM large-scale electrolysis hydrogen production.
Resumen de: WO2025097621A1
A hydrogen refueling station, a hydrogen energy automobile, and a hydrogen refueling system. The hydrogen refueling system comprises a decomposition device (10), a transfer device (20), a storage device (30) and a recombination device (40); the decomposition device is configured to decompose water into hydrogen and oxygen; the transfer device is configured to transport hydrogen into the storage device and discharge oxygen into the environment; the storage device is configured to store the hydrogen transported by the transfer device; the recombination device is configured to receive the hydrogen provided by the storage device and the oxygen in the environment, and the hydrogen and the oxygen react in the recombination device to generate a current. When the hydrogen refueling system of the present invention is used for hydrogen refueling of the automobile, a way to perform real-time hydrogen production and hydrogen refueling is used, such that it is not necessary to build a large hydrogen storage tank, which saves the long-distance transportation of hydrogen and reduces the construction cost and operation cost of a hydrogenation system.
Resumen de: WO2025097294A1
Disclosed in the present application are an apparatus for producing hydrogen from alkaline water and a system for producing hydrogen. The apparatus for producing hydrogen comprises an alkaline-water electrolytic cell, wherein a plurality of electrode plates are inserted into the alkaline-water electrolytic cell, and the plurality of electrode plates are sequentially arranged at set intervals; when the electrode plates are powered on, the plurality of electrode plates are arranged in a manner that an anode and a cathode face each other; and at least some of the plurality of electrode plates are each provided with an elastic assembly. In the present application, an elastic assembly is provided in an electrode plate to push the anode to the cathode as much as possible, thereby reducing the voltage of a unit cell; in addition, during process control, a gas-phase pressure on the anode side is maintained higher than that on the cathode side, such that the purity of a gas generated by means of an electrolytic reaction is reduced, and the safety of the electrolytic cell and process for producing hydrogen from alkaline water is improved.
Resumen de: WO2025097201A1
The present invention relates to a method of producing an electrocatalyst, an electrocatalyst obtained by the method, an electrode coated with the electrocatalyst, an electrolyser comprising the electrode and a method of producing hydrogen using the electrolyser In particular, the present invention relates to a bimetallic electrocatalyst for use in hydrogen evolution reaction (HER).
Resumen de: EP4553191A1
Die vorliegende Erfindung betrifft ein pulverförmiges Katalysatormaterial, das sich insbesondere für die Sauerstoffentwicklungsreaktion bei der Wasserelektrolyse eignet. Das Katalysatormaterial umfasst ein ungeträgertes Ruthenium-Iridium-Oxid, wobei das Verhältnis der Gewichtsanteile von Iridium (Ir) zu Ruthenium (Ru) bezogen auf das Gesamtgewicht des ungeträgerten Ruthenium-Iridium-Oxids nicht größer als 4,5 ist. Das ungeträgerte Ruthenium-Iridium-Oxid weist eine Pulverleitfähigkeit von mindestens 30 S/cm auf. Die Erfindung betrifft außerdem ein Verfahren zur Herstellung eines solchen pulverförmigen Katalysatormaterials, eine Zusammensetzung, eine Katalysatorschicht, eine Elektrode und eine elektrochemische Vorrichtung enthaltend das pulverförmige Katalysatormaterial, sowie ein Verfahren zur Herstellung von Wasserstoff unter Verwendung des pulverförmigen Katalysatormaterials.
Resumen de: AU2023303893A1
An estimation system for estimating current efficiency of an electrolyser comprises a data processing system (105) for computing heat loss of the electrolyser based on specific heat capacity of electrolyte, a flow rate of the electrolyte in a cathode side of the electrolyser, a flow rate of the electrolyte in an anode side, a temperature difference (T1c - T0c) between electrolyte circulation outlet and inlet of the cathode side, and a temperature difference (T1a - T0a) between electrolyte circulation outlet and inlet of the anode side. The current efficiency is estimated based on a difference between electric power supplied to the electrolyser and the computed estimate of the heat loss, and on a product of thermoneutral voltage of electrolysis cells of the electrolyser and electric current supplied to the electrolyser.
Resumen de: AU2023333919A1
A porous ion-permeable separator membrane with an asymmetric pore structure in which the top of the membrane (the side opposite the porous substrate) has smaller pores than the pores in the rest of the polymer coating (i.e., closer to the porous substrate) is described. The porous ion-permeable asymmetric composite membrane comprises polymers, inorganic particles, and a porous substrate which is stable at a pH of 8 or higher.
Resumen de: EP4553195A1
This control device for a hydrogen production apparatus is intended to be used for a hydrogen production apparatus including an electrolyzer for electrolyzing water and a rectifier for supplying a direct-current electric power to the electrolyzer, the control device being provided with: a voltage control unit which is configured so as to adjust an output voltage output from the rectifier to the electrolyzer in such a manner that the output voltage of the rectifier is coincident with a set voltage; and a voltage set unit which is configured so as to set the set voltage to a first voltage that is larger than a rated voltage for the electrolyzer in at least a portion of the period during the start-up of the hydrogen production apparatus.
Resumen de: WO2024010614A1
The objective of the present invention is to take advantage of new and improved processes and catalysts that can facilitate the efficient, direct CO2 conversion (CO2C) reaction to e-methane at temperatures less than about 350°C in one step.
Resumen de: KR20250066721A
본 발명의 물분해 전기 촉매 전극은 카본 페이퍼를 포함하는 기재; 및 상기 기재 상에 형성되며, 셀레늄 도핑 계층적 니켈-코발트 하이브리드 구조체를 포함할 수 있다.
Resumen de: CN119403757A
The invention relates to a method for cracking ammonia gas, comprising:-feeding a first portion of the ammonia gas into a burner (14) arranged in a cracking vessel (12); -feeding an oxygen-containing gas into the burner (14); -combusting a first portion of the ammonia gas, forming a combustion zone (101) in the cracking vessel (12), generating heat; feeding a second portion of the ammonia gas into a cracking zone (102) of the cracking vessel (12) outside the combustion zone (101); and-cracking the second portion of the ammonia gas with heat generated by combustion of the first portion of the ammonia gas and generating a product gas comprising hydrogen and nitrogen from the second portion of the ammonia gas. The invention also relates to a cracking device (10) for cracking ammonia gas.
Resumen de: EP4553037A1
The invention concerns a method for producing hydrogen by continuous-flow photocatalytic water splitting allowing higher water concentration to be attained in the reaction volume and therefore higher rates of reaction in comparison with the prior art. The invention also concerns an associated apparatus.
Resumen de: EP4553193A1
The present disclosure relates generally to integrated processes for producing H<sub>2</sub> and CO from carbon dioxide and water through electrolysis, in particular using an electrolyzer cell. In particular, the disclosure relates to a process comprising: providing a electrolysis feed stream comprising carbon dioxide; electrolyzing carbon dioxide of the electrolysis stream in an electrolyzer cell to form carbon monoxide; electrolyzing water to form hydrogen gas; providing a H<sub>2</sub>/CO stream comprising at least a portion of the carbon monoxide from the electrolysis of carbon dioxide and at least a portion of the hydrogen gas from the electrolysis of water to a Fischer-Tropsch reactor.
Resumen de: CN119547229A
The invention relates to a bipolar plate (100) for a chemical energy converter (200, 300). The bipolar plate (100) comprises:-a plurality of channels (101) for conducting an operating medium of the energy converter (200, 300),-a plurality of supply openings (103) for supplying the plurality of channels (101) with an operating medium,-a plurality of distribution channels (105) for distributing the operating medium onto the plurality of channels (101), each distribution channel (105) of the plurality of distribution channels (105) extends between a corresponding supply opening (103) of the plurality of supply openings (103) and a corresponding channel (101) of the plurality of channels (101), and wherein the distribution channels (105) of the plurality of distribution channels (105) extend between the corresponding supply opening (103) of the plurality of supply openings (103) and the corresponding channel (101) of the plurality of channels (101). Each supply opening (103) of the plurality of supply openings (103) has an at least partially curved edge region at least on a distribution channel side facing a corresponding distribution channel (105) of the plurality of distribution channels (105).
Resumen de: MX2023013142A
Single crystalline nanoparticles that are tantalum nitride doped with at least one metal are described. The single crystalline nanoparticles can be doped with two metals such as Zr and Mg. The single crystalline nanoparticles can be TasNsMg+Zr, or TasNsMg, or TasNs:Zr or any combination thereof. Catalyst containing the single crystalline nanoparticles alone or with one or more co-catalyst are further described along with methods of making the nanoparticles and catalyst. Methods to split water utilizing the catalyst are further described.
Resumen de: CN119497766A
The method 5 of operation of an electrolysis system with periodic polarity reversal in order to activate and/or regenerate electrodes (4, 5) in an electrolysis system (1), the polarity between the electrodes (4, 5) is periodically reversed, which results in the production of hydrogen gas in the oxygen gas in the anode chamber (2). In order to prevent the occurrence of explosive gas mixtures in the system, the duration of the activation and/or regeneration period 10 is limited to less than 2% of the duration of the normal production period.
Resumen de: CN119980303A
本发明公开一种中熵硼化物电催化剂FeNiSnMnAl‑Bs/CC及其制备方法和应用,属于电化学材料技术领域。所述电催化剂为碳布表面负载含少量锰和铝的中熵铁镍锡硼化物材料(FeNiSnMnAl‑Bs/CC)。本发明通过恒电位法在碳布表面制备FeNiSnMnAl‑Bs/CC中熵硼化物催化剂,该催化剂具有较高的碱性电解水性能,当电流密度达到100 mA‧cm‑2时,所需析氢、析氧过电位分别为147和262 mV。将其用作电解槽的阴极和阳极时,仅需1.59V的电解电压就可获得20 mA‧cm‑2的电流密度,优于目前报道的大多数电催化剂。本发明制备方法温和、操作简单,电流输出稳定,使用寿命长,成本低效率高,适合实际应用和推广。
Resumen de: CN119980280A
本发明涉及电解水制氢技术领域,具体是一种用于电解水制氢的滚珠式主极板结构及制备方法,包括表面经电镀处理的金属滚珠、两侧开设有若干个滚珠凹槽的主极板,以及顶部和/或底部开设有流通孔的双极框,金属滚珠具有若干个且分别可流动地铺设在滚珠凹槽内,金属滚珠可通过流通孔排出或灌入。本发明通过在主极板滚珠凹槽中填充具有催化活性的金属滚珠,能够大幅度提高组件间的接触面积,降低小室内部构件的接触电阻,提高有效催化面积,促进腔室中电解液的流动,大大地提高了电解电流密度,降低了电解水制氢能耗,且简化了制造工艺,降低了制造成本,在长时间工作后,通过流通孔排出重新灌入金属滚珠,降低了维护成本。
Resumen de: CN119980277A
本申请提供一种PEM电解水制氢冲压双极板,包括板体,所述板体的一端设置有第一水口,另一端设置有第二水口;所述第一水口与第二水口呈对角设置;所述板体的一侧面上设置有第一过桥区、第二过桥区、第一分配区、第二分配区和第一反应区;所述第一过桥区与第一水口连通设置,所述第一分配区设置于第一过桥区与第一反应区之间;所述第二过桥区与第二水口连通设置,所述第二分配区设置于第二过桥区与第一反应区之间;所述第一分配区与所述第二分配区均包括数个交替设置的第一凸台和第一凹台。本申请还提供一种PEM电解槽。本申请具有良好的机械强度和导电性能,其流场分配均匀,密封效果好,提升了气体的传输效率,提高了整体的电解效率。
Resumen de: CN119980308A
本发明涉及电解水制氢催化剂技术领域,具体涉及一种电解水制氢用的铱锰氧化物催化剂及其制备方法和应用,该铱锰氧化物催化剂的制备方法在酸性水溶液环境中,通过柠檬酸与氯铱酸水合物和锰盐中的金属离子反应形成螯合物,再与乙二醇进行聚酯化反应,形成三维空间网格结构的金属盐前驱体,经过干燥处理、高温烧结和后处理后制得具有金红石型结构的Ir0.2MnxO0.3纳米颗粒。优化铱活性位点和氧中间体的结合强度以保证反应能垒下降,进而降低酸性电解水OER的反应能垒,提升了电催化制氢性能,实现高效且稳定的酸性电解水制氢。且制备方法简单、成本低、易于大规模制备。该催化剂在酸性水分解制氢中析氧反应中具有很好的应用前景。
Resumen de: CN119971916A
本发明公开了用于氨分解制氢的SiSiC泡沫陶瓷电驱动反应器及其制备方法,包括石英管和加热电源,以及设置在所述石英管内部的SiSiC泡沫陶瓷结构催化剂、碳毡和两个中空的导电金属管,所述碳毡设置在SiSiC泡沫陶瓷结构催化剂的上下两侧,所述导电金属管的一端连接碳毡,另一端外接加热电源;所述石英管的上下端分别为进气口、出气口。该电驱动反应器中所使用的SiSiC泡沫陶瓷基体具有较高的电阻率(可高达100Ω·cm)和较大的表面积,该电驱动反应器相比于传统壁热式反应器,催化剂内部的升温速度更快、传热效率更高,其催化氨分解制氢的效率也更高,在使用过程中可有效减少能源消耗和CO2排放,并且可以实现氨分解制氢反应器的小型化、集成化,具有广泛的应用前景。
Resumen de: CN119972098A
本发明涉及一种金属有机框架衍生双金属掺杂电解水催化剂及其制备方法。所述电解水催化剂以钴基金属有机框架材料为前驱体,并在钴基金属有机框架材料中掺杂有镧系金属和过渡金属;钴基金属有机框架材料由钴源与有机配体混合后自组装形成;电解水催化剂用于催化质子交换膜电解水中的酸性析氧反应。所述制备方法包括以下步骤:分别制备金属源溶液和有机配体溶液;将有机配体溶液转移至金属源溶液中进行反应,收集产物,并进行热处理,研磨后得到金属有机框架衍生双金属掺杂电解水催化剂。与现有技术相比,本发明提供了一种可用于酸性析氧反应的新型电化学催化剂,具有优异的活性及稳定性,有利于质子交换膜电解水技术的大规模应用。
Resumen de: AU2024227784A1
An apparatus and process for the activation of catalyst material utilized in ammonia cracking can include an initial use of hydrogen and heat to perform an initial stage of catalyst activation and a subsequent use of ammonia and heat to perform a subsequent state of catalyst activation. The subsequent use of ammonia can be configured so that different catalytic material at different plant elements are activated in a pre-selected sequence to provide activation of the catalytic material utilized in different plant elements. Some embodiments can be configured to avoid excess temperatures that can be detrimental to equipment that can be positioned upstream of a furnace in some embodiments while also avoiding sintering of the catalytic material.
Resumen de: CN119384315A
The present invention provides a composite containing molybdenum disulfide and molybdenum trioxide, the molybdenum disulfide containing a 3R crystal structure, and the content ratio of a molybdenum trioxide equivalent value (B) calculated from the molybdenum content determined by XRF analysis of the composite with respect to the total mass of the composite being 5-90 mass%. The invention provides a catalyst ink which comprises the composite and a solvent. Also provided is a method for producing the composite, which comprises a firing step in which molybdenum trioxide is heated at a temperature of 400 DEG C or less in the presence of a sulfur source.
Resumen de: AU2023264575A1
Provided herein are systems and methods for generating hydrogen and ammonia. The hydrogen is generated in an anion exchange membrane-based electrochemical stack. The hydrogen generated in the stack may be used to generate ammonia or may be used for other applications requiring hydrogen. The feedstock for the anion exchange membrane-based electrochemical stack may be saline water, such as seawater. A desalination module or a chlor-alkali stack may be used to treat the saline water prior to electrolysis in the anion exchange membrane-based electrochemical stack.
Resumen de: JP2025073977A
【課題】簡易に提供可能な光触媒シートおよび水素の製造に適用される水分解装置を実現する。【解決手段】水分解光触媒シート(1)は、基材シート(2)上に混合粒子層(3)を有する。混合粒子層(3)には水素生成用光触媒粒子(4)、酸素生成用光触媒粒子(5)および導電材料粒子(6)が分散して存在し、水素生成用光触媒粒子(4)と酸素生成用光触媒粒子(5)との間に導電材料粒子(6)が介在する構造が含まれる。【選択図】図1
Resumen de: CN119972060A
本发明公开了一种用于氨分解的高熵合金催化剂及其制备方法。所述催化剂包括Pt、Pd、Ru、Rh、Ir、Cu、Ni、Co元素中的至少5种,各金属元素的摩尔数与所有金属元素总摩尔数的百分比为5%~35%。所述催化剂采用湿化学方法制备,利用共聚物胶束自组装和液相还原法直接合成,避免了传统高熵合金在制备过程中的高温、高能耗过程。本发明的催化剂具有优异的氨分解反应活性,在低温氨分解制氢领域具有应用潜力。
Resumen de: CN119980318A
本发明公开了一种基于煅烧的铜铁合金型电解水制氢催化剂的制备方法,通过多种金属元素相互作用产生协同效应,提高了催化剂在高腐蚀性的高浓度碱性电解质中的析氢活性、稳定性和耐受性,还降低了对单一贵金属的依赖,进一步降低成本,提高资源的利用效率。
Resumen de: CN119980320A
本发明涉及一种糠醛电氧化催化剂及其制备方法与应用,所述糠醛电氧化催化剂应用于碱性条件糠醛电氧化耦合电解水析氢反应制氢;所述糠醛电氧化催化剂包括亲氧性金属掺杂的泡沫铜衍生的铜纳米线。本发明通过引入亲氧性金属来延缓铜基催化剂失活,亲氧性金属会使铜暴露出更多的活性位点,且亲氧性金属和铜金属之间会有局部的电子转移,可以缓解金属铜因失电子而被氧化的现象。同时,所述糠醛电氧化催化剂的比表面积大,活性位点多,导电性高,可以提高催化剂的催化活性,进而提高目标产物的产率。本发明所述催化剂应用于碱性条件下糠醛电氧化,在阳极进行耦合析氢反应,不仅可以降低水解制氢的电位,还可以进一步提高制氢的效率。
Resumen de: CN119980326A
本发明公开了一种氟掺杂和异质结协同改性析氢电催化剂,所述催化剂由氟掺杂的双过渡金属磷化物异质结活性相和载体组成,所述氟掺杂的双过渡金属磷化物异质结活性相呈较粗糙的纳米线结构,所述纳米线附着于载体上;所述双过渡金属磷化物异质结中的双过渡金属磷化物为Ni2P和CoP,两相构成所述的异质结。本发明所得氟掺杂和异质结协同改性析氢电催化剂兼具高本征活性、良好的导电性和优异的稳定性,可在全pH条件下可以进行稳定、高效的电解水催化析氢反应,且具优异的稳定性和耐久性,综合催化性能接近贵金属Pt/C催化剂。
Resumen de: CN119980285A
本发明公开了一种分离解耦电解水连续制氢系统及其使用方法,属于制氢领域,包括以下模块:分离解耦电解水反应模块;氢气净化和采集模块,包括与粗氢气口连接且依次净化、提纯和收集氢气的冷凝器、脱氧器和干燥器;氧化还原介质循环再生模块,包括与氧化态介质排出口连接且用于产生氧气的热解池。通过解耦电解室实现析氢反应与析氧反应的时序分离。优先进行析氢反应,同时利用氧化还原介质高效捕获并储存氧自由基。通过解耦旋流器实现粗氢气与氧化还原介质的快速分离,从而将氢气生成与产氧流程在不同反应场所上完全解耦。通过氧化还原介质的循环再生机制,实现单一反应器内氢气的连续稳定生成,产物高纯度与稳定输出,适合大规模、长周期运行。
Resumen de: CN119980321A
本发明公开了一种电催化析氢催化剂及其制备和应用,该催化剂包括负载有可催化电催化析氢反应的金属元素的多孔碳载体,所述多孔碳载体中含有微孔、介孔和大孔共存的多级孔道,多孔碳载体中掺杂有非金属元素。本发明利用杂原子掺杂的石墨烯量子点(GQDs)为碳源,以M/Zn‑ZIF‑8为金属源和自牺牲模板,加入Ru盐后经冷冻干燥得到前驱体。通过调控前驱体中GQDs、M/Zn‑ZIF‑8和Ru盐的质量比,构建紧密相连的介孔/大孔结构,使MRu合金纳米颗粒均匀分布于具有空腔的碳壁上,形成多级孔MRu催化剂,克服了GQDs衍生催化剂仅含有微孔的难点。该催化剂具有优异的传质特性和高比表面积,显著提升了HER的反应活性。
Resumen de: CN119977080A
本发明涉及水处理设备技术领域,公开了一种活性氢水发生器及活性氢水的设备及生产方法,包括氢水发生器与水箱,所述氢水发生器与所述水箱相固定,所述氢水发生器内部靠近所述水箱的一侧前端设置有储水瓶,所述氢水发生器的顶部转动连接有盖板,所述氢水发生器的内部设有电解槽,所述电解槽的外周设有防护框,所述防护框的外周设有冷却机构所述电解槽的内部左右两侧均滑动连接有电极板,所述电解槽的中部滑动连接有两个隔膜,所述隔膜远离所述电解槽的一侧设有连接机构。通过推块、推杆与活动块的配合工作,在安装电极板时相比传统的多步骤固定方式,本发明显著提高了组件安装的便捷性与安装效率。
Resumen de: CN119980341A
本发明涉及电解水制氢技术领域,公开了一种析氢电极催化剂及其制备方法和制备氢气的方法。本发明提供的析氢电极催化剂具有独特的树枝状结构,表现出优秀的析氢能力。该催化剂采用Ni和Ag作为主要原料,大幅降低了电解水制氢的催化剂的成本,并且由于该催化剂的制备方法简单、原料易得,并且对于设备要求较低,从而具有规模化应用的潜力。
Resumen de: CN119980347A
本发明涉及氢气制备、储存技术领域,尤其涉及一种制充氢设备用控制系统和控制方法,制充氢设备用控制系统包括控制模块;供水模块,供水模块与控制模块电连接,供水模块与电解槽连通;散热模块,散热模块与控制模块电连接;压力调节模块,压力调节模块设置在氢气管路上,用于对氢气管路的压力进行调节;供电模块,供电模块向一组或多组电解槽供电,供电模块与控制模块电连接。本发明能够对制充氢设备的氢气管路压力、温度以及水量和水质进行控制,从而保证氢气制取和存储顺利进行。
Resumen de: CN119980282A
本发明公开了一种电解水系统,电解槽、阳极气液分离罐、阴极气液分离罐、阳极主管路、阴极主管路及回流主管路;阳极气液分离罐内设阳极隔腔板,以将阳极气液分离罐内腔分隔为阳极低位腔和阳极高位腔,阳极低位腔与阳极高位腔顶部相连通,阳极气液分离罐上设有阳极三通阀,阳极三通阀一个出口连通于阳极低位腔上方,另一出口连通于阳极高位腔上方;阴极气液分离罐内设阴极隔腔板,以将阴极气液分离罐内腔分隔为阴极低位腔和阴极高位腔,阴极低位腔与阴极高位腔顶部相连通,阴极气液分离罐上设有阴极三通阀,阴极三通阀一个出口连通于阴极低位腔上方,另一出口连通于阴极高位腔上方。本发明还公开一种采用上述电解水系统的电解水系统冷启动方法。
Resumen de: CN119980210A
本发明属于电解水制氢技术领域,公开了一种平方米级不锈钢表面原位生长双金属磷化物一体式电极、制备方法及其应用,所述制备方法,包括以下步骤:(1)将不锈钢基底依次用去离子水、丙酮、乙醇超声清洗,然后用稀盐酸溶液加热清洗,最后去离子水冲洗后得到表面清洁的不锈钢基底;(2)将磷源和过渡金属阳离子盐溶解在水溶液中常温搅拌使其混合均匀;(3)将步骤(1)所得表面清洁的不锈钢网放入步骤(2)的金属盐溶液中进行加热反应,反应结束将所得样品用水洗清后干燥。本发明的优点在于制备工艺简单,成本低,反应问题较低,制备的一体式电极具有优异的电催化活性和稳定性,且可实现大规模制备,适用于大规模的工业化碱性电解水制氢。
Resumen de: CN119980317A
本发明公开了一种用于碱性电解水制氢的过渡金属基复合电极及其制备方法,包括如下步骤:1)将第一过渡金属盐和第二过渡金属盐分别均匀溶解于同种有机醇中,然后将所得两种盐醇溶液混合,得到均一稳定的电沉积液;2)采用两电极体系,以导电基体为阴极,将阴极和阳极浸入电沉积液中,进行电化学沉积,然后进行洗涤,干燥,得到均匀沉积有二元合金颗粒层的过渡金属基复合电极。本发明选择单一有机醇作为电极液溶剂,前过渡金属氯酸盐为溶质,避免了金属氧酸盐的引入,实现由较低价态前过渡金属离子到粗糙合金颗粒沉积层的直接转变,有效降低沉积能耗,提升沉积效率。同时具有更强本征析氢活性,且兼顾良好的机械强度与化学稳定性,适宜推广。
Resumen de: CN119980302A
本发明公开了一种快速制备单原子催化剂的方法及其在电解水制氢中的应用,其中方法包括以下步骤:S1:将金属无机盐、发泡剂和碳基有机物按照一定比例秤取并倒入玛瑙研钵中研磨使其混合均匀;S2:将上述混合物倒入陶瓷坩埚,加入助燃剂并点燃,混合物迅速燃烧膨胀并产生一束多孔黑色泡沫状材料;S3:将上述冷却后的黑色泡沫状材料取出并研磨,得到目标碳基金属单原子催化剂材料;本发明制备得到的单原子催化剂中金属原子分散良好,同时具有简单快速、制造成本低、结构蓬松、电导率高、电催化活性好和易于大规模制备的优点。
Resumen de: CN119979916A
本发明公开一种用于阴离子交换膜电解水的纳米合金催化剂及其膜电极的制备方法,当不加入锰盐、铈盐、铬盐、钴盐、镧盐、钌盐、铱盐中的任意一种时,得到一种NiFe二元合金粉末,Ni的含量为90%~100%,Fe的含量为0%~10%;当加入锰盐、铈盐、铬盐、钴盐、镧盐、钌盐、铱盐中的任意一种时,得到一种NiFe三元合金粉末,Ni的含量为76%~96%,Fe的含量为4%,第三种元素的含量为0%~20%。根据本发明制备的用于阴离子交换膜电解水的纳米合金催化剂材料耐蚀性好和稳定性高,进而提升了全解水效率,合成方法简单,且所用金属盐成本低廉,通过喷涂可均匀负载在基底载体上,易于实现大电流密度下的全解水工业应用。
Resumen de: CN119980314A
本发明公开了一种高析氢活性的多孔Pt‑CuOx催化剂及其制备方法与应用。本发明的多孔Pt‑CuOx催化剂具有微纳米分级孔和触角状表面结构。制备方法:将铜粉和铝粉按比例混合均匀,混合粉末进行压制成型、粉末烧结得到CuAl金属间化合物,烧结产物放入NaOH溶液中腐蚀得到微纳米多孔CuOx,干燥粉末与PVP在溶液中搅拌均匀,离心去除上清液,加入铂金属盐溶液进行搅拌蒸发,干燥得到Pt‑CuOx材料。本发明Pt‑CuOx催化剂利用两步脱合金‑浸渍法负载Pt纳米团簇,构筑出微纳米级分级孔结构且表面呈触角状分布,在析氢反应中表现出了低的析氢过电位150mV和低的Tafel斜率125mV dec‑1,相比于未负载Cu基材料过电位提高80mV,表面特殊结构提高了活性位点可及性。
Resumen de: CN119972116A
本发明公开了一种复合光催化剂Ni3S2/ZnIn2S4及其制备方法和应用,属于光催化技术领域。将六水合硝酸锌、硝酸铟四水合物和L‑半胱氨酸溶解于去离子水中,搅拌均匀后转移至反应釜中,180℃反应得到ZIS基体材料;然后,将硝酸镍和柠檬酸钠溶解形成溶液,加入ZIS粉末分散均匀,再滴加硫代乙酰胺,水热反应后,冷却、离心洗涤后得到Ni3S2/ZnIn2S4复合光催化剂。该催化剂在可见光照射下,能够高效催化苯甲醇分解生成氢气和苯甲醛。与传统催化剂相比,显著增强了光催化活性。本发明通过Ni3S2与ZIS的协同作用,提升了光生电荷分离效率,实现了光催化氢气生产与精细化学品绿色合成的高效结合。
Resumen de: CN119980279A
本发明涉及水电解制氢技术领域,提供一种自定位的堆芯模块、PEM制氢电解槽及装配方法。本发明包括:第一隔板;第二隔板,与第一隔板间隔布置;芯体,包括堆叠于第一隔板和第二隔板之间的多个电解小室,电解小室的中心处设置活性区域;自定位组件,设置于活性区域的外周,且自定位组件穿过第一隔板、电解小室和第二隔板;预紧结构,设置于第一隔板和第二隔板之间,用于连接第一隔板和第二隔板,并对芯体进行预紧固。本发明通过设置自定位组件,无需使用定位工装即可方便地实现多个电解小室堆叠时的精确定位,并通过预紧结构实现芯体的预紧固,以便于后期的压紧,能够快捷、高效地装配堆芯模块,节省了工序并提升了效率,且具有较好的经济性。
Resumen de: CN119980319A
本发明公开了一种电解水析氢的镍基电极的制备及应用方法,涉及纳米材料与电化学技术领域。以三维自支撑电极NF作为基底,结合原位生长的In掺杂Ni前驱体以及贵金属Pt的催化活性相,通过简化电极制造、降低界面电阻,提高电极材料的整体稳定性,进而达到优异的HER性能。所述镍基电极是以Ni源和In源构建前体、Pt源为修饰元素,NaBH4作为化学还原剂制备得到的电极。这种低温化学还原和构建催化界面的电极制备方式,为低能耗制氢电极材料的设计提供了崭新的思路。
Resumen de: CN119980290A
本发明公开了一种高密氢氧流道方形制氢电解槽,属于制氢电解槽技术领域,包括电极组件,所述电极组件包括底板,所述底板上设置有n个电极单元,n≥6,同一底板上的n个电极单元相互独立供电,n个所述电极单元的总电流恒定。本发明提供的一种高密氢氧流道方形制氢电解槽,能够针对过热区域和过冷区域做适应性调整,减少过热区域电极单元冗余的工作功率,使得过冷区域的电极单元能够使用更高的工作功率,以此缩减过热区域和过冷区域与最佳温度区域之间的温度差异,从而提高高密氢氧流道方形制氢电解槽的制氢效率。
Resumen de: CN119980306A
本发明为低结晶性NiFe LDH三维纳米片阵列催化剂的制备方法及应用,所述制备方法为:将镍箔分别使用强酸、超纯水和无水乙醇去除表面杂质和氧化层;将处理后的镍箔置于由1~20mmolFeSO4、1~10mmol H3BO3和饱和的KCl水溶液组成的电解液中,通过脉冲电沉积法制备低结晶性NiFe LDH三维纳米片阵列催化剂。通过脉冲电沉积法以镍箔为骨架代替泡沫镍制备了OER性能优异的NiFe LDH‑B/NF非晶/晶体纳米片。能够促进薄膜材料的电催化性能,克服了传统超声波对析氧性能影响不显著的问题。
Resumen de: CN119980301A
本申请公开了一种钌基固溶体氧化物催化剂、制备方法及应用,所述钌基固溶体氧化物催化剂采用耐酸的金属(Ti、Nb、Mo、W、Ta)基底材料与钌盐原位合成钌基前驱体,然后在空气氛围下高温煅烧制备钌基固溶体氧化物催化剂。所制备的钌基固溶体催化剂具有优异的导电性、晶体粒度尺寸小、结晶度高等特点。该方法合成的固溶体催化剂各元素分散性好,能够有效抑制钌位点的过度氧化,可以保证活性位点在强酸性和强氧化条件下长时间的稳定性,有望在PEM工业电解水上应用。
Resumen de: CN119980335A
本发明制备了一种NP共掺杂石墨纳米片电催化剂,制备方法简单高效,易于操作,成本低廉,有实际应用意义。本发明以廉价的石墨粉为原料,以三聚氰胺和次磷酸钠分别作为氮源和磷源,通过高温气相法,在管式炉中制备了NP共掺杂石墨纳米片。通过电化学活化NP共掺杂石墨纳米片产生了具有碱性OER活性的邻醌结构并进一步氧化含P官能团得到更多具有HER活性的磷酸官能团,表现出优异的电催化性能。碱性OER的过电位仅为314mV,酸性HER的过电位仅为‑69.4mV。
Resumen de: CN119980331A
本发明以离子液体(1‑丁基‑3‑甲基咪唑六氟磷酸盐)作为掺杂剂与形貌导向剂,均苯三甲酸为有机配体,硝酸钴、硝酸铈为金属源,通过溶剂热反应构建离子液体掺杂的钴铈双金属有机框架前驱体,并基于梯度控温热解技术制备空心多壳层CeO2/Co3O4复合纳米球。本发明提供了一种简单、通用、不依赖传统软/硬模板使用的方法,实现具有空心多壳层结构的复合材料可控设计,其在析氧反应(OER)中表现出显著增强的催化活性。本发明为稀土基复合催化剂的形貌调控及性能优化提供了新思路,在电解水制氢、燃料电池等清洁能源领域具有重要应用价值。
Resumen de: CN119980328A
本发明公开了一种木材衍生碳支撑的金属氧化物‑合金异质结制氢催化剂,木材衍生碳支撑的金属氧化物‑合金异质结制氢催化剂具有金属氧化物‑合金异质结形成,并负载在木材衍生碳基底上;所述催化剂包含具有催化活性的金属元素与非金属元素。本发明制备工艺简单,使用金属为过渡金属成本低廉,所制得的镍铁钼异质结电解水制氢催化剂具有;Ni3Fe/MoO2异质结负载在木材衍生碳基底上,在碱性溶液中具有较好的析氢反应(HER)电化学催化活性,达到‑10mA/cm2所需的过电位小于等于150mV,析氢反应(OER)达到300mA/cm2所需的过电位小于等于500mV,为降低工业化电解水制氢成本奠定了技术基础。
Resumen de: CN119990570A
本公开的实施例提供一种光氢耦合系统配置方法及系统,所述方法包括:获取电解槽小室电流、光伏板面积和太阳辐照度;根据所述电解槽小室电流构建产氢量与电解槽数量之间的关系式;根据所述关系式、所述光伏板面积、所述太阳辐照度和光伏板数量构建效率模型;加入约束条件并对所述效率模型进行最优求解,得到串联的光伏板数量、并联的光伏板数量、串联的电解槽数量和并联的电解槽数量;根据所述串联的光伏板数量、所述并联的光伏板数量、所述串联的电解槽数量和所述并联的电解槽数量,配置光氢耦合系统。本公开的实施例通过构建效率模型计算光伏板和电解槽的最优配置数量,对于提高光氢耦合系统的制氢效率、减少能量损失的设计配置提供了指导。
Resumen de: CN119972126A
本发明公开了一种过硫酸根诱导的镍铁层状氢氧化物催化材料的制备方法,包括:制备含过硫酸根的前驱体溶液,所述含过硫酸根的前驱体溶液包括过硫酸盐、镍盐、铁盐、尿素及氟化铵;将自支撑导电基底置于前驱体溶液中进行水热反应,得到过硫酸根诱导的镍铁层状氢氧化物催化材料。本发明还公开了上述制备方法得到的过硫酸根诱导的镍铁层状氢氧化物催化材料及其在电极材料上的应用。本发明提供的制备方法实现了制备过程中高本征活性物种的直接合成,避免了后续缓慢的电化学活化重构过程;本发明制备得到的催化材料具有优异的电催化析氧性能。
Resumen de: CN119976885A
本公开涉及氢气制备技术领域,特别是基于碘化铵结晶的硫碘循环制氢工艺与系统,所述工艺包括S1,Bunsen反应与两相分离;S2,硫酸分解与气体循环;S3,碘化铵结晶与循环;S4,碘化铵干燥与分解;S5,气体循环与氢纯化。本公开采用循环氨气‑碘化铵的工艺,成功提取了无水无碘的碘化氢气体,同时采用加压降温工艺实现了过量氨气的冷凝回用,使硫碘循环制氢的经济性达到产业化阈值。
Resumen de: CN119980298A
本发明提供了一种催化剂的制备方法、催化剂、电极及其应用,涉及电解制氢催化剂技术领域,其中,该催化剂的制备方法包括:剪裁铁片基底并对其进行超声清洗;利用砂纸对铁片基底的表面进行打磨以增加其粗糙度;配置含镍、镁金属盐前驱体溶液;将铁片基底浸入含镍、镁金属盐前驱体溶液中以生长催化层;将所得材料通过碱处理以使得镁离子完全脱出,以形成+2价阳离子缺陷结构;将所得材料清洗、干燥以得到目标催化剂。通过本发明的催化剂的制备方法所制备出的催化剂不仅制备成本低廉,易于工业放大,而且,催化层与铁片基底之间的结合力较强,不易脱落,此外,还能够有效地提升催化剂的催化活性和稳定性。
Resumen de: CN119980338A
本发明公开了一种阴离子交换膜电解催化剂及其制备方法与应用,属于电催化剂技术领域,本发明以氧化石墨烯为载体,将硫化铈纳米颗粒负载于氧化石墨烯表面,不仅促进复合材料暴露出更多的活性位点,而且负载的硫化铈纳米颗粒有效调控了氧化石墨烯表面的电子结构,提高了复合材料对氢原子的吸附和脱附能力,从而改善了电催化析氢反应的活性。通过将含钌化合物转化为RuS2并负载于CeS2/氧化石墨烯复合材料上,不仅大大降低了阴离子交换膜电解催化剂的过电位,而且暴露在硫气氛中CeS2/氧化石墨烯复合材料与含钌化合物通过退火形成Ce‑S‑Ru键,提高了阴离子交换膜电解催化剂在酸性条件下的电催化析氢性能和稳定性。
Resumen de: CN119980305A
本发明公开了一种富勒烯基Mo2C/C60电催化剂及其制备方法与应用,所述电催化剂由质量比为(0.5~2):1的富勒烯、钼酸铵组成,所述富勒烯和钼酸铵分别作为C源和Mo源,形成富勒烯基的碳化钼/富勒烯复合材料。所述制备方法包括以下步骤:采用先溶解后浸渍、烘干和研磨的方法将富勒烯、钼酸铵制备得到混合物前驱体;在氢气和氩气的混合气氛下,将混合物前驱体进行分段高温煅烧,获得碳化钼/富勒烯碳材料;将碳化钼/富勒烯碳材料酸洗去除反应生成的金属单质,最后干燥得到富勒烯基Mo2C/C60电催化剂。本发明的电催化剂具有很大的比表面积和电化学活性面积,能够暴露更多的活性位点,使得催化剂的电催化析氢能力得到极大的增强。
Resumen de: CN119980288A
本发明提供了一种利用余热来提高电解水制氢效率的装置和方法,属于电解水制备氢气的余热处理技术领域,电解制氢装置包括电解液流路和气体流路;电解液流路包括储水罐;储水罐连接去离子器;去离子器连接补水槽;补水槽的出口连接有电解槽;气体流路包括电解槽;电解槽连接氧气液分离器和氢气液分离器;氢气液分离器连接脱氧塔;脱氧塔连接干燥塔;干燥塔连接氢气存储罐;电解制氢装置还包括热传递路径;热传递路径包括主蓄热器;主蓄热器与电解槽的外部缠绕有共同的热循环管;本发明提出的一种利用余热来提高电解水制氢效率的装置和方法能够在电解水制氢的各个工序中合理分配余热,节省电能,提高电解水制氢的能量转化效率。
Resumen de: CN119972059A
本发明属于催化剂制备技术领域,具体涉及一种单原子钌基催化剂的制备方法及其在氨分解制氢中的应用。本发明采用原子捕获法,将钌前驱体粉末和氧化物载体在含氧气气氛中高温处理,利用氧化物载体捕获高温氧化气氛下挥发Ru物种,实现对Ru原子的锚定,有效提高了Ru在载体表面的稳定性,提高了贵金属的原子利用率。本发明制备的单原子Ru基催化剂在催化氨分解制氢反应中具有高的反应活性,且制备方法简单、稳定性高,在氨分解制氢领域具有广阔的应用前景。
Resumen de: CN119980310A
本发明提供了一种阴离子交换膜电解水制氢用析氧催化剂及其制备方法和应用,析氧催化剂的制备原料包括:铁盐、镍盐和层间修饰剂;所述层间修饰剂为尿素。本发明采用特定种类的层间催化剂,使析氧催化剂具有高比表面积,更多的催化活性位点,提高其催化活性和稳定性。
Resumen de: CN119982342A
本发明公开了一种基于风光发电的电解水制氢系统,涉及新能源发电技术领域,包括电解箱、发电单元、增速单元与降速单元,其中电解箱用于水的电解,以此获得氢气与氧气,发电单元用于将风力与光能转化为电能,增速单元用于提高风力发电过程中的风速降低时导致输出轴转速降低,使电流输出不稳导致制氢效果变差,进行转速调节,降速单元用于风速过大时,输出轴转速过快导致输出电流波动,调节转速保证输出电流的稳定性,当风光发电过程中制氢过程中为了保证发电量的稳定,在风力发生突变时,通过增速单元与降速单元的调节平抑掉小幅电流波动,使进入发电单元的电流稳定。
Resumen de: CN119978407A
本发明公开了一种含镍金属有机框架材料的制备方法及其电催化分解水过程中析氧材料上的应用,具体为利用有机配体3,4‑二羟基‑3‑环丁烯‑1,2‑二酮、六水合硝酸镍和九水合硝酸铬、氢氧化纳、去离子水的混合溶液中进行自组装得到的一例新型铬镍异金属有机框架材料,将合成材料组装成三电极体系并将其作为析氧反应的催化剂材料进行电催化性能的测试。本发明的优点是:该金属有机框架材料所用配体成本较低、合成工艺简单、纯度高;并且利用Cr的亲氧性质和Ni产生协同作用,增加活性位点,优化提升材料电催化性能。通过实验测试数据分析Cr0.17Ni‑MOF材料具有优越的电催化析氧性能,在10 mA·cm‑2的过电位仅为175 mv,优于其他比例铬掺杂的金属有机框架材料。
Resumen de: CN119973109A
本发明公开了一种具有核壳结构的纳米多孔Mn合金/MnO2阳极及其制备方法和应用,涉及新材料技术领域,包括:以锰粉为主料,添加辅料一、辅料二和造孔剂,混合均匀,得到混合料;压制成坯;将样坯进行烧结;在空气或氧气气氛中进行后氧化处理,即得;辅料一包括Re、Co、Fe、Ni、Ag、Ce、La和Nd的至少一种;辅料二包括Ti、Ta、Ca、Sr、K、Na、Y、Eu和Dy中的至少一种;造孔剂包括镁粉、铝粉、硬脂酸、尿素中的至少一种。本发明的有益效果是通过添加协同催化和协同稳定元素,结合特定制备工艺,获得了具有三维开孔结构、高渗透性、高强度、大比表面积和优异导电性的纳米多孔Mn合金/MnO2阳极材料。
Resumen de: CN119980295A
本发明涉及电催化剂技术领域,具体为一种钌钴氧化物自支撑电极及制备方法和应用。以钛网为基底,氯化钌和氯化钴的盐酸水溶液通过水热法在钛网上原位生长出二氧化钌纳米粒子,钴原子掺入二氧化钌晶格中,形成钴掺杂二氧化钌的自支撑电极,用于析氧反应和析氢反应的电催化剂。本发明在三维多孔导电基底上原位生长催化材料,制备自支撑式催化剂,无需粘结剂,且比表面积更大,能够暴露更多活性位点,进一步提高了材料的活性和稳定性,通过掺杂元素调节,使得低电负性的钴为钌提供电子,抑制了钌的过度氧化,在一定程度上提高了催化剂的活性和稳定性,使其在大电流密度下具有良好性能,使用水热法制备,工艺简单可控,可广泛用于电解水装置中。
Resumen de: CN119972183A
发明公开了一种金属卟啉‑氧化锌光催化剂及其制备方法。本发明通过将L‑赖氨酸二异氰酸酯作为电子传输的桥梁,并将金属卟啉与氧化锌相连,实现氧化锌与金属卟啉的有效连接,进而制得了金属卟啉与氧化锌通过LDI相连的光催化剂。本发明的光催化剂提高了其对可见光的响应范围并实现光催化反应中电子的快速转移,抑制光生电子‑空穴的复合,进而提高了光催化剂的光催化效率。
Resumen de: WO2025098180A1
A preparation method for a cobalt-iridium nanocrystal comprises: mixing an iridium salt, an organic ligand, a reducing solvent and a centrifugal liquid to form a first precursor, and maintaining the temperature of the first precursor; and mixing the first precursor with a cobalt salt in a protective atmosphere to form a second precursor, and maintaining the temperature to carry out a reaction to obtain the cobalt-iridium nanocrystal. According to the preparation method, a centrifugal liquid is used as a raw material, improving the yield, crystallinity and electrocatalytic activity of the cobalt-iridium nanocrystal, and reducing the synthesis cost. The present invention also relates to a cobalt-iridium nanocrystal and a water electrolysis catalyst.
Resumen de: CN119976992A
本发明公开一种钙钛矿氧化物催化剂、制备方法及应用,属于电催化领域;一种钙钛矿氧化物催化剂的制备方法包括以下步骤:将Pr(NO3)3·4H2O、Ba(NO3)2、Sr(NO3)2、Co(NO3)2·6H2O、Fe(NO3)3·9H2O和NH4F按照1.8:0.9:0.9:3:1:0.06的摩尔比溶解在去离子水中,加热搅拌得到混合溶液;将乙二胺四乙酸和柠檬酸加入混合溶液中,加热搅拌产生透明凝胶;将透明凝胶先预加热,然后煅烧,得到钙钛矿氧化物催化剂PBSCFF3A95。该催化剂具有优异的OER催化活性和稳定性。
Resumen de: CN119980316A
本发明属于电极制备技术领域,公开了一种碱式电解水电极及其制备方法。包括以下步骤:(1)镍基合金粉与铝粉混合得到催化剂粉末;(2)将催化剂粉末喷涂于电极基体上形成功能层;(3)对喷涂后的电极基体进行活化处理;(4)对活化后的电极基体进行热处理,得碱式电解水电极。本发明通过合金化与机械化相融合,最后进行活化与热处理,制得的碱式电解水电极兼具催化活性、高稳定性、高能量效率等优点。
Resumen de: CN119980349A
本发明提供一种碱性电解水析氢催化剂的增效方法,属于电解水制氢技术领域,所述方法包括以下步骤:S1:选取或制备一定量析氢催化剂A;S2:取一定量的过渡金属氢化物B,将其与S1中的所述析氢催化剂A复合,得到复合材料C;S3:对析氢催化剂A、过渡金属氢化物B、复合材料C进行电化学测试,得到电解水阴极极化曲线。本方法将催化剂与过渡金属氢化物复合能够提升碱性析氢催化活性,降低电解水制氢的电耗,本发明提供的增效技术具有成本低、效果显著、普适性强的特点,在碱性电解水制氢领域具有重要应用价值。
Resumen de: CN119980339A
本发明涉及电解催化剂的技术领域,具体涉及一种适用于工业级电解电流密度的电解海水析氧催化剂及其制备方法和应用。本申请公开了一种适用于工业级电解电流密度的电解海水析氧催化剂的制备方法,包括以下步骤:S1.基底前处理,S2.制备电镀液,S3.预催化剂的制备,S4.催化剂的活化,以步骤S3中得到的预催化剂作为工作电极,碳棒作为对电极,汞/氧化汞电极作为参比电极,通过多次循环伏安活化得到催化剂。本申请制备得到的电解海水析氧催化剂,具有优异的催化活性,能够在碱性真实海水中以工业级电解电流密度长期稳定服役。
Resumen de: CN119982341A
本发明提供了一种产氢的离网式海上能源岛系统及运行控制方法,包括风机模块、半潜式抗颠簸平台及布置在半潜式抗颠簸平台上的储能模块、海水淡化模块、电解水制氢模块、储气氢模块、氢液化模块以及智慧调控模块。本发明突破传统近海风电局限,通过漂浮式风机模块实现对深远海风能的规模化开发;半潜式抗颠簸平台设计有效解决深海复杂海况下的结构稳定性问题,配合多风机并联技术,显著提升风电捕获效率;本发明能源‑资源协同转化系统;首创"风电→储能→淡水→绿氢→液氢"的全链条耦合体系:电能转化效率提升:智慧调控模块实现风电波动下各模块负荷动态匹配,系统整体能源利用率大大提高;水资源零消耗循环。
Resumen de: CN119980334A
本发明公开了一种富缺陷碳负载过渡金属/金属氧化物及其制备方法与应用,首先将富勒烯矩阵组装到SiO2的介孔模板的表面上,然后碳化通过酸刻蚀去除有机溶剂及模板从而产生有缺陷的富勒烯片段F作为金属锚定位点M@F,最后在空气中缓慢氧化为金属/金属氧化物M/Mox复合阵列。本发明制备的缺陷碳负载过渡金属/金属氧化物在M/MOx界面处电子缓冲系统可以通过为缺电子的HER提供电子并适应电子供体OER来平衡HER和OER之间的电荷转移从而增强了电催化活性。
Resumen de: CN119972152A
本发明公开了一种褶皱纳米网状铁钼氮化物析氢催化剂的制备方法及应用,涉及电催化剂技术领域。本发明首先通过水热合成将铁钼原位生长在泡沫镍材料上,得到前驱体材料,然后将前驱体材料与三聚氰胺混合,在氮气氛围下煅烧,得到铁钼氮化物析氢催化剂,该铁钼氮化物析氢催化剂呈现褶皱纳米网状微观结构,具有低过电位、优异的稳定性以及低成本的特点,在电解水制氢等应用中表现出卓越的性能和广阔的应用前景。
Resumen de: CN119977008A
本发明公开了一种混合熔盐法快速制备短程有序氧化铱用于PEM电解水,属于催化材料制备技术领域。该方法可在20分钟至2小时内即可制备短程有序氧化铱。引入高熔点混合熔盐作为反应介质,使铱盐均匀分散,有效减少团聚,提高制备效率;无需形貌控制模板,简化工艺,降低成本;通过调节反应参数,可灵活调控氧化铱的形貌和大小,单个纳米晶粒粒径为1.7~2.7nm,形成短程有序结构。该短程有序氧化铱提供更多活性位点,增强结构稳定性,分散性好,可直接作为催化剂浆料,在极低负载量下实现高催化活性;在质子交换膜电解水制氢阳极催化材料中应用,降低催化剂成本,提高能量转换效率,电解槽在较低电压下达到高电流密度,且性能稳定,有助于推动绿氢经济发展。
Resumen de: CN119980327A
本发明公开了一种高效稳定的光解水制氢材料及其制备方法,本发明通过复合WO3和BiVO4制备出WO3/BiVO4异质结光电极,利用两者匹配的能带位置和良好的可见光捕获能力,实现高效的光电化学性能。此外,在制备好的光电极表面通过原子层沉积法镀上一层超薄氧化物保护层,实现稳定的光电化学性能。
Resumen de: CN119980294A
本发明提供了一种高性能咬合式有序膜电极、其制备方法及应用。所述电极包括有序阵列膜、催化层(CL)和打孔扩散层;有序阵列膜包括膜基体和有序排列的阵列锥;打孔扩散层具有多个孔洞结构,阵列锥进入孔洞结构中;催化层连续填塞在阵列锥与孔洞结构的壁面之间以及选定面与打孔扩散层之间形成机械咬合。本发明构造了咬合式的结构,通过在扩散层(PTL)表面雕刻出孔洞结构,使得所制备的膜电极可以较好地保留住阵列结构,使得阵列结构在质子、电子以及物质传输等方面的优势可以得到较好的发挥;由于咬合式的结构可以使得原本接触不佳的催化层与扩散层形成良好的接触,界面的接触电阻降低,电荷转移电阻降低,进一步地提升了性能。
Resumen de: CN119980293A
本发明属于光电化学技术领域,具体涉及一种高性能LaCo‑LDH/NiPt/BVO光电极薄膜的制备方法和应用。首先通过电沉积方法制备BiOI纳米阵列,然后通过高温煅烧制备BVO光电极。接下来将六水合氯化镍、硼酸与氯铂酸溶于去离子水并在混合溶液中加入氯化钾制备NiPt电沉积液,将BVO光电极在三电极体系中通过电沉积方法制备得到NiPt/BVO光电极。最后,将六水合硝酸钴、六水合硝酸镧与尿素溶于去离子水并加入适量乙醇制备LaCo‑LDH前驱体溶液,通过水热法制备LaCo‑LDH/NiPt/BVO光电极薄膜。此时,助催化剂NiPt与LaCo‑LDH的协同作用增强BVO的光生载流子的分离与注入效率,从而显著提高BVO光电极的光电性能,能够在光电化学水分解中应用。
Resumen de: CN119980273A
本发明公开了一种可降低启动电压的铁基液流解耦水电解制氢系统及方法,主要包括有储液罐,循环泵,质子交换膜电解制氢系统等构件,旨在实现在低电压下产氢和在时间和空间上实现产氢、产氧的分离。本发明工作过程主要包括二价铁离子氧化为三价铁离子,氢离子还原为空气;三价铁离子还原为二价铁离子,水氧化为氧气和氢离子。整个过程中由于引入了二价铁和三价铁离子作为解耦物质,使得产氢与产氧步骤可以独立进行,并且产氢和产氧的电压低于一般的PEM电解槽,特别适用于存在电压波动的光伏系统,提升光伏电解制氢的能量效率。本发明具有成本低,结构简单,易于维护等优点。
Resumen de: CN119980284A
本申请公开了一种无冷却水的电解制氢系统及其控制方法,涉及氢能源技术领域。该无冷却水的电解制氢系统包括电解槽以及与电解槽连接的后处理模块、电源设备;电解槽用于通过电化学反应进行制氢和制氧,并输出氢气和氧气;后处理模块包括依次连接的气液分离单元、气体洗涤单元以及气体过滤单元,后处理模块用于对电解槽输出的氢气和氧气进行处理,并输出符合规定的氢气和氧气;电源设备用于为电解槽提供电能;其中,电解槽与后处理模块在无冷却水的情况下所消耗的热量与总产热相同。由此,以实现无冷却水电解制氢,有效降低能耗,减少水资源浪费,提升电解制氢系统的适用性和经济效益。
Resumen de: CN119980283A
本发明公开了一种氢能源提取用水电解氢氧发生装置,涉及氢氧发生装置技术领域。本发明包括工作箱,工作箱上方设置有驱动电机,驱动电机的输出轴固定安装有第一齿轮,第一齿轮啮合有第二齿轮和第三齿轮,第二齿轮和第三齿轮均固定安装有连接轴,连接轴设置有电解机构,电解机构包括设置在连接轴上的连接件,连接件转动安装有第一螺纹杆,连接件固定安装有正电极和负电极,第一螺纹杆螺纹连接有清理圆刷,清理圆刷滑动连接在正电极和负电极上,第一螺纹杆与连接轴活动安装。本发明通过第一螺纹杆与清理圆刷的螺纹连接设计,实现了清理圆刷在正电极和负电极上的自动移动清理功能,有效避免了电极表面因气泡堆积而导致的堵塞问题。
Resumen de: CN119980332A
本发明公开了一种CeO2‑Ni(OH)2异质结电催化剂的制备方法,包括如下步骤:首先对泡沫镍进行预处理,以去除其表面的镍氧化物,接着将水溶性的铈盐和镍盐按预定比例溶于去离子水中,得到沉积溶液,最后以预处理过的泡沫镍作为工作电极,在沉积溶液中进行电沉积得到CeO2‑Ni(OH)2异质结。本发明中的CeO2‑Ni(OH)2异质结电催化剂通过界面内建电场加速电子转移、优化空间电荷分布,显著提高析氧效率、降低电解水阳极侧反应能耗,并在工业级电流密度下实现长期稳定运行,具备制备工艺简单、成本低、效率高、活性强及稳定性好的优势,具有优异的工业应用潜力。
Resumen de: CN119980312A
一种碱性电解水析氢负载型Ru6团簇催化剂其制备方法和用途。本发明涉及一种碱性电解水析氢负载型Ru6团簇催化剂,所述催化剂中,精确的6个Ru原子作为一个团簇负载在氧化科琴黑载体上,Ru‑Ru的配位数为2.5‑2.7,为类平面结构,Ru的负载量为0.5‑2.4wt%。所述催化剂表达为Ru6/KBO,是原子数目精确的Ru6纳米团簇经焦耳炉煅烧还原负载在氧化科琴黑上。本发明制备了负载在KBO上的Ru6团簇,在碱性条件下具有良好的析氢催化活性,Ru原子的利用效率高,催化剂结构稳定,电催化HER性能显著提高,并且催化效力持久。
Resumen de: CN119980325A
本发明属于纳米材料制备领域,公开了一种Fe3C与MnO复合FeNC复合材料及其制备方法与应用。以自牺牲模板法,通过简单的一步热解制备了大比表面积双金属复合的Fe3C与MnO复合FeNC催化剂。优化后的Fe3C与MnO复合FeNC在碱性电解质中表现出优异的双功能活性和长期循环稳定性,ORR的E1/2值为0.84 V,OER的Ej=10值为1.62 V,相应的ΔE值为0.78 V。自牺牲模板法制备的Fe3C与MnO复合FeNC复合材料具有大比表面积,且MnO的掺杂能够调节催化剂的电子结构,Fe3C与MnO复合FeNC作为可充电ZABs中的空气阴极的电催化剂,其液态形式表现出优异的电池性能,在10mA cm‑2下可稳定充放电800 h。
Resumen de: CN119980344A
本发明的涉及一种金修饰的铁酸镧基半导体薄膜光电化学水分解光阳极及其制备方法,用于光电化学水分解制氢领域。该光阳极包括透明导电衬底、位于导电衬底上的宽禁带半导体层、位于宽禁带半导体层上的Au纳米颗粒层、位于Au纳米颗粒层上的LaFeO3吸收层。本发明通过特殊结构的设计将p型LaFeO3半导体的应用于光阳极的构建,结合宽禁带半导体TiO2和利用Au纳米颗粒的局域表面等离激元效应,扩大了光阳极的光吸收范围,增强了光阳极的光电流密度,提高了光阳极的光电转换效率,对电极系统整体光转氢效率的提升具有重要意义。并且该光阳极的制备简单方便,可以大规模生产,原料成本低廉且环境友好,有望商业化应用于光电化学水分解领域。
Resumen de: CN119980309A
本发明属于电化学技术领域,具体涉及一种钼掺杂磷化镍电极及其制备方法和应用。制备方法包括:将可溶性镍盐、氟化铵和尿素溶解于水中,得到混合溶液;将泡沫镍浸渍于混合溶液中进行水热反应,得到前驱体Ni(CO3)OH/NF;将前驱体Ni(CO3)OH/NF浸渍于钼盐溶液中进行溶剂热反应,得到Mo‑Ni(OH)2/NF;将Mo‑Ni(OH)2/NF与磷源在惰性气氛中进行高温磷化反应,得到钼掺杂磷化镍电极。本发明采用分步掺杂的方法不仅克服了现有技术同时添加镍源与钼源而导致催化活性位点重叠、催化效率低下的问题,还显著增大了钼掺杂磷化镍电极的比表面积,使得催化位点在其表面分布更加均匀,从而大幅提升了催化效率。
Resumen de: CN119980329A
本发明公开了一种过渡金属催化剂及其制备方法和应用;该方法包括如下步骤:S1、将碳源和过渡金属盐进行机械混合,得到前驱体;S2、将前驱体进行热处理,研磨即得;过渡金属盐中的过渡金属选自钒、钨或钼中的至少一种;所述碳源包括氮元素;热处理的温度为700℃~1100℃。本发明首先将碳源和过渡金属盐通过机械混合,再在特定温度下进行热处理,制备得到的过渡金属催化剂在酸性或碱性条件下均具有高HER/OER电催化性能。
Resumen de: CN119978410A
本发明公开了一种富含配位缺陷的MOF材料及其制备方法和应用。本发明的富含配位缺陷的MOF材料的制备方法包括以下步骤:1)制备负载有镍钴层状双金属氢氧化物的泡沫镍;2)将2,6‑萘二羧酸和二茂铁甲酸溶于由N,N‑二甲基甲酰胺和水组成的混合溶剂,再加入负载有镍钴层状双金属氢氧化物的泡沫镍进行溶剂热反应。本发明的MOF材料富含配位缺陷,将其用作电解水制氢的电极材料具有催化性能优异、稳定性好等优点,可以有效降低电解水制氢的能耗以及提高电解水制氢的效率,且其生产成本低、原料来源广、制备方法简单,适合进行大规模工业化生产和应用。
Resumen de: CN119971577A
本发明涉及新能源与可再生能源利用技术领域,具体是一种风电制氢一体化设备,包括风力发电装置,所述风力发电装置的左侧设置有电解槽,所述电解槽内壁固定连接有两个对称设置的方形板,两个所述方形板的侧壁均固定连接有离子交换膜,所述离子交换膜的另一端贯穿电解槽的内壁并延伸至外部,本发明能够风力发电装置所产生的电能,通过电线稳定传输至电解槽内的导电柱,为电解水反应提供动力,实现了风能到电能再到氢能的高效转化。电解槽内产生的氢气和氧气混合气体,通过第一管道进入气液分离器。多个气液分离器通过法兰和螺栓紧密连接,保证了良好的密封性,能有效将混合气体中的气液分离,得到纯净的氢气和氧气。
Resumen de: CN119980350A
本发明公开一种电解水制氢电极或隔膜测试系统及测试方法。所述测试系统包括:多个电解小室,每一电解小室被设置为适于可拆卸地装配电极或隔膜;供电单元,与多个电解小室电性相连以等流供电;碱液储槽,与多个电解小室相连以提供电解液;气液分离单元,与多个电解小室相连,以汇集多个电解小室产生的气体并分离出气体中携带的电解液;以及,浓度调节单元,与碱液储槽相连,浓度调节单元包括监测碱液储槽中的碱液浓度的碱液浓度监测模块,和对碱液储槽中的碱液稀释的补水稀释模块;多个电解小室分别连接有电压监测单元,以在等流供电和同等碱液条件下检测每一电解小室的电压值。本发明公开的测试系统测试成本低、精度高且测试过程更安全。
Resumen de: CN119980340A
本发明公开了一种松针纳米片复合状铜钴合金磷化物析氢催化剂的制备方法及应用,涉及电催化技术领域。本发明采用含有铜源、钴源、磷源和无机氟化物络合剂的电解液,以泡沫镍为工作电极,利用恒电压法进行电沉积,得到铜钴合金磷化物析氢催化剂。本发明在低成本和简单合成方法的基础上,调节了催化剂的电子结构,提高了其电子转移效率和活性位点的稳定性,从而实现了优异的电解水析氢效果,为清洁能源领域的发展提供新的解决方案。
Resumen de: CN119980307A
本发明公开了一种镍基催化剂电极及其制备方法和应用,涉及催化剂电极制备技术领域。将阳离子氢氧化物研磨后得到的碱性盐和镍源基体加入坩埚中,加热至碱性盐呈熔融状态;镍源基体在碱性熔盐中进行浸泡反应以在镍源基体表面形成含相应阳离子的氢氧化镍。本发明采用碱性熔盐法一步制备了掺杂阳离子的镍基催化剂,呈直立的超薄且无团聚的纳米片状结构,有利于增加活性位点的暴露,促进大电流反应过程中气泡的有效排出,同时,将阳离子插入到层状镍氢氧化物中,有效调节了层间距,并优化了催化剂在碱性条件下对OH‑的结合力,能有效地降低镍离子与·OH的结合强度,使得其在析氧反应中的表现更加优异,极大地提高了其析氧反应活性。
Resumen de: KR20250065124A
본 발명은 침상형의 이산화티타늄 입자 표면에 높은 피복율의 촉매층이 형성된 것을 특징으로 하는 수전해용 촉매 및 이의 제조방법에 관한 것으로, 본 발명의 수전해용 촉매는 적은 활성 금속 사용량으로도 충분한 촉매 활성을 구현할 수 있다.
Resumen de: KR20250065125A
본 발명은 촉매의 표면에 대한 XPS 분석을 얻어지는 표면에서의 티타늄에 대한 이리듐의 중량비가 5 내지 50인 수전해용 촉매 및 상기 촉매를 포함하는 막-전극 접합체에 관한 것으로, 본 발명의 수전해용 촉매는 적은 이리듐 함량으로도 높은 수전해 성능을 구현할 수 있다.
Resumen de: WO2024047362A2
A membrane electrode assembly (MEA) for producing hydrogen in a water electrolyser is provided. The MEA comprises a polymer electrolyte membrane (REM), a cathode comprising a cathode catalyst on a first side of the REM, an anode comprising an anode catalyst on a second side of the REM, and a platinum-ruthenium (Pt-Ru) catalyst located on the second side of the REM for electrochemically converting hydrogen gas into hydrogen cations in use. The Pt-Ru catalyst is in electrical contact with the anode and ionic contact with the REM.
Resumen de: KR20250064692A
알칼리성 물 전기분해(AWE) 시스템은 재생 에너지원을 사용한 대규모 수소 생산을 위한 비용 효율적이고 확장 가능한 접근 방식을 제공한다. 그러나 부하 변동, 특히 셧다운 시 역전류(RC) 현상에 대한 취약성은 이러한 시스템의 장기적인 안정성과 확장성에 심각한 문제를 야기한다. 이 글에서는 AWE 시스템의 RC 흐름에 대한 납 도금 니켈 음극 촉매(Pb/Ni)의 내성을 향상시키기 위한 재료 기반 접근 방식을 소개한다. 수소 진화 반응(HER)의 불활성 물질인 납으로 장식하면 Ni 촉매의 수소 생성을 방해할 것이라는 예상과 달리, Pb/Ni 촉매는 향상된 HER 활성과 뛰어난 RC 흐름 저항성을 보였다. RC 흐름 후 Ni 음극에 Pb가 존재하면 양성자 탈착과 물 해리 단계가 모두 촉진되어 반복되는 RC 사이클에서도 촉매의 HER 활성이 향상된다. 또한, 베어 Ni 촉매와 비교하여 Pb/Ni 촉매는 2셀 AWE 스택에서 현저하게 향상된 RC 내성을 보여준다. 이 논문은 RC 흐름에 의해 유발되는 AWE 성능 저하를 완화하고 AWE 시스템에서 RC 흐름에 대해 향상된 작동 내구성을 가진 Pb/Ni 촉매를 달성하기 위한 새로운 전략을 제시한다.
Resumen de: KR20250063856A
본 발명은 중성염을 용해한 수용액을 전기분해하여 음극실에서 강알칼리성 전해수를 제조하는 전해수 생성 단계, 상기 강알칼리성 전해수를 알루미늄 드로스에 공급하는 전해수 공급 단계 및 상기 강알칼리성 전해수와 알루미늄 드로스의 가수분해 반응을 통해 수소를 생성하는 수소 생성 단계를 포함하며, 알칼리성 염을 사용하지 않고 전기분해로 제조하는 강알칼리성 전해수를 가수분해 용액으로 사용하여 알루미늄 드로스로부터 수소를 제조함으로써, 수소 제조용 알칼리 용액을 제조하는 비용을 절감할 수 있는 알루미늄 드로스를 활용한 수소 제조 방법을 제공한다.
Resumen de: KR20250064073A
본 발명은 청정 수소 생산 시스템 및 이를 포함하는 선박에 관한 것이다. 본 발명에 따른 청정 수소 생산 시스템은, 물(H2O)을 전기분해하여 산소(O2)와 수소(H2)를 생성하는 수전해 공정부; 상기 수전해 공정부에서 생성된 수소와 산소를 연소시켜 전력을 생성하는 순산소 발전부; 및 상기 순산소 발전부에서 생성된 배기가스로부터 물을 분리하여 상기 수전해 공정부로 재공급하는 배기가스 분리부;를 포함할 수 있다.
Resumen de: CN119954093A
本发明公开了一种利用海水制备氢气的方法,包含如下步骤:先将海水粗滤后加热排出溶解气体,冷却后经固液分离除去颗粒物杂质,得到净化海水;然后将制得的净化海水加入到制氢系统的反应装置中;接着在制氢系统的反应装置中加入适量的活泼金属或其氢化物,通过活泼金属或其氢化物与净化海水反应生成氢气、活泼金属对应的碱并放出热量;之后将反应装置中的中上层热水抽入到冷却装置中,冷却后再抽回反应装置;与此同时,将反应装置中所产氢气上层抽入到干燥段中,经脱水后进入纯化装置,经纯化装纯化后,制得纯净氢气;最后将制得的纯净氢气通过压缩机压缩后泵入储氢罐。本发明的优点是:制备工艺简单,成本低廉,易于推广应用。
Resumen de: CN119956395A
本发明涉及电催化剂技术领域,尤其涉及一种高熵FeCoNiCuS同质结电催化剂的制备方法及其制备方法与应用,包括:通过一步简单的水热法,将泡沫镍与含硝酸镍、硝酸铁、硝酸钴、硝酸铜和硫代硫酸钠的混合液置于反应釜中,通过共热的方式,获得一种高熵FeCoNiCuS同质结电催化剂。本发明通过电化学性能测量表明所制备的催化剂在高电流密度下的析氧和全解水方面具有良好的催化活性及稳定性。本发明所述的方法制备工艺简单、环境友好、操作便捷且成本低廉,具有一定实际生产前景。
Resumen de: CN119956415A
本发明涉及电催化技术领域,揭示了一种三元非贵金属层状氢氧化物电催化材料的制备方法及装置,包括:将前置处理泡沫镍浸入测试反应溶液中,得到浸液泡沫镍,对浸液泡沫镍进行水热反应,得到镍铁钛双层氢氧化物,判断线性扫描伏安曲线集中是否存在低过电位扫描伏安曲线集,若存在,则提取最佳线性扫描伏安曲线,识别临近钛掺杂摩尔分数曲线,根据最佳钛掺杂摩尔分数及临近钛掺杂摩尔分数曲线获取目标钛掺杂摩尔分数,根据所述目标钛掺杂摩尔分数制备三元非贵金属层状氢氧化物电催化材料。本发明主要目的在于解决当前用于电解水的电催化剂存在成本高、耐腐蚀性差及电催化效率低的问题。
Resumen de: CN119954271A
本发明属于净水技术领域,具体涉及一种双面电解水装置,包括阳极框、阴极框、电解膜和漏孔板,阳极框中设有第一空腔,以形成阳极室;阴极框配设为两组并分别设置于阳极框的两侧;阳极框的两端分别设有入水口和出水口;阳极框的两侧分别依次设置有电解膜,电解膜位于阳极框和阴极框之间,阴极框通过紧固件固定连接于阳极框,以使得电解膜与阴极框的上第二空腔共同形成阴极室;漏孔板配设为两对,每对漏孔板分别贴设于电解膜的两侧,且漏孔板密封连接于阳极框和阴极框;阳极室中设有阳极板,阴极室中设有阴极板,阳极板和阴极板均对应地电性连接于外部的电源。由此,解决了当前电解水制备装置结构复杂、维修麻烦且适用范围有限的问题。
Resumen de: CN119956396A
本发明涉及电催化材料技术领域,具体涉及一种深度自重构的高熵硫化物电催化剂及其制备方法与应用。本发明提供的深度自重构的高熵硫化物电催化剂在电位达到1.8V vs.RHE时,电流密度接近600mA cm‑2,表现出较低的过电位和较高的电流密度,显著提高了电解水制氢的整体效率,为可再生能源的利用和氢能的大规模制备提供了有力支持。
Resumen de: AU2024267011A1
An electrolyzer stack is configured for high-speed manufacturing and assembly of a plurality of scalable electrolysis cells. Each cell comprises a plurality of water windows configured to maintain a 5 pressure loss, temperature rise and/or oxygen outlet volume fraction below predetermined thresholds. Repeating components of the cells are configured based on a desired roll web width for production and a stack compression system is configured to enablea variable quantity and variable area of said repeating cells in a single stack. A high-speed manufacturing system is configured to produce scalable cells and assemble scalable stacks at rates in excess of 1,000 MW-class stacks per year. 21352245_1 (GHMatters) P123344.AU.1
Resumen de: AU2024267011A1
An electrolyzer stack is configured for high-speed manufacturing and assembly of a plurality of scalable electrolysis cells. Each cell comprises a plurality of water windows configured to maintain a 5 pressure loss, temperature rise and/or oxygen outlet volume fraction below predetermined thresholds. Repeating components of the cells are configured based on a desired roll web width for production and a stack compression system is configured to enablea variable quantity and variable area of said repeating cells in a single stack. A high-speed manufacturing system is configured to produce scalable cells and assemble scalable stacks at rates in excess of 1,000 MW-class stacks per year. 21352245_1 (GHMatters) P123344.AU.1
Resumen de: CN119951077A
本发明公开了一种高安全性氢氧混合气阻火装置,包括水封组件、出气组件和隔断组件;水封组件包括水容器,水容器的液面下方设置有进气管,液体上方为气腔;出气组件包括容纳可燃气体的气容器,气容器与气腔连通并设置有出气管,出气管与气容器之间传输可燃气体的管路上设置有隔断组件;隔断组件包括阀座和阀组件,阀座上设置有阀板孔,阀板孔的一侧设置有预爆腔;阀组件包括阀板和阀轴,阀轴和阀板气密性滑动套接的分别处于连通位置和阻断位置,阀轴和阀板上分别设置有动磁环和定磁环;阀轴由连通位置转换为阻断位置由预爆腔内闪爆的可燃气体驱动。本发明无需电源等电气元件,具有结构简单、安全性好、可靠性高的优点。
Resumen de: CN119951526A
本发明涉及高熵材料技术领域,尤其涉及一种具有高光催化制氢性能的高熵材料及其制备方法和应用。本发明制备的(TiMnCoNiCu)3O4‑TiO2复合材料在高温下反应时大的晶粒断裂破碎,分散成小颗粒,在形成异质结时颗粒重新生长,尺寸变小,由于纳米粒子尺寸小,光生载流子容易扩散到表面,阻止光生电子‑空穴对的复合,从而产生良好的光催化活性。
Resumen de: CN119956409A
本发明公开了一种氮掺杂碳包覆的多金属纳米片阵列的合成方法及其电解水应用,本发明通过泡沫镍预处理、经一步水热法合成前驱体纳米片阵列,接着转化为前驱体ZIF,最后热解,得到最终产物,所述前驱体纳米片阵列包括七元Fe‑Cr‑Al‑Ce‑Co‑Zn‑Ni高熵纳米片阵列或六元Fe‑Cr‑Al‑Co‑Zn‑Ni高熵纳米片阵列。本发明所制得的多金属催化剂在复杂反应体系中展现出独特优势,不仅催化活性高、且具有稳定的电催化性能。
Resumen de: CN119956388A
本发明属于电解水制氢技术领域,具体涉及一种碱性水电解制氢电极及其制备方法。该制备方法包括以下步骤:S1、将电极基材的表面进行毛化处理,得到电极前驱体;S2、将电极前驱体进行时效处理;S3、将时效处理后的电极前驱体在还原气氛中进行热处理,即得。该制备方法通过毛化处理、时效处理、还原热处理,增加电极基材的活性位点、比表面积并改善导电性,制备所得电极具有良好的催化活性、高稳定性以及较低的成本。
Resumen de: CN119954094A
本发明公开了一种船舰自行制氢系统,包含化学物储罐、水处理罐、制氢反应罐、制冷外套、热交换器、引风机、干燥段、氢气纯化装置、压缩机及储氢罐;所述化学物储罐及水处理罐均与所述制氢反应罐连接,所述制氢反应罐与所述引风机连接,所述引风机与所述干燥段连接,所述干燥段与所述纯化装置连接,所述纯化装置与所述压缩机连接,所述压缩机与所述储氢罐连接;所述制冷外套设在制氢反应罐中上部,并与所述热交换器连接。本发明的优点是:解决了氢气来源限制问题,为船舰自带动力制备系统提供了支撑;另外采用外套式冷却法,将温控放在反应产热的核心处,使反应产热核心处的温度控制在适宜范围内;在保证安全的同时,也有利于氢气后期的纯化。
Resumen de: CN119956420A
本发明公开了一种基于蛋白质模板的类水滑石纳米片析氧电催化剂及其制备方法,通过改性剂在pH=3~9下与蛋白质在20~80℃下反应制得蛋白质溶胶模板,经过透析后通过此蛋白质溶胶模板可以制备两种类型类水滑石纳米片析氧电催化剂,一种是将蛋白质溶胶模板和金属离子前驱体、碱性溶液混合水浴加热搅拌、离心清洗后冻干得到类水滑石纳米片析氧电催化剂;一种是将蛋白质溶胶模板和金属离子前驱体、碱性溶液以及泡沫镍一起混合水浴加热、清洗、真空干燥后得到泡沫镍原位生长类水滑石纳米片析氧电催化剂。本发明具有方法简单、成本低、可大规模生产等优势,在电解水析氧领域展现了巨大的工业化应用前景。
Resumen de: CN119951546A
本发明公开了一种破壳球形氨分解制氢催化剂及其制备方法与应用,该氨分解制氢催化剂包括载体和过渡金属氧化物纳米颗粒,其中:过渡金属氧化物颗粒均匀分布于载体的表面,并与其形成异质结构;载体为破壳的球形碳化钼,且载体的腔体内、外表面均具有多孔结构。本发明催化剂的活性成分为过渡金属氧化物纳米颗粒,且过渡金属氧化物颗粒锚定于载体的表面,并形成稳定的异质结构,不仅有利于稳定纳米颗粒,避免反应过程中颗粒团聚;而且能优化催化剂的电子结构,提高氨分解的能量转换效率。负载纳米颗粒的载体为破壳的球形碳化钼,且球形腔体内外面具有多孔结构特征,具有高比表面,能吸附大量的氨分子至催化位点,从而提高氨分解的转换效率。
Resumen de: CN119962200A
本发明公开了电氢热综合能源系统两阶段鲁棒优化运行方法,涉及综合能源系统领域,本发明考虑了碱性电解制氢系统过程中热量的回收利用,通过换热器将电制氢产生的热量回收到供热网络中,以提升能源利用效率。本发明构建了包含风电、光伏‑氢气和供热系统的电氢热综合能源系统两阶段鲁棒优化运行模型,提出了基于多仿射决策规则的鲁棒优化模型求解方法,提升了对电氢热综合能源系统运行经济性。
Resumen de: CN119956417A
本发明公开了一种有序化阳极GDE、膜电极组件及其应用,其中,该有序化阳极GDE包括有序化气体扩散层和有序化阳极催化层;所述有序化气体扩散层包括有序的微米级多孔钛、过渡金属及其氧化物,所述过渡金属及其氧化物附着于所述多孔钛表面;所述有序化阳极催化层包括半导体纳米片阵列及其表面沉积的析氧催化剂纳米粒子,所述半导体纳米片阵列生长于所述有序化气体扩散层表面;所述半导体纳米片阵列为钙钛矿结构氧化物ABO3,其中A为碱土金属或碱金属元素,B为过渡金属元素,O为氧元素。本发明采用ABO3半导体纳米片阵列作为有序化阳极催化层的载体,提高了催化剂的利用率,改善了气液传输通道,提升了有序化阳极GDE的稳定性。
Resumen de: CN119956400A
本发明属于材料制备技术领域,公开一种用于碱性析氢的合金薄膜负载贵金属电极的制备方法,制备方法如下:先通过恒电流沉积,在泡沫镍上生长镍铁合金薄膜,再浸渍在三氯化钌水溶液中,在泡沫镍的作用下三价钌离子被还原为金属钌,以钌纳米颗粒团簇形式锚定在合金薄膜上,且样品具有超低钌负载量。本发明得到的合金薄膜光滑均匀,有利于活性位点的均匀分布,加快电子转移,同时通过控制浸渍条件负载具有合适尺寸的钌纳米团簇,促进析氢反应,且钌纳米团簇与镍铁合金间的协同作用优化了氢吸附过程,提升了材料的析氢反应动力学。本发明得到的自支撑催化剂性能优异,优于Pt/C催化剂,且在工业级大电流密度下仍保持优异的稳定性,具有广阔的应用前景。
Resumen de: CN119956375A
本申请公开了一种高效的制氢设备,涉及电解技术领域,包括底座,其上设置有电解仓,所述电解仓内设置有电解槽,所述电解仓一端设置有用于连接所述电解槽的输出转接件,所述电解仓的另一端设置有用于连接所述电解槽的辅助接口和电解液循环泵,所述底座上还设置有输入调节接管和电源仓;所述电解槽包括端板、阳极组件、阴极组件、双极组件、隔膜和极板框,所述端板间隔布置为两个,两个所述端板相对的一面分别贴合设置所述阳极组件和阴极组件,且在所述阳极组件和阴极组件之间设置有多个双极组件,所述阳极组件、阴极组件和双极组件之间通过所述隔膜分隔,用于解决碱性水电解制氢过程中热量聚集分布不均匀的问题。
Resumen de: CN119956399A
本发明公开了一种用于固体氧化物氨电解制氢的钙钛矿阴极催化材料及其制备与应用。所述阴极催化材料为双钙钛矿Sr2Fe1.5‑xCoxMo0.5O6(0≤x≤0.3)。用其制备的阴极可在中高温工况下运行,且其在氨电解过程中会发生氢气还原,生成钴铁合金并锚定在层钙钛矿Sr3Fe2‑x‑yCoxMoyO7(0≤x≤0.3,0≤y≤0.3)表面,这使其阴极界面有更多含量的低价态离子,可为水解离提供受体电子,增强了阴极界面对水蒸汽的吸脱附能力,表面的合金还为水解离提供更多的活性位点,因而可用于固体氧化物氨电解制氢。
Resumen de: CN119951503A
本发明公开了一种热催化氨分解制氢技术领域的多孔碳包覆下钌基氨分解制氢催化剂及其制备方法和应用,催化材料包括活性组分、载体材料和基底材料三部分,其中活性组分为Ru,载体材料为稀土金属氧化物CeOx,基底材料为氮掺杂的多孔碳材料,活性组分质量分数为3wt.%。催化材料载体前驱体采用水热法进行制备,通过浸渍法将活性组分分散锚定在载体前驱体上制得催化材料前驱体,再将催化材料前驱体置于惰性气氛中焙烧,最终制得用于氨分解反应的低钌含量高效催化材料。本发明制备的催化材料具有高活性、高分散性、低贵金属含量的优点,350℃时氨分解率可达80.97%,具有广阔的工业应用全景,有助于实现氨氢绿色循环经济的蓝图。
Resumen de: CN119956414A
本发明公开了一种杂多酸和FeOOH共掺杂的α‑Fe2O3光阳极及其制备方法,包括:将清洁后的氧化锡导电玻璃置于前驱液中进行反应,得到覆盖β‑FeOOH薄膜的氧化锡电极;冲洗氧化锡电极上的β‑FeOOH薄膜并对冲洗后的氧化锡电极依次进行干燥处理、高温退火处理,得到α‑Fe2O3薄膜光阳极;在α‑Fe2O3薄膜光阳极表面滴涂杂多酸溶液,得到掺杂杂多酸的α‑Fe2O3光阳极;在掺杂杂多酸的α‑Fe2O3光阳极上沉积FeOOH,得到杂多酸和FeOOH共掺杂的α‑Fe2O3光阳极。本发明通过在α‑Fe2O3光阳极表面负载杂多酸和FeOOH作为助催化剂,可以获得更优异的光电催化性能。
Resumen de: CN119956387A
本发明提供了一种电极板组件、制氢设备以及制备方法,其中,电极板组件包括:第一极板面板;第二极板面板,与第一极板面板层叠设置,第二极板面板与第一极板面板之间形成安装腔;隔膜,设置在第二极板面板与第一极板面板之间,隔膜将安装腔分隔出第一腔室和第二腔室;第一电极网结构,设置在第一腔室内,第一电极网结构包括层叠设置的第一极网和第二极网,第一极网相对于第二极网靠近隔膜设置,第一极网具有第一网孔,第二极网具有第二网孔,第一网孔的直径小于第二网孔的直径;第二电极网结构,设置在第二腔室内。本申请的技术方案能够有效地解决相关技术中的电极板组件电解水的效率不佳的问题。
Resumen de: CN119956412A
本发明公开了一种微波辅助制备单原子催化剂的方法及其在电解水制氢中的应用,其中方法包括以下步骤:S1:将金属无机盐和水凝胶粉体按照一定比例秤取并搅拌分散于去离子水中,加入氨水调节pH至8并搅拌使其充分吸附,随后过滤得到吸附饱和后的水凝胶;S2:将水凝胶放入冷冻干燥机干燥,随后将干凝胶倒入陶瓷坩埚并放入微波炉中加热使其充分碳化,冷却得到黑色泡沫状材料;S3:将上述冷却后的黑色泡沫状材料取出并研磨,得到目标碳基金属单原子催化剂材料;本发明制备得到的单原子催化剂中金属原子分散好,同时具有简单方便、制造成本低、结构蓬松、电导率高、电催化活性好和易于大规模制备的优点。
Resumen de: CN119956421A
本发明公开了一种用于海水电解制氢的催化剂及其制备方法和应用,属于材料技术领域,用于海水电解制氢的催化剂,包括:催化剂和界面层;其中,所述界面层为包覆在所述催化剂表面含有金属氧化物的水凝胶;通过将含有金属氧化物的水凝胶均匀涂覆到催化剂表面,按压均匀,再进行干燥,得到用于海水电解制氢的催化剂。即本发明通过将含有特定金属氧化物的水凝胶层均匀包覆于催化剂表面,以构建稳定的界面层,能够有效增强催化剂在海水电解过程中的催化活性及其长期稳定性;且本发明方法具有操作简便、成本低廉、绿色环保的特点,适用于大规模工业化生产,具有广泛的应用前景和重要的经济与环境效益。
Resumen de: CN119956411A
本发明提供了一种碱性析氧催化剂及其制备方法和应用。所述碱性析氧催化剂包括基底、在所述基底上生长的金属氧化物A3O4和在所述A3O4中掺杂的Ce单原子或Ce单原子和CeO2的组合,所述A包括Co、Ni或Mn中的任意一种,所述A3O4的结构包括尖晶石晶体结构,所述尖晶石晶体结构中的部分八面体位点由所述Ce单原子占据。本发明通过将Ce掺杂到具有尖晶石晶体结构的金属氧化物中,能够使得该金属氧化物在催化过程中产生更多的氧空位,提升金属氧化物中金属位点的电子局域化程度,优化对反应中间体的吸附过程,从而加快反应;并且,制备方法简单高效,成本较低、适合大规模制备。
Resumen de: CN119956378A
本发明公开一种质子交换膜电解水制氢耦合低温海水纯化的系统包括:整流变压单元,质子交换膜电解槽单元,氢冷凝分离单元,氢干燥单元,氧气液分离单元,海水过滤驳运单元,纯水循环单元,低温海水制纯水单元,纯水存储单元。本发明通过低温海水制纯水单元取代传统质子交换膜电解水制氢系统中的换热器,不仅可维持质子交换膜电解槽单元的纯水在合理的温度,且能利用废热进行低温海水制纯水,制备的纯水可作为质子交换膜电解水制氢的原料用水,此外还可重复利用来自氢冷凝分离单元和氧气液分离单元中分离出的纯水,由此可摆脱对淡水资源的依赖,可为宽功率波动性海上风电制氢场景提供可靠的技术支撑,有利于加快推进绿色氢能经济发展。
Resumen de: CN119954092A
一种高熵金属氧化物光热化学循环直接分解水制氢设备及方法,包括热风系统、蒸汽系统及反应系统,反应系统内设置有高熵金属氧化物,热风系统用于产生高温热解气,蒸汽系统用于产生蒸汽,高温热解气及蒸汽分别交替通入两套反应系统中进行热风流程及水流程,使两套反应系统可以共用相同的热风系统及蒸汽系统,同时热风系统及蒸汽系统可以不需要停机持续进行生产,反应系统内未反应完的过量的高温热解气进入蒸汽预热器中与蒸汽发生热交换,使蒸汽升温形成过热蒸汽。本发明不仅可以通过两套反应系统交替进行热风流程及水流程,有效提高制氢设备的生产效率,而且可以通过高温热解气与蒸汽进行热交换,有效降低制氢设备的能耗。
Resumen de: CN119951501A
本发明涉及一种Ru基催化剂及其制备方法和在氨分解制氢反应中的应用,属于催化剂制备技术领域。所述催化剂以富缺陷d‑CeO2为载体,Ru为活性组分,其中Ru的质量百分含量为0.01%‑5.0%。本发明采用原子层沉积技术将Ru沉积于富缺陷d‑CeO2载体上,制备Ru/d‑CeO2催化剂。本发明所提供的氨分解催化剂,Ru的分散度接近100%,可以实现贵金属Ru的充分利用。本发明催化剂具有氨分解反应温度低,氨空速高,氨转化率高的优点,在氨分解反应中表现出较高的催化活性和稳定性。
Resumen de: CN119956381A
本发明涉及一种具有环状定位端部的质子交换膜制氢电解槽自平衡密封结构及一体注塑方法,包括阳极板、阴极板、膜电极组件和密封件,膜电极组件与密封件通过密封件MEA定位槽连接固定,并设置在阳极板和阴极板之间;在密封件中,密封件弹性定位端部单元与阳极板和阴极板上的密封槽接触,形成密封界面;密封件自适应压力调节单元为根据压力变化发生弹性形变的C形单元。当气压差越大时,密封件自适应压力调节单元的弹性弯曲越大,密封件弹性定位端部单元与密封槽槽壁之间的接触应力越大,且密封界面也越大。与现有技术相比,本发明具有应力分布均匀、使用寿命长和生产效率高等优点。
Resumen de: CN119951545A
本发明提供了一种碳化钨量子点修饰的ZnIn2S4纳米片光催化剂的制备方法和应用。本发明通过引入具有局域表面等离子共振效应的碳化钨使催化剂表现出优异的光热和光催化性能。该高纯度的复合材料在可见和近红外区域具有明显的光吸收,其肖特基结、表面缺陷和光热效应等多策略提高了催化剂光生载流子的分离效率和迁移速率,进而提升氢气的产生速率。持续生成的低浓度·OH和光生空穴通过攻击苯甲醇的αC‑H键,有效提高了苯甲醛的转化率和选择性。本发明技术合成步骤简单,无贵金属参与,实现了高活性和选择性的苯甲醇氧化制苯甲醛耦合水分解制氢双功能。在温和条件下,以太阳能作为唯一的能量输入同步生成清洁燃料和高附加值精细化学品具有广泛的应用前景。
Resumen de: CN119956401A
本发明公开了一种双核镍基金属有机框架材料的制备及其在电催化苯甲醇氧化及制氢中的应用。涉及有机配体1,2,4,5‑四(4‑羧基苯基)苯、六水合高氯酸镍、而溶剂体系为水、N,N‑二甲基乙酰胺、HBF4组成的混合溶液,经过水热法直接配位生长得到的一例多孔金属有机框架材料。将其用作电催化苯甲醇氧化反应的催化剂时,发现其具有优越的氧化活性,并且在引入第二种金属Co后,Co0.01Ni0.04‑MOF催化剂具有更加优越苯甲醇氧化活性及其析氢活性,在1 M KOH+0.1M BA里只需要1.39V的过电势就可驱动BOR,并且在大电流下能有着比较优异的稳定性,在10000s内表现出强的耐久性,电解10000s后电流保持率依然可以维持在90%以上。
Resumen de: CN119956379A
本发明公开一种基于海水的阴离子交换膜电解水制氢系统包括:阴离子交换膜电解槽单元,氢重力式分离单元,氢洗涤单元,氢纯化单元,氧重力式分离单元,氧洗涤单元,氧气液分离单元,弱碱液循环单元,换热单元,闪蒸单元,海水淡化单元,真空泵单元,海水过滤驳运单元,淡水存储供给单元。本发明可进行闪蒸单元和换热单元之间的淡水循环,实现淡水的重复性利用,并可利用须冷却的热弱碱液对循环淡水加热,进而对热淡水进行闪蒸,产生的蒸汽作为热源对海水淡化单元的海水进行加热,海水在负压环境下进行低温淡化,制备的淡水可作为阴离子交换膜电解槽单元的原料淡水。
Resumen de: CN119964442A
本发明属于教学实验装置技术领域,具体涉及一种电解水的模块化实验装置,包括固定板,固定板一板面上设有储水盒、氢气管和氧气管,固定板另一板面上设置水电解装置,水电解装置进水口和水电解装置出水口连通储水盒,氢气管上部设有氢气管进气口,氧气管上部设有氧气管进气口,水电解装置氢气出口连通氢气管进气口,水电解装置氧气出口连通氧气管进气口,储水盒顶部设有储水盒进水口,氢气管下端与储水盒连通且上端设有氢气出口,氧气管下端与储水盒连通且上端设有氧气出口,固定板上方设有可拆卸氢气氧气检测装置,氢气出口和氧气出口均连接可拆卸氢气氧气检测装置。本发明方便拆卸移动,不易破碎,可使用多种场景教学需求。
Resumen de: CN119956380A
本发明涉及制氢膜电极技术领域,尤其是涉及一种离子有序化的阴离子交换膜电解水制氢膜电极及其制备方法。一种离子有序化的阴离子交换膜电解水制氢膜电极包括:阴离子交换膜基体;阳极催化剂包覆层;阴极催化剂包覆层;所述阳极催化剂包覆层和所述阴极催化剂包覆层均包覆有若干阴离子纳米棒。本申请通过阴离子交换膜基体两侧分别包覆有阳极催化剂包覆层和阴极催化剂包覆层,并且这两层均包覆有若干阴离子纳米棒。阴离子纳米棒提供了膜电极中离子传输的高速通道,极大地提高了阴离子传导效率,同时也不影响膜的机械性能。合适的离子通道,而且同时还有效地增加了催化层的活性面积,可以大大降低催化剂的使用量。
Resumen de: WO2025098254A1
Provided in the present invention are an anode for a PEM water electrolytic cell and a preparation method for the anode. The anode comprises a stainless steel base body and a layered oxide structure generated on the surface of the stainless steel base body in situ, wherein the layered oxide structure comprises a manganese-deficient inner layer and a manganese-rich outer layer, the manganese-rich outer layer comprising a crystal manganese oxide secondary outer layer and an amorphous iron-containing manganese oxide outermost layer. The layered oxide structure of the surface of the anode of the present invention can maintain long-time catalytic activity for electrolysis of water and stability under acidic conditions, and an appropriate surface structural component selection solves the problems of corrosion and stability of self-catalysis and non-noble metal electrodes in an acidic environment. The anode provided in the present invention significantly reduces the present cost of hydrogen production based on a noble metal catalyst, and is expected to solve high-cost problem of PEM large-scale electrolysis hydrogen production.
Resumen de: CN119956427A
本发明涉及水电解制氢设备技术领域,公开了一种水电解制氢设备自力式加水系统,高位水箱放置于氧气分离器的正上方,高位水箱的补水出口与氧气分离器的补水进口通过设有氧气分离器补水阀的连接管路Ⅰ连接;氧气分离器上端和高位水箱上端通过设有均压阀的连接管路Ⅱ连接;高位水箱分别通过设有补水阀的进水管路、设有高位水箱排气阀的排气管路Ⅰ与外部水、气连通;氧气分离器通过设有氧气分离器排气阀的排气管路Ⅱ与外部环境连通;测量模块用于测量高位水箱和氧气分离器的压力值和液位值,并将其实时传送给控制系统;控制系统通过控制所有阀门的自动开闭完成高位水箱或氧气分离器的补水。本发明无需外部资源即可实现对氧气分离器的加水功能。
Resumen de: CN119956425A
本发明公开了一种用于碱性水电解的复合隔膜及制备方法,复合隔膜包括基膜及亲水层,基膜为含聚苯硫醚分子主链的纤维,亲水层为基于磺化四氟乙烯的含氟聚合物,在碱性电解液的环境下,复合隔膜的碱液接触角α与基膜的碱液接触角α1存在如下关系:α=k·α1,k为不高于0.7的正数;亲水层的最可几孔径不大于15μm,基膜的厚度x1与亲水层的厚度x2满足以下关系:x1+x2≤900nm,x2=p·x1,p为不高于0.1的正数;碱性电解液为质量浓度30%‑50%的KOH溶液,温度为75‑85℃。通过在含聚苯硫醚分子主链的纤维上附着基于磺化四氟乙烯的含氟聚合物,改进原隔膜结构的耐碱亲水性和隔气性,提高隔膜在碱性环境中服役的稳定性。
Resumen de: CN119956423A
本申请公开了碱性电解水制氢复合隔膜及其制备方法,将无机粉体、树脂和溶剂混合均匀,得到铸膜液;将铸膜液涂覆在基膜两侧;然后经过两次相转化,再进行干燥即可得到碱性电解水制氢复合隔膜。与现有技术相比,本发明改进了复合隔膜的相转化LIPS工艺,使用冷冻和真空干燥的方法代替传统的LIPS工艺,涂覆好的隔膜在经过空气的蒸汽相转化工艺后,使用液氮作为冷却介质对隔膜进行冷冻干燥,将溶剂、无机颗粒在隔膜内部固定住,不破坏无机颗粒以及溶剂在隔膜内部的均一性,再通过真空干燥的方式将冻住的溶剂升华出去。该方法和传统的方法相比,制得的复合隔膜中的无机颗粒在内部分散均匀,并且孔道致密,和商业化隔膜相比,亲水性强,气密性高。
Resumen de: CN119956394A
本发明属于氢气制备与催化剂材料技术领域,具体涉及一种M‑NiFe LDH催化剂及其在电催化生物质氧化耦合制氢中的应用。本发明提供一种高价态过金属阴离子插层,富含氧空位的NiFe LDH催化剂的合成方法,利用高价态金属阴离子调控Ni、Fe的电子结构,提高HMFOR反应的催化性能,并通过简单可控的CV还原法构建氧空位缺陷,提高了HMF的选择性。
Resumen de: CN119955111A
本发明公开了一种沸石咪唑酯骨架材料和产氢沸石咪唑纳米载体的制备方法和应用,包括:将六水合硝酸锌和十六烷基三甲基溴化铵溶于去离子水中形成溶液A,将2‑甲基咪唑溶于去离子水中形成溶液B,最后将溶液A滴入溶液B中并搅拌反应得到沸石咪唑酯骨架材料。将硼氢化钠水溶液滴入沸石咪唑酯骨架材料中搅拌反应得到溶液C;将溶液C用超滤管离心,并用去离子水洗涤后得到产氢沸石咪唑纳米载体。这种小尺寸的还原性ZIF‑8不仅制备过程简单,还不需要复杂的产氢触发条件,这使得它能够在肿瘤内部高效且可控地产氢,并通过抑制线粒体呼吸和破坏肿瘤细胞内氧化还原稳态来有效刺激肿瘤细胞死亡和激活肿瘤免疫微环境。
Resumen de: CN119951410A
本发明公开了一种大规模氢化锂水解释氢装置及方法,所述装置包括水解反应单元,其用于氢化锂水解反应产生氢气;氢气处理单元,其用于净化、储存、加压和干燥氢气;液相处理单元,其用于处理氢化锂水解反应的液相产物。通过水解反应单元、氢气处理单元和液相处理单元之间的相互作用,实现连续、稳定对外供氢和热水,且减少了废气和废水的产生,有助于减少对环境的污染。
Resumen de: CN119956426A
本发明公开了一种用于预防质子交换膜电解槽短路的方法及装置,其中方法包括:获取电解过程中参考组电解槽内各电解小室的温度与性能数据,并基于相关性分析方法构建用于判断电解小室短路风险的短路风险判断模型;基于短路风险判断模型,判断测试组电解槽内各电解小室的电压衰减率是否在第一预设范围内;若是,则判断测试组电解槽的短路风险低于阈值;否则,对相应电解小室进行定频阻抗测试;基于定频阻抗测试结果与短路风险判断模型,判断相应电解小室的电阻是否在第二预设范围内;若是,则判断测试组电解槽的短路风险低于阈值;否则,判断测试组电解槽的短路风险高于阈值。本发明可监测电解小室是否存在短路风险,确保整个制氢系统安全运行。
Resumen de: CN119956402A
本发明公开了一种铱基合金催化剂及其合成方法和应用。该铱基合金催化剂包括铱基合金活性组分和载体;所述铱基合金活性组分包括铱和选自铁、钴、镍的至少一种过渡金属;所述载体为导电氧化物载体;其中,所述铱基合金活性组分为具有(111)晶面暴露的多面体纳米晶。本发明提供的催化剂在碱性条件下电解水及二氧化碳电还原阳极氧气析出反应中具有高活性和稳定性。
Resumen de: CN119956384A
本发明公开一种基于固体氧化物电解池的海水制氢系统及方法,将固体氧化物电解池电解水技术、海上风电、海水淡化技术进行有效耦合,可实现海水吸收固体氧化物电解池电解水过程中产生的废热用于海水低温淡化,制备的淡水还可为固体氧化物电解池电解水提供淡水源,不仅使废热得到再利用,且可提高制氢效率。本发明不仅可有效解决海上风电的就地消纳问题,也可摆脱海上风电电解水制氢技术面临的淡水资源紧缺、海水成分复杂等问题,对实现‘双碳’目标具有重要意义。
Resumen de: CN119951445A
本发明公开了一种可控聚光氨分解制氢系统及控制方法,包括反射组件和氨分解组件,反射组件包括镜场框架、柔性反射镜和卷曲调节结构,柔性反射镜呈抛物线弯曲设于镜场框架的向阳侧,卷曲调节结构分别与柔性反射镜沿抛物线方向的两端连接,卷曲调节结构带动柔性反射镜的两端沿镜场框架的抛物线弯曲方向移动,以对柔性反射镜的两端进行展开和卷曲;氨分解组件包括氨气分解反应管,氨气分解反应管的内部设有氨分解催化模块,氨气分解反应管的中心轴位于柔性反射镜的抛物镜焦线处。本发明根据太阳辐照的不同强度,柔性反射镜的面积可以实现灵活调节,从而为氨分解反应提供适宜的反应温度,太阳光热能量不足时,太阳能电池板所发电力可以进行电辅热。
Resumen de: CN119956416A
本发明涉及氢能生产技术领域,尤其涉及一种氮和硫共掺杂碳纳米管包覆镍纳米颗粒的析氧电催化剂制备方法,该方法以六水合硝酸镍和二腈二胺为前驱体,采用高温热解法合成了Ni/N‑CNT@Ni,通过酸洗把未与碳纳米管结合的金属镍腐蚀掉,然后再通过水热的方法,利用硫脲作为S源,最后制备出N,S‑CNT@Ni复合材料;本发明仅涉及高温热解、酸洗和水热三个步骤,操作简单,无需负责设备,易于大规模生产,其制备工艺简单,所使用的原料均为廉价易得的化学品,降低了催化剂的生产成本,经实验证实,稳定性好,高温热解可以有效地促进催化剂材料的结构转变,进而提升其活性和选择性,酸洗则是通过特定的酸液去除材料表面的杂质,水热处理能够促进催化剂内部孔隙结构的优化。
Resumen de: CN119951580A
本发明提供一种新型Pt NPs@CNQDs/TpTAPyT‑COF催化剂材料,目的是为了解决TpTAPyT‑COF吸收光响应范围、电子空穴易复合不足的问题。方法:一、Pt NPs的制备;二、CNQDs的制备;三、Pt NPs@CNQDs/TpTAPyT‑COF复合材料的制备。本发明的制备过程简单有效,试剂消耗少且性能高;且本发明提供的光催化剂能够有效提高光催化分解水效率低的问题。本发明应用于光催化全分解水领域,实验表明该复合材料具有优异的光催化分解水性能,在可见光照射下分解水产氢速率可达到391.96μmol·h‑1·g‑1,产氧效率为195.45μmol·h‑1·g‑1。
Resumen de: CN119951455A
本发明公开了一种基于浆态储制氢材料的便携式制氢系统及使用方法,包括反应器,以及与反应器分别连接的进料模块和气体分离模块;进料模块用于向反应器的顶部和底部分别输送浆态储制氢材料和水;反应器带有加热部件且内部设置多层折流结构,工作时,顶部的浆态储制氢材料顺着多层折流结构下流,底部的水被加热成水蒸气与浆态储制氢材料反应;气体分离模块用于分离水蒸气与浆态储制氢材料反应产生的气体,得到纯化氢气。本发明将反应器设置为多层折流结构,浆态储制氢材料顺着多层折流结构下流与加热的水蒸气反应;使用水蒸气反应以及多层折流结构的设置增大了接触面积,还延长了反应物在反应器的停留时间,提升了反应效率。
Resumen de: CN119950917A
一种水剂氢氧气呼吸机装置属于呼吸机技术领域,尤其涉及一种水剂氢氧气呼吸机装置。本发明提供一种使用效果好的水剂氢氧气呼吸机装置。本发明包括壳体,其特征在于壳体上设置有内部湿化瓶、水剂氢氧发生装置、湿化瓶连接器和氢氧气输出缓冲罐,水剂氢氧发生装置的氢氧气出口与氢氧气输出缓冲罐进口相连,氢氧气输出缓冲罐出口通过内部湿化瓶与湿化瓶连接器相连。
Resumen de: CN119956390A
本发明提供的一种电解制氢用催化层的制备工艺,包含如下步骤:催化剂浆料的制备、催化层的制备、催化层的转印、催化层的处理,通过以上步骤依次得到阴极催化剂浆料和阳极催化剂浆料、涂覆于基膜上的阴极催化层和阳极催化层、P‑CCM、T‑CCM,通过原位刻蚀有效提升催化层中催化剂活性位点的暴露,提升阳极催化层氧化铱的利用率从而提升性能;通过使用无机纳米材料作为孔模版,可有效提升阴、阳催化层的孔结构,提升催化层的气体传输性能从而提升催化层性能。
Resumen de: CN119956383A
本发明提供了一种基于碱性电解槽的气液分离器及小室式反应分离一体化装置,分离器壳体一侧侧壁上开有与分离器壳体内腔贯通的分离器入口,该分离器入口通过直管与碱性电解槽的出口连通,气液分离器内通过挡板和离心器对气液混合物进行分离操作,可有效提高分离效率,降低能耗。小室式反应分离一体化装置则将电解槽分解为若干电解小室,并将每个电解小室的出口对应设计一个气液分离器,通过集成化的设计可有效简化流动路径,减少气液混合物输送的距离和管道压力损失,简化系统结构,降低系统的能耗,节省空间与成本,提升系统稳定性与安全性。
Resumen de: CN119956424A
本发明属于高分子膜材料制备技术领域,具体涉及一种亲水性聚苯硫醚隔膜及其制备方法与应用。该制备方法包括以下步骤:S1、将过氧化氢、乙酸、硫酸和去离子水进行混合,配置成溶液;S2、将聚苯硫醚隔膜浸泡在步骤(1)所述溶液中,保温一段时间后,得到改性聚苯硫醚隔膜;S3、将步骤(2)所述改性聚苯硫醚隔膜进行清洗干燥,得到亲水性聚苯硫醚隔膜。该制备方法简单可行,易于操作,适合大规模工业应用,能够有效改善PPS隔膜布的亲水性,降低其面电阻,同时保证隔膜气密性,不影响纯度。
Resumen de: CN119951534A
本发明公开了一种具有三维层次多孔结构的氨裂解制氢催化剂及其制备方法,该氨裂解制氢催化剂包括载体和钌纳米颗粒,钌纳米颗粒均匀分布于载体的表面,载体为碳包覆的金属氧化物,且载体具有由纳米片构筑的三维层次多孔结构。本发明的氨裂解制氢催化剂的活性成分为钌纳米颗粒,负载钌纳米颗粒的载体为碳包覆的金属氧化物,三种组分共同作用下,有效提高了催化剂的本征活性,进而提高了氨分子的吸附、裂解、H2脱附的能力;同时,催化剂的载体具有高孔隙率、高比表面积的三维层次多孔结构特征,该结构特征有利于获得超细的钌纳米颗粒,且三维层次多孔结构能在微观结构下滞留氨分子在催化剂内部的时间,从而提高氨转化效率。
Resumen de: CN119951547A
本发明涉及一种氨分解制氢催化剂及其制备方法和应用,所述氨分解制氢催化剂包括载体以及负载在所述载体上的过渡金属,所述载体是氨基化改性的树枝状介孔二氧化硅。本发明氨分解制氢催化剂以氨基化改性的树枝状介孔二氧化硅为载体负载过渡金属,介孔结构可以提供负载活性金属纳米粒子的限制位点,从而有效抑制活性金属在氨分解过程中的尺寸增长,介孔结构还可以增强氨的传质,从而提高催化剂的催化活性;再通过氨基化改性,提高活性金属组分在介孔二氧化硅上的分散度和催化活性,从而提高氨分解反应的效率。
Resumen de: CN119954220A
本发明公开了一种含氧空位缺陷的Ni‑Fe LDH超薄纳米片的制备方法,所述方法包括以下步骤:(1)将氯化镍、氯化亚铁、六亚甲基四胺和十二烷基硫酸钠通过一步水热法得到Ni‑Fe LDH超薄纳米片;(2)将Ni‑Fe LDH超薄纳米片在硼氢化钠溶液中进行蚀刻,构造氧空位缺陷,获得含氧空位缺陷的Ni‑Fe LDH超薄纳米片。本发明的超薄纳米片具有超薄的厚度和丰富的氧空位缺陷,能够提供更多的边缘活性位点,提高电解水析氢的反应速率。
Resumen de: CN119951320A
本发明公开了一种通过锂‑氢气电池充放电循环分离氢同位素的方法。本发明的分离氢同位素的方法包括如下步骤:第一步,将催化剂作为正极,将锂金属作为负极,富锂有机电解液作为电解液,在持续放电条件下,D2和H2的混合气氛中的H2在所述催化剂的作用下优先发生还原反应,生成H‑;第二步,在持续放电条件下,电解液中的Li+离子与第一步反应得到的H‑结合生成LiH;第三步,收集未参与反应的D2气体;第四步,在充电条件下,将第二步制备得到的LiH在所述催化剂的作用下分解得到H2和Li+离子;第五步,收集第四步制备得到的H2,从而实现氢同位素的分离。本发明可以在常温常压下高效分离氢同位素,工艺简单,减少能源消耗。
Resumen de: CN119956385A
本发明属于水电解制氢技术领域,具体涉及一种水电解制氢系统。一种海水电解制氢系统,其技术方案是:供电装置发电提供电能;电源模块为电解槽模块组提供电源;海水预处理模块对海水中的杂质进行去除并将过滤后的海水加热为高温蒸汽,经换热器换热后的高温蒸汽作为原料水向外输出;向外输出的原料水与设定浓度的碱液混合后经进液泵输送至电解槽模块组;电解槽模块组对混合液体进行电解,电解产生的气体和电解液一起进入气液处理系统;气液处理器系统用于实现电解气体与电解液的分离,分离出的电解液又循环进入电解槽模块组。本发明以海上风能、光伏等可再生能源作为电力来源,以海水作为制氢原料和换热介质,具有经济可行、来源丰富的优点。
Resumen de: CN119956418A
本发明公开了一种有序化阳极GDE及其制备方法,其中,该方法包括:步骤1)在多孔钛表面附着过渡金属层或过渡金属氧化物层;步骤2)通过水热法将多孔钛表面的过渡金属层或过渡金属氧化物层转变为ABO3半导体纳米片阵列,其中,A为碱土金属或碱金属元素,B为过渡金属元素,O为氧元素;步骤3)在ABO3半导体纳米片阵列表面沉积含金属的析氧催化剂。本发明制备方法简单可控、易于放大,有效提高了析氧催化剂的利用率,降低了质子、电子、反应物和产物的传质阻力,从而实现了PEM电解水性能的提升和成本的降低。
Resumen de: CN119956419A
本发明属于催化剂技术领域,具体公开了一种P‑CoPt3/P‑CoMoO4异质结构析氢电催化剂及其制备方法与应用。该析氢电催化剂包括泡沫镍基底和负载于泡沫镍基底表面的催化活性材料,其中:催化活性材料包括磷掺杂的CoMoO4和磷掺杂的CoPt3,磷掺杂的CoMoO4具有三维开放的纳米棒阵列结构,磷掺杂的CoPt3锚定于所述纳米棒阵列上,且磷掺杂的CoMoO4和磷掺杂的CoPt3形成异质结构。本发明采用简单可控的溶液浸泡法在纳米棒阵列上原位自发氧化还原反应生成P‑CoPt3/P‑CoMoO4异质结构析氢电催化剂,所制得的析氢异质结构电催化剂表现出响应灵敏、高活性和长期稳定的特点。
Resumen de: US2025145457A1
A method for ammonia (NH3) decomposition to hydrogen (H2) and nitrogen (N2) includes introducing and passing a H2-containing feed gas stream into a reactor containing an industrial waste-based nickel (Ni-SMR) catalyst at a temperature of 500 to 900° C. to form a reduced Ni-SMR catalyst; introducing and passing an NH3-containing feed gas stream through the reactor in contact with the reduced Ni-SMR catalyst at a temperature of 100 to 1000° C. thereby converting at least a portion of the NH3 to H2 and regenerating the Ni-SMR catalyst particles to form a regenerated Ni-SMR catalyst, and producing a residue gas stream leaving the reactor; and separating the H2 from the residue gas stream to generate a H2-containing product gas stream.
Resumen de: AU2024227242A1
Abstract To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an 5 electrode structure comprises an electrolyte membrane (41), a gas diffusion layer (43), and a catalyst layer (45). The gas diffusion layer (43) is positioned on one side of the electrolyte membrane (41). The gas diffusion layer (43) is a porous layer. Thecatalyst layer (45) is positioned between the electrolyte membrane (41) and the gas diffusion layer (43). The catalyst layer (45) is formed from a catalyst material. A penetration part 10 (433) formed in the gas diffusion layer (43) by the penetration the catalyst material having a thickness of 1 m or less.
Resumen de: WO2025094935A1
The present disclosure relates to: an ammonia decomposition catalyst comprising a composite oxide constituting a perovskite structure by means of at least barium, zirconium, and ruthenium; a honeycomb structure including an ammonia decomposition catalyst; and an internal combustion engine comprising the ammonia decomposition catalyst. The present disclosure makes it possible to provide: an ammonia decomposition catalyst that exhibits excellent heat resistance and initial activity even at low temperatures during ammonia decomposition activity; a honeycomb structure including an ammonia decomposition catalyst; and an internal combustion engine comprising the ammonia decomposition catalyst.
Resumen de: WO2025096412A1
Apparatus, system, and method for geothermally driven ammonia production. Hydrogen is generated using energy obtained from the underground magma reservoir and nitrogen is captured from air using the energy obtained from the underground magma reservoir. At least a portion of the generated hydrogen is combined with at least a portion of the generated nitrogen and heated at least to a reaction temperature using the energy obtained from the underground magma reservoir. The heated hydrogen contacts the heated nitrogen for a residence time to form the ammonia.
Resumen de: WO2025096690A1
A cyclic process for the capture of carbon dioxide (CO2) directly from air utilizing a three-compartment electrolytic cell coupled with a hydroxide-based CO2 capture system as well as a carbonate-based CO2 capture system. Air is passed over a hydroxide compound in the hydroxide-based CO2 capture system to extract carbon dioxide from the air and produce a carbonate compound which is transferred to the carbonate-based CO2 capture system, where air is passed over the carbonate compound to extract carbon dioxide from the air and produce a bicarbonate compound. The bicarbonate is then passed into the three-compartment electrolytic cell where CO2, hydrogen and oxygen gases are separately released and the bicarbonate solution is transformed into a hydroxide solution that is reused in the hydroxide-based CO2 capture system. The flow of input compounds from one system to the other enables efficient operation of the direct air capture of carbon dioxide system.
Resumen de: US2025145504A1
The present invention relates to processes for electrolysis of water to generate hydrogen by means of osmotic membrane distillation plants, and to osmotic membrane distillation plants designed and suitable for such processes.
Resumen de: US2025145498A1
A system is provided in at least one embodiment to process water to produce gas that can be separated into at least two gas flows using a water treatment system having a disk-pack rotating in it to cause out gassing from the water. In a further embodiment, the system use the gas released from the water to produce substantially fresh water from the processed salt water.
Resumen de: US2025146147A1
Herein discussed is a method of producing carbon monoxide or hydrogen or both simultaneously comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a hydrocarbon; and (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide or water or both, wherein carbon monoxide is generated from carbon dioxide electrochemically and hydrogen is generated from water electrochemically.
Resumen de: US2025145554A1
The present invention proposes a process for producing synthesis gas, in particular synthesis gas for methanol synthesis. The process includes the steps of providing a sulfur-containing hydrocarbon stream; providing an electrolytically produced hydrogen stream; supplying a portion of the electrolytically produced hydrogen stream to at least a portion of the sulfur-containing hydrocarbon stream to obtain a hydrogen-enriched sulfur-containing hydrocarbon stream; desulfurizing the stream obtained according to step (c) in a hydrodesulfurization unit (HDS unit) to obtain a sulfur-free hydrocarbon stream; supplying a portion of the electrolytically produced hydrogen stream to at least a portion of the stream obtained according to step (d) to obtain a hydrogen-enriched sulfur-free hydrocarbon stream and converting at least a portion of the stream obtained according to step (e) into a synthesis gas stream in the presence of oxygen as oxidant in a reforming step.
Resumen de: US2025146141A1
A syngas generation system includes a molten carbonate fuel cell (MCFC) including a MCFC cathode configured to receive a MCFC cathode input stream including a flue gas stream and a MCFC anode configured to output a MCFC anode exhaust stream including carbon dioxide and steam. The syngas generation system further includes a solid oxide electrolysis cell (SOEC) including an SOEC cathode and an SOEC anode. The SOEC is configured to receive, at the SOEC cathode, an SOEC cathode input stream, the SOEC cathode input stream including at least a portion of the MCFC anode exhaust stream, co-electrolyze carbon dioxide and steam in the SOEC cathode input stream, and output, from the SOEC cathode, an SOEC cathode exhaust stream including carbon monoxide and hydrogen gas.
Resumen de: WO2025094641A1
A separator according to the present disclosure comprises: a separator body having a first surface and a second surface; a first supply hole and a first discharge hole that are formed on one diagonal line of the separator body on the first surface and pass through the separator body; a plurality of first groove parts that are formed in a region between the first supply hole and the first discharge hole; a trapezoidal first diffusion flow path that spreads from the first supply hole to the first groove part and gradually expands in the width direction from the first supply hole toward the first groove part; a trapezoidal first convergence flow path that spreads from the first groove part to the first discharge part and gradually contracts in the width direction from the first groove part toward the first discharge hole; a first diffusion guide part that is provided in the first diffusion flow path and guides a fluid from the first supply hole to the first groove part; and a first convergence guide part that is provided in the first convergence flow path and guides the fluid from the first groove part to the first discharge hole.
Resumen de: WO2025093091A1
An alkaline electrolyzer comprising a stack (17) of electrolytic cells (1) for producing hydrogen gas (8). Each of the cathode compartments (5) comprises a cathode gas outlet (23A) into a cathode electrolyte return conduit (28), the downstream end (41) of which is connected to a hydrogen purifier (33) configured for providing purified hydrogen gas by removing oxygen from the gas received from the cathode electrolyte return conduit (28). A cathode gas recirculation system (38) connects a downstream end of the hydrogen purifier (32, 33) to an upstream end (40) of the cathode electrolyte return conduit (28) for supplying purified hydrogen gas to the cathode electrolyte return conduit (28). Each of the anode compartments (6) comprises an anode gas outlet (23B) into an anode electrolyte return conduit (28), the downstream end (41) of which is connected to an oxygen purifier (33) which removes hydrogen from the gas coming from the anode electrolyte return conduit (28). An anode gas recirculation system (38) connects a downstream end (41) of the oxygen purifier (33) to an upstream end (40) of the anode electrolyte return conduit (28) for supplying purified oxygen gas to the anode electrolyte return conduit (28). Hereby the electrolyzer can be operated at part load, for example below 10% of the nominal load.
Resumen de: WO2025092472A1
Disclosed in the present invention is a system for the on-line conversion of a sodium source into heat energy and hydrogen. A reactor is filled with hydrogen prior to a reaction, and liquid sodium and water vapor are injected into the reactor; when the water vapor comes into contact with the liquid sodium, a combustion reaction occurs to generate hydrogen and sodium hydroxide, and the water vapor which does not participate in the reaction absorbs heat to form high-temperature water vapor having a higher temperature; the temperature of a gas mixture of the hydrogen and the high-temperature water vapor is lower than 70°C after passing through a heat exchanger, the high-temperature water vapor is condensed into water and flows back to the bottom of the reactor, and the hydrogen is discharged from a hydrogen collecting pipe via a pressure relief valve; and a drain valve is controlled during the combustion reaction, and the height of a sodium hydroxide solution is made to be lower than the outlet end of a water vapor injection pipe. Potential safety hazards such as explosions caused by the reaction of sodium with water in the prior art are avoided, a heat source having a relatively high temperature and hydrogen can be formed, and the operation cost is reduced.
Resumen de: US2025149608A1
A method and system of generating electrical power or hydrogen from thermal energy is disclosed. The method includes adding heat to (or removing heat from) a salinity gradient generator configured to generate a more concentrated and a less concentrated saline solution. The method further includes drawing the more concentrated saline solution and the less concentrated saline solution from the salinity gradient generator and feeding the more concentrated saline solution and the less concentrated saline solution into a power generator. Feeding the saline solutions into the power generator causes the power generator to receive the saline solutions and generate power by performing a controlled mixing of the more concentrated saline solution and the less concentrated saline solution. The method further includes drawing, from the power generator, a combined saline solution comprising the mixed saline solutions and feeding the combined saline solution to the salinity gradient generator.
Resumen de: US2025145505A1
There is provided a producing device that can easily individually obtain acidic electrolyzed water, alkaline electrolyzed water, and mixed water while saving a space. A producing device includes: an electrolytic bath configured to produce acidic electrolyzed water and alkaline electrolyzed water; an adjuster configured to adjust discharge and merging of the acidic electrolyzed water and the alkaline electrolyzed water produced in the electrolytic bath; a flow rate adjuster configured to adjust flow rates of the acidic electrolyzed water and the alkaline electrolyzed water merged by the adjuster; and discharge portions capable of separately discharging the acidic electrolyzed water, the alkaline electrolyzed water, and the mixed water produced by merging the acidic electrolyzed water and the alkaline electrolyzed water.
Resumen de: US2025149602A1
A SOC stack system comprises one or more solid oxide cell stacks and multi-stream solid oxide cell stack heat exchanger(s).
Resumen de: US2025149600A1
A mixed metal oxide catalyst, particularly Pt and Ru containing oxide catalysts, based catalysts for polymer electrolyte membrane (PEM) fuel cells, water electrolysis, regenerative fuel cells (RFC) or oxygen generating electrodes in various electrolysis applications.
Resumen de: US2025145547A1
A hydrocarbon production equipment includes: a first reaction device that receives a source gas and causes the source gas to react by using a catalyst to generate a first intermediate gas; a second reaction device that causes the first intermediate gas to react by using a catalyst to generate a second intermediate gas; a heat supplier that can supply heat for heating the catalyst to a reactor and can supply heat for heating the catalyst to the reactor; and a controller that controls an operation of the heat supplier. The controller selectively outputs a first control signal for supplying heat to each of the first reaction device and the second reaction device and a second control signal for supplying heat to only one of the first reaction device and the second reaction device to the heat supplier. The controller selects any one of the first control signal and the second control signal based on the amount of hydrogen included in the source gas.
Resumen de: US2025146142A1
A method for the generation of a gas mixture including carbon monoxide, carbon dioxide, and hydrogen for use in hydroformylation plants, including: evaporating water to steam; feeding the steam to a solid oxide electrolysis cell (SOEC) while supplying an electrical current to the SOEC to effect a partial conversion of steam to hydrogen; utilizing the effluent SOEC gas including H2 together with CO2 from an external source as feed for a RWGS reactor in which the RWGS reaction takes place, converting some of the CO2 and H2 to CO and H2O; removing some of or all the remaining steam from the raw product gas stream by cooling the raw product gas stream allowing for condensation of at least part of the steam as liquid water and separating the remaining product gas from the liquid; using the gas mixture for liquid phase hydroformylation, while recycling CO2 to the RWGS reactor.
Resumen de: US2025146154A1
A system and method for producing hydrogen wherein the system comprises at least one electrolyzer adapted to be located within a subterranean formation, at least one electrical supply cable having a length selected to extend from the at least one electrolyzer to a ground surface power supply, at least one supply tubing string having a length selected to extend from the at least one electrolyzer to a water supply at the ground surface and at least one collection tubing string having a length selected to extend from the at least one electrolyzer to a collection location at the ground surface. The method comprises providing a well from a surface to an underground formation, locating at least one electrolyzer in the well, supplying the at least one electrolyzer with supply electricity, supplying the at least one electrolyzer with supply water, producing hydrogen gas at the electrolyzer and collecting and transporting the produced hydrogen gas to the surface.
Resumen de: US2025146478A1
A well 1 is drilled or exists that passes through the earth's surface 2 and underlying rocks 3 to connect with a subterranean hydrocarbon reservoir 4 that contains hydrocarbons 5 and commonly brine 6 (which can include formation, interstitial, connate and injected water). Well 1, (there may be a plurality of well 1's) allows the contents of reservoir 4, either hydrocarbons 5 or brine 6, to flow to the surface.
Resumen de: US2025146622A1
Hydrogen refueling station, hydrogen-powered vehicle, and hydrogen refueling system are provided. The hydrogen refueling system comprises a decomposition device, a transfer device, a storage device, and a recombination device; wherein the decomposition device is configured to decompose water into hydrogen and oxygen; the transfer device is configured to deliver the hydrogen into the storage device and to discharge the oxygen into an environment; the storage device is configured to store the hydrogen delivered from the transfer device; the recombination device is configured to receive the hydrogen from the storage device and the oxygen from the environment, the hydrogen and oxygen reacting in the recombination device to produce an electric current. The hydrogen refueling system adopts real-time hydrogen production and refueling, thereby eliminating the need to construct large hydrogen storage tanks, and the need for the long-distance transportation of the hydrogen.
Resumen de: AU2023373022A1
This determination method determines whether or not an object molecule containing elemental hydrogen is an electrolyzed hydrogen-containing molecule which contains a hydrogen molecule that is produced by water electrolysis or a molecule that is produced using a hydrogen molecule as a starting material. This determination method determines that the object molecule is an electrolyzed hydrogen-containing molecule if the deuterium abundance ratio relative to light hydrogen in the object molecule is equal to or lower than a predetermined threshold value that is lower than the deuterium abundance ratio relative to light hydrogen in nature.
Resumen de: WO2025093251A1
An energy production and storage system comprises a power input connection (10) for a renewable energy source (2); an electrolysis device (16) for electrolysis of water to produce oxygen, hydrogen, and heat; an electrical energy storage device (14); a two-way grid connection (12) coupled to an external electrical grid (4); and a controller (8). The controller (8) is configured to: (i) receive information relating to: actual or potential energy production from the renewable energy source (2), the amount of stored energy in the electrical energy storage device (14), and balancing requirements for the external electrical grid (4); (ii) use the energy from the renewable energy source (2) to power the electrolysis device (16) and/or for storage in the energy storage device (14); and (iii) based on the received information, operate the energy production and storage system as a balancing service provider by either: drawing power from the grid (4) to supply the electrolysis device (16), or supplying power to the grid (4) from the electrical energy storage device (14), thereby acting as a switch to aid in balancing for the external electrical grid (4).
Resumen de: US2025137153A1
A hydrogen generation and carbon dioxide storage system has increased processing capacity of carbon dioxide. The system includes a metal-carbon dioxide battery comprising an anode, a cathode, and an ion exchange membrane positioned between the anode and the cathode, a first supply unit configured to provide a first electrolyte to the anode, a second supply unit configured to provide a second electrolyte comprising hydrogen ions and an aqueous solution of alkali bicarbonate to the cathode, a separation unit, an electrolyte circulation unit located at a rear end of the separation unit, a dissolution unit located at a rear end of the electrolyte circulation unit, and a carbon dioxide purification unit.
Resumen de: DE102023211004A1
Elektrolysesystem mit einem elektrochemischen Stack (1), der einen Einlass (8) aufweist, durch den Wasser eingeleitet werden kann, und mit einem Auslass (9), durch den Wasser oder Gas aus dem Stack (1) ausgeleitet werden kann. Der Auslass (9) ist über eine Leitung (10) mit einem Gas-Wasser-Separator (11) verbunden, in dem das aus dem Stack (1) austretende Gas vom austretenden Wasser getrennt wird. Der Gas-Wasser-Separator (11) ist über eine Ablaufleitung (13) mit einem Wassertank (20) zur Speicherung des abgetrennten Wassers verbunden, wobei der Wassertank (20) mit dem Einlass (8) des Stacks (1) über eine Spülleitung (22) verbunden ist.
Resumen de: DE102023211007A1
Elektrolysesystem mit einem Elektrolyseur (1), der einen Einlass (2) aufweist, durch den eine Flüssigkeit eingeleitet werden kann, und einen Auslass (3), durch den Flüssigkeit oder Gas ausgeleitet werden kann, wobei der Auslass (3) über eine Auslassleitung (4) mit einem Gas-Flüssig-Separator (5) verbunden ist, in dem das aus dem Elektrolyseur (1) austretende Gas von der austretenden Flüssigkeit getrennt wird. Der Einlass (2) ist mit einem Drucktank (10) verbindbar, in dem Flüssigkeit unter einem Spüldruck vorgehalten wird.
Resumen de: WO2025091059A1
The invention relates to a cooling system for an electrolysis device for producing hydrogen, wherein the electrolysis device has at least one electrolysis stack (1) and at least one installation component, wherein the cooling system has at least two coolant circuits (2, 2') which are separate from one another, wherein a first coolant circuit (2) is designed only for cooling the electrolysis stack (1) of the electrolysis device, and a second coolant circuit (2') is provided only for cooling the installation component of the electrolysis device, and wherein the temperature of the coolant in the first coolant circuit (2) differs from the temperature of the coolant in the second coolant circuit (2').
Resumen de: US2025144610A1
An apparatus and process for the activation of catalyst material utilized in ammonia cracking can include an initial use of hydrogen and heat to perform an initial stage of catalyst activation and a subsequent use of ammonia and heat to perform a subsequent state of catalyst activation. The subsequent use of ammonia can be configured so that different catalytic material at different plant elements are activated in a pre-selected sequence to provide activation of the catalytic material utilized in different plant elements. Some embodiments can be configured to avoid excess temperatures that can be detrimental to equipment that can be positioned upstream of a furnace in some embodiments while also avoiding sintering of the catalytic material.
Resumen de: WO2025096156A1
Herein discussed is a method of producing carbon monoxide or hydrogen or both simultaneously comprising: (a) providing an electrochemical reactor having an anode, a cathode, and a mixed-conducting membrane between the anode and the cathode; (b) introducing a first stream to the anode, wherein the first stream comprises a hydrocarbon; and (c) introducing a second stream to the cathode, wherein the second stream comprises carbon dioxide or water or both, wherein carbon monoxide is generated from carbon dioxide electrochemically and hydrogen is generated from water electrochemically.
Resumen de: WO2025089500A1
The present invention relates to a catalytic activity promoter to be dissolved in an alkaline electrolyte solution of a water electrolysis apparatus so as to promote the catalytic activity of an oxygen-generating electrode. The catalytic activity promoter comprises 2,2,6,6-tetramethylpiperidine-1-oxyl, which is oxidized in a dissolved state in the oxygen evolution reaction of the water electrolysis apparatus, and then meets an oxygen evolution reaction intermediate so as to be spontaneously reduced, and oxidizes the oxygen evolution reaction intermediate.
Resumen de: KR20250060808A
금속-유기 골격체(MOF) 기반 수전해 촉매 제조방법으로, 니켈 폼 상에 금속-유기 골격체(Co-MOF/NF)를 제조하는 단계; 상기 제조된 금속-유기 골격체(Co-MOF/NF)에 붕소를 도핑하는 단계; 및 상기 붕소가 도핑된 금속(코발트)-유기(메틸이미다졸) 골격체에 불활성 가스(Ar) 분위기에서 수소의 함량을 조절하면서 증착공정을 진행하는 단계를 포함하는 금속-유기 골격체(MOF) 기반 수전해 촉매 제조방법이 제공된다.
Resumen de: KR20250060349A
본 발명에 따른 이온교환막으로 분리된 전해셀을 이용한 하폐수의 암모니아 분해 및 수소생산 시스템은 외부로부터 공급되는 하폐수로부터 암모늄 이온을 흡착하는 이온교환수지가 내부에 충전되고 탈착액의 공급을 통해 상기 하폐수로부터 암모니아를 포함하는 재생액을 생성하는 이온교환수지 충전탑; 및 상기 이온교환수지 충전탑에 연결되고 상기 이온교환수지 충전탑에 의해 생성된 재생액을 전기분해하여 암모니아를 제거하고 탈착액을 재생산하여 상기 이온교환수지 충전탑으로 제공하는 전기분해장치를 포함하고, 상기 전기분해장치는 암모니아의 산화반응이 일어나는 제 1 전해셀; 수소의 환원반응이 일어나는 제 2 전해셀; 및 상기 제 1 및 제 2 전해셀 사이에 설치되어 상기 수소가 수집되도록 하는 이온교환막을 포함한다. 상기의 이온교환막으로 분리된 전해셀을 이용한 하폐수의 암모니아 분해 및 수소생산 시스템은 하폐수의 암모니아 처리를 위한 생물학적 공정의 소비전력이 크게 절감됨에 따라 탄소배출 저감 및 탄소중립에 기여할 수 있고 처리가 어려운 고농도 암모니아 함유 폐수의 처리가 가능할 뿐만 아니라 하폐수 중 암모니아로부터 유가자원인 수소까지 효율적으로 회수될 수 있도록 한다.
Resumen de: AU2023331556A1
The invention relates to a photoelectric cell with a silicon carbide electrode (4) for photocatalytic production of hydrogen and to a production method for same. The cell has, on one side of the silicon carbide electrode (4), a window (2) for letting in light (5) and, on the other side of the silicon carbide electrode (4), an aqueous electrolyte (10) and a counter electrode (6). The cell is electrolyte-free on the side of the silicon carbide electrode (4) facing the window. The silicon carbide electrode (4) is preferably produced by coating a substrate (3) with silicon carbide (4).
Resumen de: GB2635098A
A process for generating electricity, hydrogen, sulphuric acid and hydrogen sulphide comprising the steps of i) combusting hydrogen sulphide with air/oxygen in a combustion chamber; ii) passing the products of the combustion to generate electricity by turning a turbine or to generate steam; ii) the separation of the products of the combustion using water to isolate the nitrogen and sulphur dioxide; iii) the passing of the sulphur dioxide into an electrolyzer, wherein the electrolysis of sulphur dioxide and water generates hydrogen and sulphuric acid; iv) the sulphuric acid is placed in a reactor with sulphate-reducing bacteria to produce hydrogen sulphide that subsequently used as the fuel of the process and combusted in a combustion chamber to restart the cycle. The nitrogen, hydrogen, and carbon dioxide that are produced during the process but are not used as part of the process are stored using conventional storage methods. The hydrogen sulphide may be produced by placing the sulphuric acid in a microbial reactor with sulphate-reducing bacteria.
Resumen de: EP4549624A1
Disclosed is a system and method for alternately performing urea electrolysis-based hydrogen production and carbon reduction, and an application system. The system for alternately performing urea electrolysis-based hydrogen production and carbon reduction includes a housing, a first electrode chamber, a second electrode chamber and a third electrode chamber. A first electrode, a first separator, a second electrode, a second separator and a third electrode are sequentially arranged in the housing. The first electrode chamber is a closed cavity formed by the first electrode, the first separator and the inner wall of the housing, and is used for producing a hydrogen evolution reaction. The third electrode chamber and the second electrode chamber can alternately produce the oxidation reaction of urea and the reduction reaction of carbon dioxide.
Resumen de: EP4549630A1
The embodiments of the present disclosure disclose an electrolytic cell operation temperature control method and system based on heat balance. The method comprises: acquiring an actual cell front temperature of an electrolytic cell that is collected by a temperature collection device; if the actual cell front temperature deviates from a preset cell front temperature, controlling a refrigerant flow controller to control an inlet temperature of an electrolyte, wherein the preset cell front temperature is determined based on a preset cell end temperature, a correction coefficient, net heat power of the electrolytic cell, a volume flowrate of the electrolyte, a density of the electrolyte and a specific heat capacity of the electrolyte; within a current iteration period, determining an opening degree of the refrigerant flow controller based on the actual cell front temperature and the preset cell front temperature; and at the beginning of a subsequent iteration period, determining a set cell front temperature after iteration based on the preset cell end temperature, the correction coefficient, size information of the electrolytic cell, an actually measured voltage, an actually measured current, an actually measured surface temperature of the electrolytic cell, an actually measured ambient temperature, the volume flowrate of the electrolyte, the density of the electrolyte and the specific heat capacity of the electrolyte.
Resumen de: AU2023296834A1
The present invention describes a method for storing electricity and producing liquefied natural gas (LNG) or synthetic natural gas referred to as substitute natural gas (SNG) and using carbon dioxide and producing electricity, natural gas (NG) or synthetic natural gas (SNG).
Resumen de: EP4549628A1
This control device is for a hydrogen production facility and comprises: a plurality of electrolysis cells for electrolyzing water or steam; and a plurality of rectifiers for supplying DC power to each of the plurality of electrolysis cells. The control device is provided with: a degradation coefficient acquisition unit configured to acquire a plurality of degradation coefficients indicating the degrees of deterioration of the respective electrolysis cells, an individual necessary current calculation unit configured to calculate, on the basis of a total necessary current corresponding to a hydrogen generation volume required for the hydrogen production facility and the plurality of degradation coefficients, a plurality of individual necessary currents indicating necessary currents required for the electrolysis cells; and a control unit configured to control the respective rectifiers on the basis of the plurality of individual necessary currents. The degradation coefficient acquisition unit is configured to acquire, for the respective electrolysis cells, the degradation coefficients on the basis of a first correlation indicating the correlation between applied voltages to the respective electrolysis cells and currents flowing through circuits including the electrolysis cells at a beginning of life of the electrolysis cells, and a second correlation indicating the correlation at an end of life of the electrolysis cells.
Resumen de: EP4550482A1
A catalyst electrode according to an embodiment of the present disclosure comprises a metal layer; and a catalyst layer formed on the metal layer, wherein the catalyst layer comprises silver and iridium.
Resumen de: WO2024003510A1
Method for upgrading carbon dioxide comprising: (a) a step of providing a gaseous effluent to be upgraded containing a volume ratio of carbon dioxide of at least 0.5; (b) a step of electrolysis of the gaseous effluent to be upgraded producing a first effluent containing carbon monoxide, during which at least one portion of the carbon dioxide contained in the gaseous effluent to be upgraded is converted to carbon monoxide by electrolysis; (c) at least one step of converting the carbon monoxide from the first effluent, which step is catalyzed by a plasma generated by a dielectric barrier discharge process coupled to a catalyst, said step (c) producing a value-added effluent, during which at least one portion of the carbon monoxide contained in the first effluent is converted to at least one product chosen from methane and/or dihydrogen.
Resumen de: EP4549622A1
A process for the hydrogenation of carbonyl compounds consisting of the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) hydrogenating a carbonyl compound using the hydrogen provided in step (a) to form the corresponding hydrogenation product, wherein at least one carbonyl group of the carbonyl compound is hydrogenated.
Resumen de: EP4549419A1
A process for the preparation of a cycloaliphatic or heterocycloaliphatic compound containing at least one aromatic or heteroaromatic ring comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) hydrogenating an aromatic or heteroaromatic compound using the hydrogen provided in step (a) to form the corresponding cycloaliphatic or heterocycloaliphatic compound wherein the at least one aromatic or heteroaromatic ring is partially or fully hydrogenated.
Resumen de: EP4549620A1
A process for the preparation of amines comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, preferably in the range of from 10 to 95 ppm, more preferably in the range of from 15 to 90 ppm, most preferably in the range of from 20 to 80 ppm, especially in the range of from 30 to 75 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) reacting the hydrogen from step (a) with a nitrile compound or hydrogen cyanide (I) R-CN (I)to form the corresponding primary amine (II), secondary amine (III) and/or tertiary amine IV) RCH2-NH2 (II), (RCH2)2NH (III) (RCH2)3N (IV)or mixture thereof.
Resumen de: EP4549433A1
A process for the preparation of a hydrogenation product of a carbohydrate or furfural comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) at least partially hydrogenating a carbohydrate or furfural to form the corresponding hydrogenation product of the carbohydrate or furfural.
Resumen de: EP4549619A1
A process for the preparation of an amine compound comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) at least partially hydrogenating a nitro compound to form the corresponding amine compound.
Resumen de: EP4549621A1
A process for the preparation of amines comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) reacting the hydrogen from step (a) with nitrogen to form ammonia,(c) reacting the ammonia from step (b) with an alcohol R-OH in the presence of hydrogen from step (a) to form the corresponding primary, secondary and/or tertiary amines R-NH2, R2NH and/or R3N.
Resumen de: EP4549616A1
A process for the preparation of amines comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) reacting the hydrogen from step (a) with nitrogen to form ammonia,(c) reacting the ammonia from step (b) with a carbonyl compound (I) R1R2C=O (I)in the presence of hydrogen from step (a) to form the corresponding amine (II) R1R2HC-NH2 (II).
Resumen de: EP4549618A1
A process for the preparation of amines comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, preferably in the range of from 10 to 95 ppm, more preferably in the range of from 15 to 90 ppm, most preferably in the range of from 20 to 80 ppm, especially in the range of from 30 to 75 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) reacting the hydrogen from step (a) with nitrogen to form ammonia,(c) reacting the ammonia from step (b) with a nitrile compound or hydrogen cyanide (I) R-CN (I)in the presence of hydrogen from step (a) to form the corresponding amine (II) RCH2-NH2 (II).
Resumen de: WO2024003272A1
The invention relates to a high pressure electrolyzer module comprising a first external electrode which has a shape permitting to define a delimited volume, a second inner electrode provided inside the delimited volume defined by the first external electrode, an electrolyte provided under high pressure inside the first external electrode and an electrical power source, wherein the electrical power source is controlled so as to alternate potential to the first and second electrodes such that they are alternatively submitted to oxidation and reduction..
Resumen de: CN119317736A
An electrolyte membrane including a composite catalyst layer is provided. The membrane has a thickness of less than or equal to 100 mu m and is a single adhesive polymer membrane comprising a plurality of ion conducting polymer layers. The composite catalyst layer comprises particles of an unsupported composite catalyst dispersed in an ion conducting polymer, and the layer has a thickness in the range of from 5 mu m to 30 mu m and including 5 mu m and 30 mu m. Also provided are a catalyst coated film (CCM) incorporating the electrolyte membrane, and a method of manufacturing the electrolyte membrane.
Resumen de: AU2023300562A1
Bipolar plates (1) adapted for use in an electrolyser cell stack (4) and wherein each plate comprises a plate midplane (2) whereby the plate (1) comprises spaced apart uniform spacers (7) extending in opposed directions from the midplane (2). All spacers (7) are arranged along concentric circles (8) in the midplane (2) with spacers (7) alternatingly protruding in opposite directions relative to the midplane (2) along each concentric circle (8) and an even number of spacers (7) are provided in each circumferential circle (8), apart from an innermost circle (9) which comprises a single spacer (7).
Resumen de: EP4549009A1
An apparatus and process for the activation of catalyst material utilized in ammonia cracking can include an initial use of hydrogen and heat to perform an initial stage of catalyst activation and a subsequent use of ammonia and heat to perform a subsequent state of catalyst activation. The subsequent use of ammonia can be configured so that different catalytic material at different plant elements are activated in a pre-selected sequence to provide activation of the catalytic material utilized in different plant elements. Some embodiments can be configured to avoid excess temperatures that can be detrimental to equipment that can be positioned upstream of a furnace in some embodiments while also avoiding sintering of the catalytic material.
Resumen de: EP4549617A1
A process for the preparation of a saturated or ethylenically unsaturated aliphatic or cycloaliphatic compound comprising the following steps:(a) providing hydrogen with a molar share of deuterium ≤ 100 ppm, based on the total hydrogen content, by electrolysis of water using electrical power generated at least in part from non-fossil energy,(b) at least partially hydrogenating an ethylenically unsaturated compound to form the corresponding saturated compound, or at least partially hydrogenating an acetylenically unsaturated compound to form the corresponding saturated or ethylenically unsaturated compound
Resumen de: CN119932580A
本发明涉及纳米材料与电化学技术领域,具体涉及一种提升碱性电解水电极材料性能的电解液改性方法及其应用。一种提升碱性电解水电极材料性能的电解液改性方法,包括以下步骤:S1、称取一定量的水溶性硫化物,将其溶解于碱性电解液中;S2、在上述含硫碱性电解液中对电极进行活化,即可制得改性的碱性电解液。相比于设计电极新材料以提升电解水性能的传统方法,本发明直接在电解液中引入少量可溶性硫化物添加剂,由此有效降低电极材料的催化过电势,并提升反应稳定性,实现碱性电解水制氢体系的高效运转。
Resumen de: CN119926464A
本发明属于光响应催化剂技术领域,具体公开了一种具有光催化开关属性的复合催化剂及其制备方法与应用。本发明将二氰二胺进行热缩聚,得到石墨相氮化碳;然后将五氧化二钒与石墨相氮化碳混合,进行反应,得到M相二氧化钒修饰的石墨相氮化碳,即具有光催化开关属性的复合催化剂。本发明制备的复合催化剂能够降低钒氧化物杂相的出现,能够将制备过程缩短至1步,降低制备成本。
Resumen de: CN119932592A
本发明涉及电解水制氢技术领域,具体是涉及一种密闭式模块化电解水制氢用电解槽,包括电解制氢槽、隔断结构、电解模块和第二升降结构;电解制氢槽包括槽体和盖体;隔断结构包括离子隔膜,离子隔膜将槽体的内部空间分割为阴极室和阳极室;电解模块包括吊装板、电解片组件、夹持结构和第一升降结构,吊装板的下端与离子隔膜的上端抵接,电解片组件包括若干个阴极片和若干个阳极片,夹持结构具有若干个,若干个夹持结构设置在吊装板上,夹持结构将阴极片和阳极片夹持在吊装板上,第一升降结构用以改变吊装板在槽体内部的高度;第二升降结构用以开合槽体和盖体;本发明设置吊装板、电解片组件、夹持结构和第一升降结构,从而维持了电解的效率。
Resumen de: CN119932636A
本发明涉及一种MnO‑Ru/NFs催化剂的制备方法及其应用。本发明公开的制备方法包括如下步骤:将有机碳源、锰源和钌源溶于DMF和乙醇的混合溶剂中,得到前驱体溶液;对前驱体溶液进行静电纺丝,制备得到前驱体纳米纤维;先将前驱体纳米纤维在空气气氛中预氧化,再在惰性气氛中进行碳化焙烧,得到MnO‑Ru/NFs催化剂。本发明中,MnO可以优化Ru位点的电子环境,降低Ru纳米粒子的电子密度以有利于H的脱附,使催化剂表现出卓越的电催化全解水性能和提升的稳定性。
Resumen de: CN119936144A
本发明属于电解槽检测设备技术领域,公开了一种用于电解水制氢电解槽的测试装置及其作业方法,其中用于电解水制氢电解槽的测试装置包括支撑架、安装座和探针,安装座沿竖直方向滑动连接于支撑架上,且安装座能够选择性与支撑架固定;安装座上沿第一方向可拆卸连接有多个探针,每个探针对应抵接一个电解槽单元,探针用于测试电解槽单元的电流,每个探针均能够沿竖直方向移动并选择性地固定于安装座上。本发明用于电解水制氢电解槽的测试装置通过独立调整每个探针在安装座上的高度,以使每个探针能够独立适应每个不同厚度的电解槽单元,有效增强探针调整的自由度,以及有效提升电解水制氢电解槽的测试装置使用的兼容性。
Resumen de: CN119932590A
本发明公开了一种PEM水电解槽的槽芯单元、其装配方法及PEM水电解槽。所述槽芯单元的反应区侧面覆盖纯平分隔板、外侧仅设有单一边框;边框的上表面通过若干阴极密封面在反应区通孔外侧、垂直向位置设有阴极微流道,下表面通过若干阳极密封面在反应区通孔外侧、水平向位置设有阳极微流道;阳极微流道与反应区通孔之间设有一个内圈沉台;内圈沉台的内侧设有一整圈膜电极密封面;膜电极和阳极扩散层在反应区通孔下层、贴近内圈沉台内侧;阳极扩散层贴紧膜电极的上层为边缘压实的钛毡,下层为透水的钛网。本发明有效减薄槽芯单元的厚度,减少部件数量,同时减小膜电极的面积,并避免软材质的膜电极单独装配错位的风险。
Resumen de: AU2024227784A1
An apparatus and process for the activation of catalyst material utilized in ammonia cracking can include an initial use of hydrogen and heat to perform an initial stage of catalyst activation and a subsequent use of ammonia and heat to perform a subsequent state of catalyst activation. The subsequent use of ammonia can be configured so that different catalytic material at different plant elements are activated in a pre-selected sequence to provide activation of the catalytic material utilized in different plant elements. Some embodiments can be configured to avoid excess temperatures that can be detrimental to equipment that can be positioned upstream of a furnace in some embodiments while also avoiding sintering of the catalytic material.
Resumen de: CN119932615A
一种析氢用电极及其制备方法、析氢反应装置,采用如下步骤制成:制备好钌或铂或铑或钯或铱的可溶性化合物的溶液,准备电极的载体,电极的载体为金属材料,制备好与构成电极的载体的金属材料同样的金属材料的可溶性化合物的同样元素溶液,按照钌或铂或铑或钯或铱中的任意一种或任意二种的组合的原子百分比的比例为20%—40%,同样元素的原子百分比的比例为60%—80%。其目的在于提供一种与电解质的接触面积大,可让析氢反应迅速发生,令氢气在光滑致密的催化剂表面迅速解吸、脱附,在苛刻的酸、碱条件下析氢过电位更低、应用寿命更长,析氢催化能力更强,进而有利于降低电解能耗,提高经济效益的析氢用电极及其制备方法、析氢反应装置。
Resumen de: CN119932643A
一种电解水制氢用的快速加热流体装置,快速加热流体装置为导通式的加热流体装置,所述的加热流体装置的内部导通式的设有若干蜂窝多孔电极管,所述的若干的蜂窝多孔电极管外侧通过折流板横向水平悬空固定式的设在加热流体装置的内部,可有效应用于电解制氢场景需要流体加热的场景;无明火、电火花等泄露,提高了制氢设备装置的本质安全性;同时热效率高、加热速度快,极大地减少了装备系统的热启动时间;该工艺和系统设备提高了加热效率,解决了传统加热方式的效率低、加热时间长的缺点,减少了能源消耗和碳排放,提高了经济效益;可适应电解制氢装备系统快速启停,有效抑制风光等可再生能源引起的波动,属于电解制氢和能源化工装备等领域。
Resumen de: CN119932603A
本发明公开了一种基于水凝胶材料的金属电极片及其制备方法和应用,属于界面改性领域。上述金属电极片的表面具有活性羧基层,活性羧基层上负载有含有氨基基团的纳米水凝胶颗粒;制备方法为:将具有活性羧基层的金属电极片置于含有氨基基团的纳米水凝胶颗粒的分散液中浸泡,通过脱水缩合反应将纳米水凝胶颗粒以共价键形成连接于金属电极片的表面,完成纳米水凝胶颗粒负载,所得金属电极片可用于碱性电催化析氢领域中。本发明将纳米水凝胶颗粒附着在金属电极片表面,较纯电极电催化性能有明显提升,实验数据表明,在100mA/cm2电流密度下过电位可最高可降低60mV,因此,本发明实现了对碱性电催化析氢HER反应面水结构改性。
Resumen de: CN119944748A
本发明提供了一种风光电‑储能‑电解水混合制氢的集成系统,其包括:风电站、光伏电站、储电装置、控制中心、整流器、ALK电解槽、PEM电解槽和储氢罐;所述光伏电站和所述风电站均连接至整流器,并均连接至储电装置;所述储电装置连接至整流器;所述整流器分别连接至所述ALK电解槽和所述PEM电解槽,所述ALK电解槽和所述PEM电解槽均连接至所述储氢罐。本发明的集成系统将具备天气的高兼容性、系统运行的灵活性和稳定性,有效降低制氢成本,具有广泛的市场应用前景。
Resumen de: CN119926417A
本发明涉及光催化技术领域,公开了一种S型WO3/FeWO4异质结光催化剂及其合成方法和应用方法;FeWO4纳米针负载于WO3纳米棒表面,形成具有交错能带结构的S型异质结,其内建电场与1D/1D结构协同促进了光生载流子的分离;合成方法为:以偏钨酸铵为钨源,通过水热法制备WO3纳米材料;将WO3超声分散于硫酸亚铁铵溶液中形成悬浮体系,在连续搅拌下将钨酸钠溶液滴入到上述悬浮液中,经二次水热结晶得到具有强界面耦合作用的S型WO3/FeWO4异质结光催化剂;本发明所制的S型WO3/FeWO4异质结光催化剂在光催化分解水中具有优异的产氢活性和良好的稳定性,在光催化分解水产氢领域具有较好的应用前景。
Resumen de: CN119932644A
本申请公开了一种电解系统的故障检测方法、装置、设备及存储介质,所述方法包括:确定电解系统当前工况对应的电压—电流曲线,其中,所述当前工况至少包括所述电解系统的温度值;根据所述电压—电流曲线确定当前工况对应的各类电压的电压参数值;将当前工况对应的各类电压的基准值与电压参数值进行比对;根据比对结果确定电解系统是否发生故障;当确定电解系统发生故障时,根据比对结果确定出现异常的电压类型及出现异常的电压类型对应的故障类型。采用本申请所提供的方案:可以确定出现异常的电压类型,且基于出现异常的电压类型可以直接确定故障类型,无需人工对故障进行逐步排查,提高了故障检测效率。
Resumen de: CN119932616A
本发明公开一种金属镧掺杂耦合氧空位的氧化钌基整体式电极的制备方法与应用,属于电化学材料技术领域。本发明首先去除金属导电基底或碳基底表面的杂质,然后配制的含有钌盐和镧盐的水溶液,在红外灯照射下,在金属导电基底或碳基底上滴涂配制的溶液,烘干,在氧化气氛下,于300~500℃下焙烧1~5h,降温后得到,本发明的制备方法能够制备得到非负载型整体式的氧化钌基催化剂,此方法普适性广,条件容易控制,易于操作。该方法所制备的金属镧掺杂耦合氧空位的氧化钌基整体式电极,可作为酸性析氧反应的阳极材料,展现出优良的性能和广阔的应用前景。
Resumen de: CN119926420A
本发明涉及催化剂预处理的领域,公开了一种氨分解制氢催化剂的预处理方法。一种氨分解制氢催化剂的预处理方法,包括以下步骤:在活化气体存在下,将氨分解制氢催化剂先进行n段程序升温活化处理,然后进行降温处理,n为2‑5,n为整数;活化气体包括活化气氛和载气,活化气氛包括氢气和/或水蒸气;n段程序升温活化处理中,活化气体中活化气氛的占比依次降低;在前一段活化处理所用活化气体中活化气氛的占比比在后一段活化处理所用活化气体中活化气氛的占比高2‑65%;在前一段活化处理的温度比在后一段活化处理的温度低25‑400℃。该方法选用多段活化处理使得预处理后的氨分解制氢催化剂能够适用于高温反应,提高催化剂的稳定性。
Resumen de: CN119926427A
本发明公开了一种ZnS@CdS异质结及其制备方法与应用,属于光催化产氢。本发明提供的ZnS@CdS异质结,CdS负载在ZnS表面,通过两步水热法制备得到的具有更高的光催化产氢能力,复合材料的产氢量为15.57mmol·h‑1·g‑1,是纯ZnS产氢量(0.16mmol·h‑1·g‑1)的97倍,是纯CdS的产氢量(2.97mmol·h‑1·g‑1)5.2倍。
Resumen de: CN119931055A
本发明涉及有机合成及制氢技术领域,具体涉及一种含苯并噻二唑单元的有机共轭聚合物及其在光催化析氢中的应用。所述有机共轭聚合物的结构如下所示:#imgabs0#其中,聚合度n为10‑200。经测试实验证明,该聚合物具有较宽的光波吸收范围和较小的聚合物禁带宽度和能级差,更高的光转化效率和产氢速率,由此获得一种高效的光催化析氢催化剂,有助于推动光催化析氢技术和氢能产业的发展。
Resumen de: CN119926520A
本发明公开了一种电解水制氢的后磷化处理用铁碳复合纳米球的制备方法,先对生物质原料洗涤烘干破碎成粉末,然后将生物质粉末与模板剂、致孔剂的混合,球磨并在惰性气氛下处理,酸洗、烘干得到生物质碳基粉末。随后将其添加到含铁盐的水溶液中,搅拌、真空干燥,形成铁基前驱体。前驱体在管式炉中进行高温煅烧后磷化处理得到铁/碳复合纳米球。通过对保护气氛、煅烧温度和时间条件的优化,获得具有良好性能的纳米球同时降低合成过程能耗。本发明制备的铁/碳复合纳米球在电催化析氢反应中表现出卓越的活性,不仅简便、高效,同时为利用生物质固体废弃物开发先进催化剂在能源转化领域的应用打开了新思路。
Resumen de: CN119932613A
本发明涉及电极材料技术领域,具体公开一种草酸钴铁/泡沫镍复合材料及其制备方法和应用。本发明通过简单的共沉淀法在泡沫镍基底负载纳米花状草酸钴铁(CoFeC2O4)。通过成分和形貌的协同作用,使肼氧化反应能以更低的过电位启动,加快反应动力学进程,同时对阴极析氢反应也起到促进作用,协同提升整个电解水制氢体系的效率;且草酸钴铁自身化学性质相对稳定,能长时间维持自身结构与催化性能;除此之外,原料钴、铁储量丰富,成本远低于贵金属催化剂,且制备工艺简易,室温即可实现材料的制备,利于工业化大规模生产,在肼氧化辅助电解水制氢领域展现出巨大的应用潜力,有望推动氢能产业的高效、可持续发展。
Resumen de: CN119934698A
本发明涉及一种外场智能调控光催化制氢集成装置及系统,包括:菲涅尔透镜;双层真空玻璃管,包括外层玻璃管、内层玻璃管及位于两者之间的真空层,内层玻璃管连接外部水源和分离模块;亥姆霍兹线圈,包括两个导体线圈,两个导体线圈对称套设于外层玻璃管的两端,并与外接电源相连通;光催化剂,置于内层玻璃管中并位于菲涅尔透镜聚焦的太阳光条状光带处;分离模块,包括氢气分离膜和出气口,用于高效分离反应生成的气体;其中,菲涅尔透镜通过固定支架与双层真空玻璃管连接,并位于其上侧;亥姆霍兹线圈用于产生磁场以提高光催化反应过程中光生电荷分离效率,进而提高产氢效率。本发明能够通过外场的精准调控提升光催化反应制氢的效率。
Resumen de: CN119932621A
本发明涉及电解水制绿氢催化剂领域,具体涉及一种超细碳纳米管限域的双金属磷化物异质结构复合电极及其制备方法和应用。本发明在泡沫镍基底上原位生长形成二维纳米片状结构的钴基沸石咪唑酯骨架结构/泡沫镍,并通过磷化诱导策略,构筑了直径约为50nm超细碳纳米管限域的磷化钴‑磷化镍异质结构电极材料。这种磷化诱导策略精细调控碳纳米管管径,所引发的纳米尺寸效应展现出丰富的活性位点与电子传输路径,这一特性显著增强了电解水制氢过程中的电催化本征性能。此外,包覆在异质结构表面的碳层,有效提升了磷化钴‑磷化镍异质结构电极的稳定性,为长期高效的电解水制氢应用奠定了有力支撑。
Resumen de: CN119926424A
本发明公开了一种原位阳离子掺杂制备同质结Cd‑ZnIn2S4光电催化剂的方法。所述方法先将硝酸镉、氯化锌、氯化铟和硫脲超声溶解在去离子水中形成前驱体溶液,然后经水热反应,制得超薄褶皱纳米片同质结Cd‑ZnIn2S4光电催化剂。本发明方法简单,在水热反应中通过Cd2+掺杂形成同质结Cd‑ZnIn2S4,制得的光阳极具有较高的光电催化性能和稳定性。
Resumen de: CN119926679A
本发明公开了一种基于重力分离原理的电解制氢装置预分离系统,包括电解槽、气液分离器,在电解槽进入气液分离器的物料管路上设置预分离器,预分离器的下部设有混合料进口、液体出口,预分离器顶部设有气体出口,所述混合料进口通过物料管路与电解槽的出口端相连接,所述液体出口通过液体管线连接至气液分离器内液相,气体出口通过气体管线连接至气液分离器的顶部气相。本发明创新性地增设预分离器。运用重力分离原理,其采用垂直状的筒状壳体。这一布局能在极短时间内对气液进行初步分离,极大程度减轻后续气液分离器的工作负担,显著提升整体的分离效率,为整个电解制氢流程的高效运行奠定坚实基础。
Resumen de: CN119928203A
本发明公开了一种可控孔隙率制氢隔膜的制备设备,收卷装置架体的前侧设置有多个送料辊,收卷装置架体的后侧设置有收卷辊,收卷辊轴的端部固定连接于收卷装置架体的电机输出端,收卷装置的右侧设置有动力电机,动力电机的输出端固定连接有整理组件,整理组件的端部固定连接有联动组件,联动组件的端部固定连接有动力轴,动力轴的杆体固定连接有多个锥齿二,锥齿二啮合连接有拨料组件,拨料组件的轴贯穿转动连接有支撑架,支撑架的端部固定连接于收卷装置的架体,通过拨料组件的设计,使得拨料组件配合整理组件在隔膜进行展开后,进行二次侧部展开,这样能保持隔膜以完全展开的方式被收卷辊进行收卷,避免隔膜出现褶皱被收卷辊收卷。
Resumen de: WO2024070179A1
A method for producing a tantalum nitride material that includes a nitriding step that heats a precursor containing a lithium tantalum composite oxide in the presence of a nitrogen compound.
Resumen de: CN119932625A
本发明公开了一种泡沫镍负载镍钼基异质结构光热催化剂的制备方法及其应用。其中,所述制备方法包括如下步骤:将泡沫镍浸入含有镍源和钼源的前驱体溶液进行水热反应,在泡沫镍上生长NiMo基纳米材料;以生长NiMo基纳米材料后的泡沫镍作为工作电极,在含有镍源和铜源的电解液中进行电沉积,以在NiMo基纳米材料上生长NiCu合金纳米材料;其中,NiMo基纳米材料与NiCu合金纳米材料之间形成异质界面结构,通过诱导异质界面结构两相之间的电子转移,从而调控了催化剂的电子结构,使得催化剂对电解水析氢反应具有极高的电催化活性及稳定性。同时,该催化剂可使用于电解槽‑TE装置(光热辅助电解水装置)中,能有效降低整体水分解槽电压。
Resumen de: CN119932614A
本发明属于电解水制氢技术领域,提供了一种镍基底负载镍钼钴合金的阴极材料及其制备方法和应用。本发明的制备方法包含:将镍源、钼源、钴源、导电盐、络合剂、表面活性剂和水混合得到电镀溶液;以镍基底为阴极,钛片为阳极,在电镀溶液中进行电沉积反应得到镍钼钴自支撑阴极材料;将镍钼钴自支撑阴极材料顺次进行退火、电流激发。本发明采用过渡金属制备阴极材料,避免了铂等贵金属的使用,降低了生产成本;通过电沉积形成多孔结构,为阴极材料提供更多的活性位点;本发明的镍基底负载镍钼钴合金的阴极材料中,Ni、Co、Mo之间存在协同电子效应,在酸性条件下也表现出对电解水制氢具有高的催化活性,同时具有高的稳定性和法拉第效率。
Resumen de: CN119931086A
本发明属于金属有机框架材料领域,具体涉及一种负碳产氢的MOF材料及其制备和应用方法。MOF材料的单晶结构的分子式为Co(M)(SCN)n,M为diiy或bitp,M为diiy时,分子式可写为Co(diiy)(SCN),M为bitp时,分子式可写为Co(bitp)(SCN)2;其中,diiy为2,6‑双‑(1H‑咪唑‑1‑基)‑吡啶,bitp为2,6‑双(1H‑1,2,4‑三唑‑1‑基)‑吡啶。本发明通过调节配体的结构,从而制备了两种在光催化下负碳产氢的催化材料。通过将CO2作为原料参与反应,生成氢气;在环境保护、清洁能源生产和绿色化工等领域展现出巨大的应用潜力。
Resumen de: CN119932618A
本发明公开了一种高性能析氧反应复合电催化剂及其制备方法,属于电催化材料制备领域,解决了在三维多孔复杂衬底(泡沫镍)很难实现RuO2纳米颗粒的均匀负载与尺寸的精准调控,由此影响所制备电催化剂的性能与重复性的问题。本发明方法包括以下步骤:将泡沫镍用硫脲先硫化,再使用ALD技术在泡沫镍基的Ni3S2表面均匀沉积RuO2纳米颗粒。本发明通过ALD技术精准控制泡沫镍基Ni3S2表面RuO2纳米颗粒尺寸在1.5‑3.5 nm、面密度在0.8‑1.2´1012/cm2,能够提高催化剂导电性和电化学活性,改善电荷转移速率,提高了电催化剂的OER性能。
Resumen de: CN119926295A
本发明涉及氨分解制氢的领域,公开了一种氨分解制氢气的系统和方法。氨分解制氢气系统包括氢气制备单元、残氨回收分离单元和氢气纯化单元,氢气制备单元、残氨回收分离单元和氢气纯化单元通过管道相互连接;氢气制备单元包括氨分解反应器,氨分解反应器用于将原料氨气进行氨分解反应,得到产品气;该系统还包括换热单元,换热单元用于将产品气与原料氨气进行换热;残氨回收分离单元包括变温吸附装置,变温吸附装置用于吸附未反应的氨气,得到裂解气;氢气纯化单元包括膜分离器和变压吸附装置;膜分离器用于对裂解气进行分离提纯,得到氢氮混合气和粗氢;变压吸附装置用于对粗氢进行提纯,得到产品氢气和解析气。该系统氢气产率高、占地小。
Resumen de: WO2024068185A2
The invention relates to an electrolyser for splitting water into hydrogen (H2) and oxygen (O2) by means of an electric current, said electrolyser comprising: a plurality of electrolysis cells (2) which are divided into electrolysis stacks, each electrolysis cell (2) having a proton-permeable polymer membrane (4), on both sides of which are electrodes (6, 8) to which an external voltage is applied during operation, a first water supply line (10) for supplying water to an anode chamber (12) being provided on the anode side, an oxygen product line (14) for discharging the generated oxygen (O2) from the anode chamber (12) being connected, and a hydrogen product line (16) for discharging the generated hydrogen (H2) from a cathode chamber (18) being provided on the cathode side; and a control system (22) for controlling the operation of the electrolysis stacks. In order to ensure safe operation of the electrolyser and to minimise the negative consequences of membrane damage during operation of an electrolyser, the control system (22) is designed to set a higher pressure (pa) in the anode chamber (12) than in the cathode chamber (18), the pressure (pa) in the anode chamber (12) being 2 times to 20 times higher, in particular 4 times to 7 times higher, than the pressure (pk) in the cathode chamber (18).
Resumen de: CN119932604A
本发明公开了一种高性能自优化不锈钢析氧电极及应用,所述电极通过酸蚀、退火和电化学氧化处理后得到。本发明所述不锈钢是一种自优化电极,通过提升电化学活性面积与导电性、优化OER反应机制以及简化生产工艺,实现了不锈钢电极性能上的显著提升,并为实际工业化应用奠定了坚实的基础。
Resumen de: CN119932601A
本发明公开了一种基于恒电位活化和煅烧固化的镍基催化剂及其制备方法,以镍网基底作为镍源,通过施加恒定电位活化,增加镍网表面的活性位点,为稳定镍网表面的活化位点,后续进行高温煅烧固化,有效提升制备得到的催化剂的析氧性能,还提高了性能的稳定性,有利于成本控制,经济性高、生产效率高。
Resumen de: CN119932610A
本发明属于电化学催化技术领域,具体涉及一种用于电解水析氢的铁基贵金属催化电极及其制备方法与应用,制备方法,包括第一步:对铁基材料进行预处理,去除铁基材料表面的氧化物、油污,并进行酸洗刻蚀;第二步,配置包含贵金属的镀液,采用去离子水,电解液包括钾离子、硫酸根离子、亚硫酸根离子,以及以下至少之二:铂离子、铱离子、钌离子、钯离子,pH值调节为1‑4;第三步,以上述镀液作为电解液,以上述预处理后的铁基材料作为阴极,以DSA电极或碳基电极为阳极,进行电沉积;参数如下:镀液的温度为20‑80℃,电流密度大小为0.1‑100mA/cm2,通电时间为40‑4000s,通电与断电的时间比为1:0‑1:100。本发明显著降低贵金属用量,同时保证优异的催化性能和长期稳定性。
Resumen de: CN119932634A
本发明涉及一种钌掺杂镍铜基异质结构催化剂及其制备方法和应用。其中,钌掺杂镍铜基异质结构催化剂包括泡沫镍基底和原位生长在泡沫镍基底上的钌掺杂镍铜基异质结构Cu2O‑Ni(OH)2,Ru掺杂在Cu2O‑Ni(OH)2异质结构的晶格内。钌掺杂镍铜基异质结构催化剂的制备方法包括以下步骤:对泡沫镍进行表面清洁;将草酸、铜盐和钌盐溶于水中,得到前驱体溶液;将泡沫镍置于前驱体溶液中进行水热反应,清洗干燥后得到钌掺杂镍铜基异质结构催化剂。本发明公开的钌掺杂镍铜基异质结构催化剂可应用于工业级电催化分解水析氢反应,并具有良好电催化析氢性能。
Resumen de: CN119932623A
本发明属于电解水催化剂技术领域,具体涉及一种镓掺杂的铱钒金属间化合物负载于碳载体的催化剂及其制备方法与应用,包括以下制备步骤:(1)将铱盐、钒盐、镓盐和碳载体分散于溶剂中得到混合物,所述铱盐、钒盐、镓盐中,铱、钒和镓原子的摩尔比为30:(8~9.5):(0.5~2);然后对所述混合物进行加热以蒸干所述溶剂,将得到的样品真空干燥后研磨,得到前驱体固体粉末;(2)将所述前驱体固体粉末在还原性气氛下退火,得到镓掺杂的铱钒金属间化合物负载于碳载体的催化剂。通过在铱钒有序金属间化合物催化剂中引入廉价的低熔点金属镓,提高有序金属间化合物的有序化程度,有效解决电解水催化剂低活性和高成本的问题。
Resumen de: CN119926103A
本发明涉及氨分解制氢的领域,公开了一种氨分解橇装制氢系统和工艺。系统包括氢气制备单元、残氨回收分离单元和氢气纯化单元,氢气制备单元、残氨回收分离单元和氢气纯化单元通过管道连接;氢气制备单元包括氨分解反应器用于将原料氨气进行氨分解反应;残氨回收分离单元包括变温吸附装置用于吸附产品气中未反应的氨气;该系统还包括换热单元用于将产品气与原料氨气进行换热,和/或,用于将产品气与含有原料氨气和未反应的氨气的混合气进行换热;氢气纯化单元包括变压吸附装置、洗氨罐和膜分离器,变压吸附装置用于将剩余产物进行提纯;洗氨罐用于对解析气进行水洗;膜分离器用于对氢氮混合物进行分离提纯。该系统能够提高产氢效率和氢气纯度。
Resumen de: CN119926102A
本发明涉及氨分解制氢的领域,公开了一种基于炼厂的氨分解制氢系统和方法。系统包括原料单元、氢气制备单元、残氨回收分离单元和氢气纯化单元,通过管道相互连接;氢气制备单元包括氨分解反应器,用于将原料氨气进行氨分解反应;残氨回收分离单元包括变温吸附装置,用于吸附产品气中未反应的氨气;该系统还包括换热单元,用于将产品气与原料氨气进行换热,和/或,换热单元用于将产品气与含有原料氨气和未反应的氨气的混合气进行换热;氢气纯化单元包括变压吸附装置,用于将剩余产物进行提纯;原料单元包括炼厂加氢精制装置,用于提供氨源液氨和/或回收解析气。该系统能够为现有炼厂提供充足的氢源,降低反应能耗,提高氢气产率。
Resumen de: CN119936487A
本发明提供了一种大功率电解槽交流阻抗量测方法及系统,包括:将电解电源的正负极与水电解制氢设备的电解槽的正负极连接;将电解槽的每个子板上的电压信号连接接口与数据采集装置连接;将电流互感器安装在电解电源的负极与电解槽的负极之间的连接电缆上,并将电流互感器与数据采集装置连接;当水电解制氢设备运行至预设温度时,控制电解电源输出预设频段的正弦扰动电流;数据采集装置获取电解槽时域数据;通过预设交流阻抗解析算法对电解槽时域数据进行解析,以得到各小室在不同频率下的阻抗信息;本发明的方法可对水电解制氢电解槽每个电解小室进行交流阻抗量测,通过交流阻抗数据进行电解槽的故障预警、故障分析,保证制氢设备的稳定运行。
Resumen de: CN119932617A
本发明涉及一种通过P掺杂和氧空位调节局部原子环境的电解海水催化剂的制备方法及应用。其技术方案是:对自支撑材料进行简单清洗处理,并进一步利用熔盐法制备FeOOH前驱体,随后利用磷化煅烧和在NaBH4溶液中浸泡还原处理得到改性的P‑Fe3O4电催化剂,在实现工业海水的条件下高效制备氢气的同时能够保持长时间稳定性。本发明的有益效果是:通过P掺杂和O空位调节了Fe3O4的局部原子环境,促进Fe位点在P‑Fe3O4‑x上的氢吸附动力学,降低Cl‑在Fe3O4的Fe活性位点的吸附能,有效抑制了Cl‑的毒性,同时提高了催化剂的长期稳定性,解决了碱性电解海水过程中缓慢的动力学问题,为后续的工业化实际应用提供可能。
Resumen de: CN119926503A
本发明属于可见光催化全解水技术领域,具体涉及一种可见光催化全解水制氢和制氧的光催化剂、制备方法及应用。本发明提供的光催化剂包括一种共价有机框架材料TTA‑Bp,共价有机框架材料由2,4,6‑三(4‑氨基苯基)‑1,3,5‑三嗪和2,2’‑联吡啶‑5,5’‑二甲醛通过缩合反应形成;还包括负载在共价有机框架材料上的Ni物种纳米颗粒,Ni物种纳米颗粒中的Ni原子与共价有机框架材料中的联吡啶官能团之间形成有配位作用,并且Ni物种纳米颗粒中具有Ni的氢氧化物的晶相。本发明制备的光催化剂,成功实现了在可见光条件下高效催化全解水制氢和制氧反应,且催化剂具有优异的稳定性。
Resumen de: CN119934515A
本公开实施例提供一种烟气循环掺氢燃烧调峰稳燃系统,包括锅炉、电解水装置、烟气‑氢气混合器、烟气‑氢气燃烧器;锅炉设置有燃烧器,烟气‑氢气燃烧器设置于所述锅炉的最下层;电解水装置通过供电装置进行供电,电解水装置的阳极出口与燃烧器的助燃剂入口相连通,电解水装置的阴极出口与烟气‑氢气混合器的氢气入口相连通;锅炉的烟气出口分别与烟囱入口以及烟气‑氢气混合器的烟气入口相连通;烟气‑氢气混合器的混合出口与烟气‑氢气燃烧器的入口相连通。该系统通过掺氢燃烧和富氧燃烧,可使机组深度调峰时,锅炉燃烧稳定、安全、降低煤耗、节约成本。
Resumen de: CN119932600A
本发明涉及一种基于直通孔结构多孔传输层的自支撑NiFe‑LDH析氧电极及其制备和应用,本发明可低成本、绿色和大批量的制备AEM电解水阳极电极,克服了目前同领域中电极制备方法繁琐的弊端,且制备的电极催化活性高、稳定性好,有望推动阴离子交换膜电解水制氢技术的商业化发展。
Resumen de: CN119932577A
本发明公开了一种电解槽,涉及电解槽电解水制氢技术领域。本发明的电解槽包括极框,所述极框为环形且分为上半环部和下半环部,所述下半环部上设有多个第一进液孔,每个所述第一进液孔均连通有为渐扩口的第一进液口,多个所述第一进液口的端口直径沿所述下半环部延伸方向先增大后减小,多个所述第一进液口用于供液体进入所述极框,所述上半环部上设有多个排气孔,每个所述排气孔均连通有为渐缩口的排气口,多个所述排气口的端口直径沿所述上半环部延伸方向先增大后减小,多个所述排气口用于供气体从所述极框排出。本发明的电解槽能够消除涡流和流动死区的产生,使电极产生的气泡能够顺利排出,保证电解槽的电解效率。
Resumen de: CN119932578A
本申请提供一种电解水制氢系统,包括:第一转换器,第一转换器的第一输入端和第一输出端用于连接交流电源;N个第一电容,N个第一电容串联,串联后的N个第一电容的第一端与第一转换器的第二输出端连接,串联后的N个第一电容的第二端与第一转换器的第二输入端连接;N个第一电解槽,每个第一电解槽的输入端或输出端设有第一开关,每个第一电解槽通过第一开关分别与一个不同的第一电容并联,每个第一电解槽用于在通电的情况下电解水制备氢气;其中,在需要对第一目标电解槽进行停机的情况下,打开与第一目标电解槽连接的第一开关;在恢复第一目标电解槽工作的情况下,关闭与第一目标电解槽连接的第一开关。本申请能提高电解水制氢的效率。
Resumen de: CN119932612A
本发明介绍了一种用于PEM电解槽阳极钛基双极板表面的氮化钛基涂层的制备方法,能够起到提高极板耐蚀性、导电性,且能够搭载催化剂来提升电解效率,并减少催化剂用量、延长催化剂使用寿命的效果。现有的材料制备方法成本高、效率低、对设备要求高;另一方面,作为催化剂的贵金属铱年产量有限,价格高昂。本发明通过自蔓延燃烧合成反应,制备纳米级氮化钛基材料,并以此为骨架搭载含铱氧化物催化剂,该涂层能够在1.7V、143.6N/cm2压力下接触电阻达到2.10mΩ·cm2,适用于高电位PEM电解水体系。
Resumen de: CN119932611A
本发明涉及一种负载型Ir/TaB2催化剂及其制备方法与应用,将二硼化钽与尿素溶于去离子水中,室温下超声后向其中加入四氯化铱,再次超声,将得到的反应混合物进行水热反应,反应完成后将反应产物冷却至室温,然后进行真空干燥;干燥后的反应物进行煅烧,得到黑色产物,将黑色产物进行离心洗涤,室温晾干,得到负载型Ir/TaB2催化剂。本发明合成方法简单,操作步骤少,耗时短,成本低,无需高昂的仪器设备,原料易得,经济环保,易于规模化生产。所制备的Ir/TaB2催化剂作为阳极催化剂用于PEM电催化水分解制氢,能够显著降低阳极析氧过电位,增大电流,兼具高活性和良好的使用稳定性。
Resumen de: CN119944805A
本发明公开了一种可再生能源驱动的电‑热‑氢‑铁多联产系统的控制方法,多联产系统由可再生能源发电设备、电解水制氢设备、蓄电池设备与冶金设备组成,其控制方法分为两部分:设计值与实时值计算,在设计值计算过程中,通过风光等可再生能源特性曲线、电解槽特性、冶金设备的冶金量获得制氢量、还原气温度、还原气比例的设计值;在实时值计算过程中,通过发电量波动值依次进行还原气比例调节、还原气温度与还原气比例调节、蓄电池模式切换等调控手段,获得制氢量、还原气温度、还原气比例的实时值。本发明通过设计值与实时值分层计算、还原气与蓄电池联合调控等方式缓解了可再生能源波动对多联产系统的冲击,实现了多联产系统稳定安全低碳运行。
Resumen de: CN119932395A
本发明公开了一种具有优异析氢性能的高熵合金及其制备方法和应用,涉及金属材料制备技术领域,一种具有优异析氢性能的高熵合金,组成元素包括低析氢过电位元素Ti、Cr和易钝化元素Ni、Fe、Co;其成分为NixFeyCozTimCrn,其中低析氢过电位元素:x+y+z>50,x+y+z+m+n=100,x、y、z、m、n分别为各元素的摩尔比。本发明提出了一种具有优异析氢性能的高熵合金,通过成分设计和机械合金化制备NiFeCoTiCr高熵合金,选用Ni、Fe、Co、Ti和Cr等非贵金属元素,替代传统的贵金属催化剂,显著降低了材料成本;机械合金化方法具有高度可控性,通过调节球磨参数(如转速、时间和气氛),可以精确控制合金的成分和微观结构,适用于大规模生产,具有良好的可扩展性和工业化前景。
Resumen de: CN119932599A
本发明公开了一种PEM电解槽极板,包括板体,所述板体的一端设置有第一氢气出口,另一端设置有第二氢气出口;所述板体的一侧设置有水进口,另一侧设置有水出口;所述一端所在的方向与所述一侧所在的方向呈垂直设置;所述板体的一侧面上周向设置有第一密封槽;所述板体的另一侧面上周向设置有第二密封槽;所述第一密封槽底部的两侧与所述第二密封槽底部的两侧均呈倒角设置。本申请还提供一种密封结构。本申请的PEM电解槽极板具有良好的机械强度和导电性能,能在高压条件下实现均匀承受压力。由本申请PEM电解槽极板制得的密封结构在高压高温中能够保持良好的密封性,有效防止气体泄漏。
Resumen de: CN119932589A
本发明涉及臭氧制备相关技术领域,具体为一种臭氧制备系统,包括底座、蒸汽发生罐、臭氧发生罐、氢气储罐、臭氧储罐和控制箱,底座为矩形平台;通过将臭氧发生罐设置成由罐体、上盖、安装轴和电解模块组合构成,并将电解模块设置成由安装叶片、正极电解片和负极电解片组合构成,从而让正极电解片和负极电解片之间形成螺旋形的电解通道结构,从而有效提高正极电解片、负极电解片的电解面积,从而提高电解效率,并通过将水蒸气源源不断的输送至电解通道之中,从而让电解通道之中的气态水分子被正极电解片、负极电解片电解成臭氧和氢气,其相较于电解液态的水,气态的水分子更加的活跃,其分子间运动更加快,从而进一步提高电解效率。
Resumen de: CN119932620A
本发明公开了一种离子束溅射高熵合金玻璃电催化电极及其制备方法和应用,该方法包括:首先利用微纳光刻和电沉积技术制备具有三维纳米锥阵列结构的镍微网栅,再将所获得的镍微网栅作为基底,通过离子束溅射法在其表面溅射沉积FeCoNiCrMn高熵金属玻璃即可制得该催化电极。本发明制备方法可增强高熵金属玻璃的分布均匀性和与基底的附着力,因此该一体化催化电极可直接作为工作电极;同时该制备方法可控性强、重复性高,适于工业化生产。本发明制备的催化电极主要应用于碱性电解液中的电解水反应,表现出优异的催化性能,其多元协同效应和高熵效应使其具有高的本征催化活性和稳定性,此外非晶结构暴露出丰富的活性位点。
Resumen de: CN119932594A
本发明属于卤水资源利用的技术领域,公开了一种从卤水中同步提锂、提溴、制氢的系统和方法及应用。本发明提供的系统中,利用循环控制装置将催化电解装置和吸附提锂装置串联成一个有机整体——检测组件中的相关pH探头对系统中卤水的pH值进行检测,并基于卤水pH值控制循环组件使卤水于催化电解装置和吸附提锂装置之间的循环流动,保持催化电解装置和吸附提锂装置中的卤水处于氢离子动态利用的状态中,最终实现同时提高制氢制溴的电解效率和锂吸附效率的效果。本发明提供的系统具有结构简单、卤水综合利用效率高以及适用性强等优点,能够很好地被应用于卤水资源化利用中,具有良好的应用前景。
Resumen de: CN119932607A
本发明公开了一种镍基薄膜电解水电极的制备方法,属于镍基薄膜电解水电极制备技术领域,包括以下步骤S1、将镍基材料进行预处理;S2、将预处理后的镍基材料进行气体等离子处理,得到镍基薄膜电极。本发明镍基薄膜电解水电极的制备方法,采用等离子体渗透的方法制备镍基薄膜电极,其操作简单、原料来源广,能够有效降低成本,提高镍基薄膜电极的制备效果。
Resumen de: CN119926328A
本公开提供了一种微波谐振等离子体炬裂解氨制氢的装置,该装置包括:微波单元,适用于产生微波;反应单元,与微波单元相连接。反应单元包括谐振炬。谐振炬包括壳体,壳体具有封闭端和开口端,封闭端和开口端之间形成有谐振腔,壳体的外壁设置有与谐振腔连通的进气口,进气口适用于与外部的氨气气源相连通;中心电极,穿设于谐振腔内。微波从封闭端馈入到谐振腔内发生微波谐振,并在中心电极的靠近开口端的尖端周围形成等离子体区域,以使得从进气口流入的氨气在通过等离子体区域时发生裂解反应,生成包含氢气的裂解气。本公开还提供了一种微波谐振等离子体炬裂解氨制氢的方法。
Resumen de: CN119926431A
本发明提供一种二硫化钼/硫化锌镉复合光催化剂的制备方法及其在光催化制氢方面的应用。所述二硫化钼/硫化锌镉复合光催化剂的制备方法包括以下步骤:(1)合成硫化锌镉纳米棒;(2)利用原位生长法将二硫化钼纳米片包覆在硫化锌镉纳米棒表面,得到所述二硫化钼/硫化锌镉复合光催化剂。另外,将本发明制备得到的二硫化钼/硫化锌镉复合光催化剂应用于光催化产氢,其产氢效果相较于硫化锌镉有明显的提高,3小时的光催化制氢量可以达到259.12mmol·g‑1,并且该材料在光催化产氢过程中具有良好的循环稳定性。
Resumen de: CN119934340A
本申请提供了一种碱性水电解槽端压板及碱性水电解槽和防腐方法,其中,碱性水电解槽端压板包括:端压板本体;流道,所述流道包括气体流道和/或碱液流道,两个以上的所述流道设置在所述端压板本体上,所述流道内端的内径小于外端的内径;防腐涂层,在至少一个所述流道的内壁设置有所述防腐涂层;内衬防腐蚀管,在设置有所述防腐涂层的所述流道的外端一侧的防腐涂层内侧设置有内衬防腐蚀管。本申请提供的上述碱性水电解槽端压板,通过在流道内壁整体设置防腐涂层,能够对整个流道进行防护,在易发生腐蚀的外端部分通过内衬防腐蚀管进行加强达到防腐蚀的效果。
Resumen de: CN119932595A
本发明公开了一种基于质子交换膜的电解水系统,包括电槽组、阳极循环系统和阴极循环系统;阳极循环系统包括第一连接管,第一连接管的两端分别连接电槽组的阳极进水口和阳极出水口,阳极出水口用于排出混合有氧气的阳极溶液,第一连接管上设置有第一泵体、氧气分离单元和阳极冷却单元;阴极循环系统包括第二连接管,第二连接管的两端分别连接电槽组的阴极进水口和阴极出水口,阴极出水口用于排出混合有氢气的阴极溶液,第二连接管上设置有第二泵体、氢气分离单元和阴极冷却单元。本发明的基于质子交换膜的电解水系统通过设置分离单元,使出水口用于排出混合有气体的溶液能够实现气液有效分离,提升溶液的回收利用率,从而保证电槽组的电解效率。
Resumen de: CN119932622A
本发明公开了一种两相六元高熵氧化物电解水催化剂及其制备方法,所述制备方法,包括:将金属盐和溶剂混合,超声至金属盐完全溶解,干燥,得到前驱体粉末,金属盐为铁盐、镍盐、钼盐、钌盐、钨盐和铝盐的混合物;将前驱体粉末热解,冷却,洗涤,干燥,得到两相六元高熵氧化物电解水催化剂,热解为:先在空气气氛下于200~400℃热解2~4h,再在惰性气体气氛下于400~700℃热解2~4h。通过本发明制备方法制备的两相六元高熵氧化物电解水催化剂中两相结构的异质界面和晶体缺陷可以作为电解水析氧反应的活性位点,提高了电子转移,有效地增强了催化剂的性能和稳定性,具有显著的析氧性能及稳定性。
Resumen de: CN119932591A
本发明涉及电解制氢技术领域,具体是涉及一种电解水制氢用装置,包括设有负极池和正极池的电解箱,电解箱内设有支架,支架位于负极池和正极池之间,支架上设有安装架和推进装置,安装架至少设有三个,支架上设有至少两个工作位,支架上还设有用于容纳安装架的储存位,位于工作位的安装架的两侧分别与负极池和正极池连通,推进装置用于控制安装架朝工作位移动。本发明实现了通过在拆装隔膜时通过多个隔膜进行交替工作的功能,达到减少拆装隔膜对电解水效率的影响的效果,并且通过推进装置达到在拆卸安装架时快速使用备用隔膜带体被拆卸的隔膜的效果,解决了传统设备在拆装和维护隔膜的过程中会对设备的运行效率造成较大影响的问题。
Resumen de: CN119937437A
本发明公开了一种基于O3和H2O2并联制备双电解水的设备的控制电路及其控制方法,涉及控制电路,旨在解决电解水制备设备在运行后电极存在水垢,影响工作效率且水垢难清理的问题,其技术方案要点是:包括:触控按键模块,与操作人员进行交互,以响应操作人员动作时输出启动信号或关闭信号;负载驱动模块,与触控按键模块连接,用于获取启动信号或关闭信号以启动或停止负载;自清洁维护模块,与负载驱动模块连接,用于控制负载驱动模块的输出电极进行倒极,并维持负载的正常运行。本发明通过电阻检测法实时监测水垢程度,并动态调整倒极频率,从而有效防止水垢的积累,并且根据水垢的程度能对倒极的频率进行自动适应性的调整,减小对设备的影响。
Resumen de: CN119932629A
本发明公开了一种纳米管状析氢析氧双功能催化剂及其制备方法与应用,该催化剂由活性组分纳米颗粒FeNiOx(OH)y和纳米管状的Cnts‑Ni2O2(OH)活性组份共负载在网状泡沫镍上组成;其中,x为0.5~2,y为1~3。本发明通过Ni2O2(OH)和FeNiOx(OH)y为催化剂提供双活性位点,并采用电沉积法维持了特殊的纳米线状结构和网状基底结构,有效促进了电解液浸润和气体疏散,加速了电子在催化剂与反应体系之间的转移,同步提升了催化剂的HER和OER性能。
Resumen de: CN119935450A
本发明涉及电解水制氢气领域,公开了一种电解水制氢气系统的双极板气密检测设备,包括测试工装支撑机架,所述测试工装支撑机架的顶部固定设置有测试治具工装气缸,所述测试治具工装气缸的输出端固定设置有测试上治具工装,所述测试工装支撑机架的一侧安装有第一双极板上下料滑台,所述第一双极板上下料滑台的顶部安装有双极板A面测试滑台工装,所述测试工装支撑机架的远离第一双极板上下料滑台一侧安装有第二双极板上下料滑台。通过第一双极板上下料滑台与第二双极板上下料滑台的设置,通过双极板上下料滑台滑移伺服驱动结构分别与双极板A面测试滑台工装与双极板B面测试滑台工装相连,通过测试治具工装气缸带动测试上治具工装运行。
Resumen de: CN119932606A
本发明公开了一种碱性电解水制氢自支撑催化电极及其制备方法。所述制备方法包括配制含有镍盐、铁盐和氯化铵的电镀溶液,再在电镀溶液中,以导电基底作为阴极,金属镍作为阳极,通过外加电源提供逐渐提高电镀电压,分三个阶段实施电镀;在0.5~1.0 V电镀电压范围内,阴极上先沉积镍铁合金导电层;电镀电压逐步提高至1.0~1.4 V,阴极上继续沉积镍铁合金与LDH共存的过渡层;电镀电压进一步升至1.4~1.8 V,阴极上继续沉积LDH活性层。本发明通过电镀技术在同一基底上连续沉积导电支撑层与高活性催化层,实现导电性和催化性能的一体化结合,克服传统催化电极中活性层与支撑体结合力弱和稳定性差的缺陷。
Resumen de: CN119932638A
本发明提供了一种二维电解水制氢阳极催化剂制备方法,本发明首先将前驱体高压压制煅烧成层状前驱体IrxRuyAlzC,随后通过刻蚀插层溶液刻蚀掉层状IrxRuyAlzC中的Al原子层形成空位,随后原子半径更小的Li+插入层间,进而超声剥离煅烧即可得到二维IrxRuyO纳米片。本发明的催化剂为片状含铱二元或者三元合金氧化物,可用作电解水制氢阳极催化剂,具有高比表面积的和较高OER催化活性。
Resumen de: CN119932608A
本发明公开了一种非晶载体负载铱催化剂及其制备方法与应用,属于催化剂技术领域。本发明首先通过水热法制备了含有锆元素的前驱体,并经过第二步水热法制备了负载有Ir团簇的非晶氧化锆催化剂,载体的非晶表面的限域作用保证载体表面负载的Ir纳米团簇尺寸较小,提高了贵金属利用率,且增强的载体‑金属间效应使得该催化剂在质子交换膜电解水制氢设备中表现出了良好的活性与稳定性。以所述阳极催化剂在三电极体系中进行活性与稳定性测试时,该负载型催化剂不仅显示出较高的活性,而且在长时间测试过程中保持较好的稳定性。因此,所述的非晶氧化锆负载Ir催化剂具有金属利用率高、析氧测试过程中活性与稳定性俱佳的优势。
Resumen de: CN119930963A
本发明提供一种基于碳碳双键连接的多种孔径的二维共价有机框架材料及其制备方法和应用。制备方法包括:(1)在保护性气氛下,将6,6'‑二甲基‑3,3'‑联哒嗪、多醛基芳香族单体和苯甲酸酐置于安瓿瓶内,多醛基芳香族单体选自三醛基芳香族单体或四醛基芳香族单体;(2)将步骤(1)的安瓿瓶在77K的液氮浴中快速冷冻,经三个冷冻泵‑解冻循环脱气后于150~250℃加热反应72~120h,冷却至室温,后处理,得到基于碳碳双键连接的多种孔径的二维共价有机框架材料。本发明通过活性甲基单体与多醛基芳香族单体进行脑文格尔缩合反应得到的二维COFs,具有较高的结晶性、比表面积和稳定性,均匀的二维层状形貌和较宽的吸收光谱范围,其拓扑结构包含均一孔径以及三种不同孔径。
Resumen de: WO2025093251A1
An energy production and storage system comprises a power input connection (10) for a renewable energy source (2); an electrolysis device (16) for electrolysis of water to produce oxygen, hydrogen, and heat; an electrical energy storage device (14); a two-way grid connection (12) coupled to an external electrical grid (4); and a controller (8). The controller (8) is configured to: (i) receive information relating to: actual or potential energy production from the renewable energy source (2), the amount of stored energy in the electrical energy storage device (14), and balancing requirements for the external electrical grid (4); (ii) use the energy from the renewable energy source (2) to power the electrolysis device (16) and/or for storage in the energy storage device (14); and (iii) based on the received information, operate the energy production and storage system as a balancing service provider by either: drawing power from the grid (4) to supply the electrolysis device (16), or supplying power to the grid (4) from the electrical energy storage device (14), thereby acting as a switch to aid in balancing for the external electrical grid (4).
Resumen de: CN119918416A
本发明公开了一种考虑电解装置效率和产氢量的多堆并联质子交换膜光氢系统功率分配方法,为应对多电解槽并联光氢系统中光伏功率持续波动下,部分电解槽易发生低功率运行,导致电解槽效率和产氢量偏低的问题。为提高光氢系统中光伏功率波动下制氢系统电解槽效率和产氢量,保证系统高效平稳运行,首先,通过MATLAB/simulink建立多堆并联质子交换膜(PEM)电解槽光伏制氢系统模型,在分析电解装置效率时综合考虑了电解效率、法拉第效率、电解系统辅助设备效率及变换器转换效率,以多堆并联电解槽系统(MPES)产氢量、电解装置效率和电解槽运行功率状态等作为评价指标。通过蜣螂优化算法(DBO)离线计算各支路参考功率值,实时优化各支路质子交换膜电解槽(PEMEL)系统输出功率,提高MPES产氢量,并兼顾约束功率波动率。最后,在实验例中输入实际光伏波动数据,通过与传统电解槽功率分配策略进行对比,对所提方法有效性进行了验证。
Resumen de: CN119913558A
本发明公开一种钌掺杂镍铁基异质结构催化剂的制备方法及其应用。本发明公开的制备方法包括以下步骤:将草酸和铁盐溶于水中,得到铁前驱体溶液;将泡沫镍置于铁前驱体溶液中进行水热反应,以在泡沫镍上形成镍铁基异质结构;将形成有镍铁基异质结构的泡沫镍置于钌盐溶液中进行浸渍反应,得到钌掺杂镍铁基异质结构催化剂,其中钌掺杂在镍铁基异质结构的晶格内部。本发明制备的钌掺杂镍铁基异质结构催化剂可应用于电催化分解水反应,并具有良好电催化全解水性能。
Resumen de: CN119911874A
本发明公开了一种废弃铝合金循环再利用生产氢气的系统及工艺,涉及铝合金回收利用技术领域,系统包括破碎机、反应罐、固液分离器、汽水分离器、膜式氢气分离器和电解装置,反应罐的底部与固液分离器相连接,顶部与汽水分离器相连接;固液分离器与反渗透分离器相连接,反渗透分离器与调节罐相连接,调节罐连接至反应罐;汽水分离器与膜式氢气分离器相连接,膜式氢气分离器连接至氢气储气柜;固液分离的底部与污泥暂存池相连接,污泥暂存池与烘烧室相连接,烘烧室还与电解装置相连接,电解装置与破碎机相连接。本发明工艺流程设计合理,灵活巧妙,保证废弃铝合金回收材料的循环再利用,实现催化剂、二氧化碳循环利用,易实现工业化生产。
Resumen de: CN119913546A
本发明涉及电催化析氢技术领域,公开了一种负载过渡金属羟基氧化物的电解水阳极材料的电沉积制备方法。本发明提供的一种负载过渡金属羟基氧化物的电解水阳极材料的电沉积制备方法通过电镀工艺在泡沫镍载体表面负载过渡金属羟基氧化物,得到所述负载过渡金属羟基氧化物的电解水阳极材料。本发明提供的一种负载过渡金属羟基氧化物的电解水阳极材料的电沉积制备方法制备得到的负载过渡金属羟基氧化物的电解水阳极材料表现出优异的稳定性和OER性能。
Resumen de: CN119913537A
本发明涉及电解槽技术领域,主要涉及一种适用于AEM电解槽的高压密封结构,包括两个端板,以及两个端板内依次排列的阳极绝缘垫、阳极集流板、阳极密封垫、阳极扩散层、MEA膜电极、阴极扩散层、阴极密封垫、阴极集流板以及阴极绝缘垫,通过两个端板以及中间部件装配形成单个电解单元,本发明设计的AEM电解槽密封结构,在阳极集流板上阴极集流板开设有的凹槽结构,配合密封环,与密封垫对接,实现之间的密封,从而降低了生产成本,并且减小了电解槽的体积以及重量,同时,本发明的密封结构方便拆卸和维修,且可重复利用。
Resumen de: CN119332263A
The invention discloses an alkaline electrolysis water hydrogen production system and method capable of deeply reducing the hydrogen content in oxygen in multiple ways, a hydrogen side flash tank is arranged in the alkaline electrolysis water hydrogen production system, and dissolved hydrogen deep removal is carried out on hydrogen side alkali liquor passing through a gas-liquid separator through the hydrogen side flash tank; a mixed alkali liquor flash tank is arranged in an alkaline electrolysis water hydrogen production system, and deep removal of dissolved oxygen and dissolved hydrogen is carried out on mixed alkali liquor through the mixed alkali liquor flash tank; a hydrogen side pressure adjusting part capable of adjusting the pressure of a cathode chamber is arranged in a hydrogen side gas-liquid separator system, and an oxygen side pressure adjusting part capable of adjusting the pressure of an anode chamber is arranged in an oxygen side gas-liquid separation system, so that the pressure of the anode chamber of the alkaline electrolytic cell is higher than that of the cathode chamber, and the amount of hydrogen entering the anode chamber from the cathode chamber through a diaphragm is reduced; the concentration of hydrogen in oxygen in the water electrolysis hydrogen production system is reduced, and the safety of the system is improved.
Resumen de: CN119913543A
本发明属于催化材料领域,公开了一种碱性硝酸盐催化材料(Fe‑NiNH/NF)的制备方法及在海水中电催化氧析出反应中的应用。本申请通过碱式硝酸盐的设计和优化水热法制备工艺,创新性的制备出碱式硝酸盐催化剂,该催化剂形成了规则的纳米片或纳米层结构,能够均匀覆盖在泡沫镍的三维多孔基底上。这种片状结构不仅显著增加了表面积,也为反应提供了更多的活性位点,从而大幅提升了OER催化效率;同时本申请引入了NO3‑酸根,这种酸根离子在结构中可以有效调控电子分布,同时对催化过程中的真实活性物种具有稳定作用。此外,本发明的制备工艺在泡沫镍的预处理、水热法负载多金属碱式盐、金属协同掺杂的水热反应等核心步骤上实现了相对简化,适合工业化应用。
Resumen de: CN119913596A
本发明公开了一种电镀液的维护方法及碱性电解水制氢电极制备用镍基电镀液,通过合理设计的步骤和参数调节流程,能够将电镀液恢复至标准状态,确保电镀过程稳定进行,延长电镀液的使用寿命,同时降低更换成本和废液排放量。所述维护方法包括结合滴定法对电镀液的金属主盐浓度进行分析和调整、结合比重计调整缓冲剂浓度、调节溶液的pH值以及对调节后的电镀液进行复测和微调等步骤。
Resumen de: CN119909482A
本发明专利提供一种氯气氢气混合废气资源化处理工艺,其中特征在于:所述处理工艺包含混合气体稀释模块、MW‑LEP废气处理模块、一级旋转填料床吸收模块、二级旋转填料床吸收模块、控制系统,该工艺具有系统结构简单,体积小,安全可靠,投资成本低,混合气体中的氢气和氯气被完全资源化利用,不产生二次污染,尾气中的氯气和氯化氢排放达标。该系统在三维电解处理高浓度含氯废水领域具有广泛应用。
Resumen de: CN119913559A
本发明提供了一种光电催化水分解用的BiVO4/CuFe2O4复合光阳极制备方法。本发明以BiVO4为基底,使用滴涂和煅烧的方法制备BiVO4/CuFe2O4复合光阳极。负载的尖晶石型CuFe2O4加速了载流子的分离并抑制空穴的复合,提高了水氧化动力学,使得该复合光阳极具有优异的光电化学水分解能力和良好的稳定性,在光照条件下,BiVO4/CuFe2O4复合光阳极的光电催化性能远远高于BiVO4光电极。同时,该复合光阳极原料和合成成本较低,合成方法简单且高效。
Resumen de: CN119913569A
本申请提供一种阴极液温度调节系统、方法、电子设备及存储介质。所述系统包括:储液槽,其通过出液管向电解槽输送阴极液;测温装置,用于测量出液管中的阴极液的实际温度;调温装置,用于根据阴极液的实际温度和参考温度的比对结果,在加热模式、冷却模式、过渡模式之间切换,对储液槽中的阴极液进行温度调节。借此,本申请通过检测向电解槽输送的阴极液的实际温度,据以实施阴极液的温度调节处理,可提高阴极液温度调节的精准度,并通过延长在加热模式和冷却模式之间的切换操作时长,可避免阴极液的温度波动对电解槽造成的负面影响,提高电解槽的工作效率。
Resumen de: CN119913565A
本发明涉及乙二醇领域,公开了一种光阴极材料及其制备方法、光阴极及其应用和乙二醇的制备方法。所述光阴极材料包括聚多巴胺、无定形碳和CdIn2S4;所述聚多巴胺、无定形碳和CdIn2S4的重量比为1:(2‑5):(5‑30)。本发明提供的光阴极材料包括聚多巴胺、无定形碳和CdIn2S4,使该光阴极材料具有很好的吸光性能和催化二氧化碳还原能力,且对乙二醇有高的选择性;发明提供的光阴极材料的制备方法,简化操作条件和工艺流程,便于工业化生产;将本发明提供的光阴极材料用于制备乙二醇,具有高的选择性和产物量。
Resumen de: CN119909602A
本发明公开了氨分解制氢系统及其方法以及催化氧化催化剂和气体的处理方法,该系统包括氨转化装置、脱氨装置和氢气提纯装置;其中,所述氨转化装置为管壳式结构,管程为氨分解反应区,设置有氨原料入口和分解气出口,壳程为催化氧化反应区,设置有氧化反应进口和烟气出口;所述分解气出口与所述脱氨装置连通,用于脱除残氨;所述脱氨装置与所述氢气提纯装置连通,用于提纯氢气;所述氧化反应进口与所述氢气提纯装置连通,所述氧化反应进口也与所述烟气出口连通。本发明系统所采用的氨转化装置为管壳式结构,催化氧化反应产生的热量为氨分解反应提供热能,使整个制氢工艺不需要额外增加外热源及设备,能效更高。
Resumen de: CN119332263A
The invention discloses an alkaline electrolysis water hydrogen production system and method capable of deeply reducing the hydrogen content in oxygen in multiple ways, a hydrogen side flash tank is arranged in the alkaline electrolysis water hydrogen production system, and dissolved hydrogen deep removal is carried out on hydrogen side alkali liquor passing through a gas-liquid separator through the hydrogen side flash tank; a mixed alkali liquor flash tank is arranged in an alkaline electrolysis water hydrogen production system, and deep removal of dissolved oxygen and dissolved hydrogen is carried out on mixed alkali liquor through the mixed alkali liquor flash tank; a hydrogen side pressure adjusting part capable of adjusting the pressure of a cathode chamber is arranged in a hydrogen side gas-liquid separator system, and an oxygen side pressure adjusting part capable of adjusting the pressure of an anode chamber is arranged in an oxygen side gas-liquid separation system, so that the pressure of the anode chamber of the alkaline electrolytic cell is higher than that of the cathode chamber, and the amount of hydrogen entering the anode chamber from the cathode chamber through a diaphragm is reduced; the concentration of hydrogen in oxygen in the water electrolysis hydrogen production system is reduced, and the safety of the system is improved.
Resumen de: CN119913529A
本申请涉及电解槽技术领域,特别地涉及一种超高压水电解制氢用膜电极、电解槽装置、膜电极的制作方法、热压模具及热压成型设备。本申请在交换膜两侧设置两块塑料框架,每块塑料框架具有镂空部,交换膜覆盖镂空部并与镂空部形成电解腔室,塑料框架上成型有导流槽和与导流槽连接的导流孔,导流槽的两端连接导流孔和交换膜一侧的电解腔室;本申请的膜电极通过一体化工艺制得,两块塑料框架与交换膜形成一体化结构,这样,电解腔室与交换膜之间不存在间隙,避免了膜电极受内部高压冲击导致的各部件连接松动的问题,提高了电解腔室的密封效果,且一体化结构的膜电极强度增大,可以适用更高的压力环境,进而有效提高了水电解制氢的效率。
Resumen de: CN119913547A
本发明公开了一种核壳结构型Ru/CeO2@COF催化剂的制备方法,该方法包括:一、将球形CeO2颗粒加入聚乙烯亚胺水溶液进行表面处理;二、加入到含PVP的无水乙腈中后加入DMTP和TAPB,加入冰醋酸在室温下反应和加热反应得到核壳型载体材料;三、分散后滴加RuCl3甲醇溶液超声,滴加硼氢化钠溶液还原得到Ru/CeO2@COF催化剂。本发明通过在球形氧化铈表面包覆COF构建核壳型载体材料,并负载单质Ru纳米颗粒制备核壳结构型催化剂,有效增大了氧化铈表面的比表面积,增强催化剂的吸附能力,改善催化剂的导电性,从而提升催化剂的电催化活性和稳定性,适用于电解水析氢反应领域。
Resumen de: CN119913552A
本发明公开了一种表面钛氧物种锚定的氧化铱析氧电催化剂的制备方法及应用。催化剂由氮化钛负载的金属铱团簇预催化剂电氧化得到。其中,表面钛氧物种通过氮化钛电化学重构得到,氧化铱由金属铱团簇电氧化得到。本发明的催化剂用于阳极析氧反应时,具有优异催化活性以及显著提升的稳定性。与现有的催化剂相比,本发明提供的催化剂由预催化剂电氧化得到,在PEM电解槽中,预催化剂中的氮化钛载体在电氧化溶出过程中发挥造孔剂的作用,伴随催化层自发增厚效应,解决了PEM电解水超薄催化层电极均一性、机械稳定性差的问题,更容易实现超低铱负载量下的大规模工业应用。
Resumen de: CN119909752A
本发明涉及能源和环境技术领域,具体涉及一种Z型异质结可见光响应的双功能有机复合光催化剂NDI/PTA的制备及其在光催化分解水制氢和抗生素氧氟沙星、盐酸四环素,磺胺甲恶唑降解方面的应用。包括:有机光催化剂3,4,9,10‑苝四羧酸(PTA)、NDI/PTA(1,4,5,8‑萘四甲酰基二酰亚胺/3,4,9,10‑苝四羧酸)的制备;将制备的复合催化剂用于光催化分解水产氢和氧氟沙星、盐酸四环,磺胺甲恶唑抗生素的降解。本发明所述有机复合光催化剂NDI/PTA表现出优异的氧化还原性能,复合催化剂具有制备方法简单、成本低廉、可重复使用、绿色以及良好光催化效率等优点。
Resumen de: CN119913531A
本发明涉及水电解制氧设备的技术领域,具体公开了一种车载次抛型水电解制氧设备,包括鼻吸管、气体干燥组件、电解组件和电源组件,鼻吸管连通气体干燥组件,鼻吸管上套设有管套;气体干燥组件包括亚克力管和棉花,棉花设置于亚克力管内部,亚克力管呈针筒型设置;电解组件包括外壳,外壳上设置有封盖,外壳内设置有阳极端板、阳极电极、离子交换膜、阴极电极和阴极端板。本发明能够实现设备在使用时能够快速持续供氧,制取的氧气纯度高,安全,无污染物质的使用以及产生,电化学性能稳定,设备结构紧凑体积小,便于随身携带,即取即用,设备的电解组件为次抛型装置,无需额外维护,使用便捷度高。
Resumen de: CN119910819A
本申请公开了一种氢氧气雾化机壳体注塑模具,涉及注模生产技术领域,包括U型底座,所述U型底座的内侧底端固定连接有分割板,且U型底座的内侧上端固定连接有冷水仓,所述冷水仓的内部安装有注塑模板,所述U型底座的顶部安装有可拆卸的封闭板,当注塑材料灌注在注塑模板内后,此时,通过驱动件的运转,使得驱动件内部结构对抵触件进行往复驱动,使得抵触件内部构件进行运转,进而对击打件进行驱动,通过击打件的运转,可对冷水仓进行击打,进而使冷水仓内部注塑模板发生振动,使得注塑材料发生振动,进而将材料中含有的气泡振出,使气泡振动上浮形成浮沫,从而提高材料的密实性,减少材料内部的气泡,进而提高机壳的生产质量。
Resumen de: CN119913568A
本申请提供一种制氢系统的联锁控制方法、装置、电子设备及存储介质。所述方法包括:获取制氢系统的总体工艺参数和所述制氢系统中每个电解槽的单体工艺参数,执行制氢系统的多级联锁控制策略,包括:响应于总体工艺参数满足低预警条件的判断结果,调降至少一个电解槽的电气参数;响应于任意一个电解槽的单体工艺参数满足低预警条件的判断结果,控制相应的电解槽停止运行;响应于总体工艺参数或任意一个电解槽的单体工艺参数满足高预警条件的判断结果,控制制氢系统停止运行。本申请采用的多级联锁控制策略执行制氢系统的设备调整,可避免调整过程中氢气压力和氯气压力产生剧烈波动,而影响制氢系统的运行稳定性,以确保制氢系统的安全生产。
Resumen de: CN119913520A
本发明公开了一种光伏直流电的纯海水电解水制氢方法,包括如下步骤:S1、光伏板发出不稳定的电流后通过正负导线与小型电解水制氢装置上的正负接线端子连接;S2、将光伏板的直流电直接供给小型电解水制氢装置上的阴阳电级,其中,阳极的材料为钛板镀铂或镍板镀铂,阴极的材料为碳晶、石墨烯或石墨;S3、阴极通过直流通电将电传导给氢氧分离膜阴极氢氧分离膜而产生氢气;S4、阳极通过直流通电后产生氧气,然后氢气通过氢气管道排出;本发明的光伏直流电的纯海水电解水制氢方法,阳极材料采用钛板镀铂、镍板镀铂,阴极材料采用碳晶、石墨烯、石墨,上述阳极材料和阴极材料搭配在电解矿井水工作中耐腐蚀、不结水垢、电解效果好、使用周期长。
Resumen de: CN119913549A
本发明属于电解海水制氧催化剂技术领域,具体公开了一种叠层自支撑电极材料及其制备方法和电解海水析氧应用。本发明的叠层自支撑电极材料是一种氢氧化钴修饰的镍铁硫化物,由生长在泡沫镍铁基底上的镍铁硫化物与氢氧化钴纳米片阵列形成叠层复合结构。制备方法:步骤S1:采用水热法将泡沫镍铁在硫源溶液中于泡沫镍铁基底上原位生成镍铁硫化物;步骤S2:采用电沉积法将氢氧化钴纳米片阵列修饰到镍铁硫化物上。本发明的氢氧化钴修饰的镍铁硫化物叠层自支撑电极材料。其作为碱性水和海水氧化电极,展现出了优异的催化活性和稳定性,在开发过渡金属OER催化剂以用于电解海水析氧方面,具备潜在的应用价值。
Resumen de: CN119332263A
The invention discloses an alkaline electrolysis water hydrogen production system and method capable of deeply reducing the hydrogen content in oxygen in multiple ways, a hydrogen side flash tank is arranged in the alkaline electrolysis water hydrogen production system, and dissolved hydrogen deep removal is carried out on hydrogen side alkali liquor passing through a gas-liquid separator through the hydrogen side flash tank; a mixed alkali liquor flash tank is arranged in an alkaline electrolysis water hydrogen production system, and deep removal of dissolved oxygen and dissolved hydrogen is carried out on mixed alkali liquor through the mixed alkali liquor flash tank; a hydrogen side pressure adjusting part capable of adjusting the pressure of a cathode chamber is arranged in a hydrogen side gas-liquid separator system, and an oxygen side pressure adjusting part capable of adjusting the pressure of an anode chamber is arranged in an oxygen side gas-liquid separation system, so that the pressure of the anode chamber of the alkaline electrolytic cell is higher than that of the cathode chamber, and the amount of hydrogen entering the anode chamber from the cathode chamber through a diaphragm is reduced; the concentration of hydrogen in oxygen in the water electrolysis hydrogen production system is reduced, and the safety of the system is improved.
Resumen de: AU2023262052A1
A water splitting system includes a hydrogen production chamber including a hydrogen production port, an oxygen production chamber including an oxygen collection port, an ion exchange membrane coupling the hydrogen production chamber and the oxygen production chamber, and a photocatalytic structure including a first catalytic portion disposed in the hydrogen production chamber and a second catalytic portion disposed in the oxygen production chamber. The first catalytic portion is configured for production of hydrogen via the hydrogen production port. The second catalytic portion is configured for production of oxygen via the oxygen production port.
Resumen de: JP2025070545A
【課題】マグネシウムを燃料して発電をする。【解決手段】溶融工程12(液体化工程)において、マグネシウム21を溶融(液体化)する。噴霧工程13において、溶融工程12(液体化工程)で溶融(液体化)したマグネシウム(混合液体23)を噴霧する。燃焼工程14(酸化工程)において、噴霧工程13で噴霧したマグネシウム(霧状混合物25)を燃焼(酸化)して、酸化マグネシウム27を生成する。発電工程15において、燃焼工程14で発生する反応熱29を利用して発電する。【選択図】図1
Resumen de: CN119913411A
本发明公开了一种高密度多成分L12相强化Cu基合金电解水催化剂及其制备方法和应用,属于催化剂技术领域。本发明以Cu为基体,添加Ni、Al元素使合金中存在L12相的析出,引入Co元素替代部分Ni元素,进一步提升L12相的催化性能;通过以替Al的方式添加Ti元素,促进L12相的析出并减少合金脆性,保证加工性能;Nb及V等难熔元素的添加可以提升L12相的稳定性,避免其时效过程中的粗化;Cr元素的添加通过Cr2O3钝化层的形成可保证合金的电化学稳定性,B为间隙小原子且易偏聚于晶界,提升晶界强度,进一步优化合金力学性能并保证其加工性能。
Resumen de: CN119909606A
本申请涉及一种用于化学链反应制氢的氧载体提升循环系统,包括:依次设置的氧载体进料斗、氧环境反应单元、氮封罐、氢环境反应单元以及氧载体提升单元;氧载体通过自身重力流,由所述氧载体进料斗依次在所述氧环境反应单元、所述氮封罐、所述氢环境反应单元之间流转直至到达所述氧载体提升单元;还包括提升气循环单元,所述提升气循环单元用于提供可循环的提升气,到达所述氧载体提升单元的氧载体在提升气的带动下提升返回至所述氧载体进料斗;所述提升气包括循环流动的氮气,所述氮封罐以及所述提升气循环单元分别连接有补氮单元。本发明能够实现氧载体在不同反应气体环境中的切换,同时使氧载体在系统中得到稳定可靠的循环。
Resumen de: CN119913538A
本发明公开了一种基于地热能利用的制氢设备及使用方法,属于地热能利用技术领域。包括发电部件,用以提供电能;电解部件,包括盛放清水的储水腔和储水腔内进行电解水的电极,电极与发电部件电性连接;储氢部件,与电解部件的输氢管连通,用以将电解部件电解出的氢气收集;储水腔的上方包括输氢管,用以将电解产生的氢气输送给储氢部件;使用方法包括:产生的水蒸气通过管道的另一端到达生产井内;发电机将产生的电能通给变压器,供给电极电解使用;电极在通电后工作将储水腔内的水电解为氢气和氧气;当氢气到达输氢管会进一步的到达压缩机内。本发明提供的基于地热能利用的制氢设备及使用方法,避免了输送过程中的损耗过大,利于能量的存储。
Resumen de: CN119913551A
本发明提供了一种纳米多孔复合电催化材料及其制备方法和应用,其中,复合电催化材料包括纳米多孔合金催化层和电镀合金催化层,纳米多孔合金催化层包括金属基底和纳米多孔结构,纳米多孔结构形成在金属基底的表面,电镀合金催化层通过电镀形成在纳米多孔结构表面。在本发明中,电镀合金催化层和所述纳米多孔结构层强力结合增加了结合强度和结构稳定性,纳米多孔结构可以加速电解质的渗透和H2气泡的扩散,从而保证高电流下HER过程中的传质效率及气体扩散速率,同时其较大的比表面积可为电催化析氢反应提供更多的活性位点;电镀合金催化层中的电镀合金含有较高HER催化活性金属元素,可进一步降低析氢反应动力学的能量势垒,从而降低析氢反应的过电位。
Resumen de: KR20250059015A
본 발명은 그린 수소 생산을 위한 ZIF가 코팅된 금속 폼을 포함하는 수전해용 전극 촉매 및 이의 제조방법에 관한 것으로, 보다 자세하게는, 효율로 그린 수소를 생산할 수 있는 수전해용 촉매를 제조하기 위해 교반 및 수열합성을 통해 ZIF-67을 포함하는 ZIF를 니켈 폼을 포함하는 3차원 형상의 금속 폼에 코팅한 ZIF가 코팅된 금속 폼을 포함하는 수전해용 촉매 및 이의 제조방법에 관한 것이다.
Resumen de: KR20250059107A
본 발명은 탄소 지지체; 상기 탄소 지지체에 담지된 이리듐(Ir) 나노입자; 및 상기 이리듐(Ir) 금속 나노입자 결정의 격자(lattice)에 합입(incorporation)된 칼코겐 원소;를 포함하는 수전해 장치용 촉매 및 이를 포함하는 수전해 장치에 관한 것이다. 이에 의하여, 이리듐을 적은 양으로 사용하면서도 고분자막 수전해 장치의 우수한 성능 및 내구성을 나타내어 대형 수전해 설비의 상용화를 앞당길 수 있고, 본 발명의 촉매는 전기화학 반응 중 칼코겐 원소에 의해 유도된 칼코겐 옥시하이드록사이드(chalcogen oxyhydroxide)층이 형성되어 독특한 Ir-칼코겐 옥시하이드록사이드 코어-쉘 구조가 형성되므로 더 이상의 산화 및 열화가 진행되지 않는 효과가 있다.
Resumen de: US2023021049A1
A system for hydrogen generation includes at least one cabinet defining a first volume, a second volume, and a third volume, where the first volume, the second volume and the third volume are fluidically isolated from each other, a water circuit located in the first volume, an electrochemical module including an electrolyzer electrochemical stack located in the second volume, a hydrogen circuit located in the third volume, at least one first fluid connector fluidly connecting the water circuit and the electrolyzer electrochemical stack, and at least one second fluid connector fluidly connecting the electrolyzer electrochemical stack and the hydrogen circuit.
Resumen de: SA523442668B1
Hydrogen purification devices and their components are disclosed. In some embodiments, the devices may include at least one foil-microscreen assembly disposed between and secured to first and second end frames. The at least one foil-microscreen assembly may include at least one hydrogen-selective membrane and at least one microscreen structure including a non-porous planar sheet having a plurality of apertures forming a plurality of fluid passages. The planar sheet may include generally opposed planar surfaces configured to provide support to the permeate side. The plurality of fluid passages may extend between the opposed surfaces. The at least one hydrogen-selective membrane may be metallurgically bonded to the at least one microscreen structure. Fig 1.
Resumen de: CN119913521A
本发明公开了一种降低电解槽受腐蚀程度的方法、溶解度调节剂及添加装置。其中,溶解度调节剂的添加装置,应用于电解槽,所述添加装置包括至少一组添加组件,每个添加组件包括:储存单元,用于存储溶解度调节剂;添加阀,所述添加阀的第一端连接所述储存单元,所述添加阀的第二端连接所述管路组件、氢气气液分离器、氧气气液分离器或碱液泵入组件;添加泵,所述添加泵设置在所述储存单元和所述添加阀之间,以将溶解度调节剂泵入所述电解槽的碱液中。本发明的降低电解槽受腐蚀程度的方法、溶解度调节剂及添加装置能够降低金属离子在碱液中的溶解度,从而控制碱液中的金属离子浓度,减少电解槽的腐蚀现象,提高电解过程的稳定性和效率。
Resumen de: CN119913561A
本发明涉及一种Fe3C‑Ru/NFs催化剂及其制备方法和应用。其中,Fe3C‑Ru/NFs催化剂包括碳纳米纤维NFs以及负载在碳纳米纤维NFs上的Fe3C和亚纳米级Ru颗粒,Ru颗粒的平均粒径小于3nm。该催化剂的制备方法包括以下步骤:将PVP、铁源和钌源溶于DMF和乙醇的混合溶剂中,得到前驱体溶液;将前驱体溶液通过静电纺丝法制得FeRu/PVP纳米纤维,再经过预氧化和高温碳化得到Fe3C‑Ru/NFs催化剂。本发明中,Fe3C和亚纳米级Ru颗粒高度分散在碳纳米纤维上,Fe3C颗粒使Ru位点的电子环境发生改变而处于缺电子状态,有利于催化反应的发生,使得催化剂具有极高的电催化全解水性能和稳定性。
Resumen de: CN119913562A
本发明涉及电解水制氢技术领域,具体涉及一种电解水析氧复合催化电极及其制备方法及装置,该电极的催化剂层外包覆多孔复合涂层,由于在Ni网基底表面形成了多孔结构,复合催化层可以与金属基底结合,形成稳定结构,多孔陶瓷聚合物复合涂层可以稳定的覆盖到复合催化层表面,使得复合催化电极表现出高的长时间结构稳定性。同时,制备的电解水析氧复合催化电极在高电流密度下运行时,表现出长时间的运行稳定性,具有重要的工业应用价值。
Resumen de: US2025137139A1
A metal compound thin film, a method of forming the same and a thin film catalyst for water electrolysis are provided. The method includes providing a substrate; and performing plural ink-jet printing operations to the substrate to form the metal compound thin film on the substrate. The substrate is a non-hydrophobic substrate. Each of the ink-jet printing operations includes depositing a first precursor on the substrate by using a first nozzle of an ink-jet system; and depositing a second precursor on the substrate by using a second nozzle of the ink-jet system. A chemical reaction occurs between the first precursor and the second precursor to form a metal compound, and the metal compound thin film includes plural layers of the metal compound. Therefore, patterning the thin film can be easily accomplished, and chemical solution can be effectively saved.
Resumen de: AU2023343511A1
The problem addressed by the present invention is that of specifying a process for producing lithium hydroxide which is very energy efficient. The process shall especially operate without consumption of thermal energy. The process shall be able to handle, as raw material, Li-containing waters generated during digestion of spent lithium-ion batteries. The LiOH produced by the process shall have a high purity sufficient for direct manufacture of new LIB. The process shall achieve a high throughput and have small footprint in order that it can be combined with existing processes for workup of used LIB/for production of new LIB to form a closed, continuous production loop. The process according to the invention is an electrolytic membrane process operating with a LiSICon membrane. It is a special aspect of the process that the electrolysis is operated up to the precipitation limit of the lithium hydroxide.
Resumen de: US2025137151A1
A boiler system (1) according to one aspect of the present invention includes a water electrolysis device (20) that electrolyzes electrolysis target water with electric power supplied from a natural energy power generation device (10) to generate hydrogen and oxygen, a boiler (30) that heats makeup water by combusting fuel to generate steam, a heat exchange device (40) that exchanges heat between the electrolysis target water and a heat medium, and a control device (70) having a cooling controller (71) that cools the electrolysis target water by supplying the makeup water as the heat medium to the heat exchange device when a preset cooling start condition is satisfied.
Resumen de: US2025141341A1
A power supply device according to an embodiment is configured to supply DC power to an electrolytic cell producing hydrogen by electrolysis. The power supply device includes a power converter, a reactor, and a filter circuit; the power converter is self-commutated and includes a first output terminal and a second output terminal; the second output terminal is configured to output a positive voltage with respect to the first output terminal; the reactor is connected in series to at least one of the first output terminal or the second output terminal; and the filter circuit is connected between an anode and a cathode of the electrolytic cell. The filter circuit is a low-pass filter. A cutoff frequency of the filter circuit is set to be less than a switching frequency of the power converter.
Resumen de: AU2025202662A1
Abstract Embodiments of the present invention relates to two improved catalysts and associated processes that directly converts carbon dioxide and hydrogen to liquid fuels. The catalytic converter is comprised of two catalysts in series that are operated at the same pressures to directly produce synthetic liquid fuels or synthetic natural gas. The carbon conversion efficiency for C02 to liquid fuels is greater than 45%. The fuel is distilled into a premium diesel fuels (approximately 70 volume %) and naphtha (approximately 30 volume %) which are used directly as "drop-in" fuels without requiring any further processing. Any light hydrocarbons that are present with the carbon dioxide are also converted directly to fuels. This process is directly applicable to the conversion of C02 collected from ethanol plants, cement plants, power plants, biogas, carbon dioxide/hydrocarbon mixtures from secondary oil recovery, and other carbon dioxide/hydrocarbon streams. The catalyst system is durable, efficient and maintains a relatively constant level of fuel productivity over long periods of time without requiring re-activation or replacement. Fig 1 FIG. 1 - Integrated Catalytic Converter and Process for the Production of Renewable Liquid fuels Electrolysis Captured CO 2 H, CO2 104 Catalytic Conversion System 103 Gas 105 Syngas 106 Heat 107 Blending/Heating C t #1 Exchanger Catalyst #2 Syngas --------------------------- -------------------------------------- ----------- Conversion 109Tailg
Resumen de: AU2023366065A1
Abstract A sustainable water fuelled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Resumen de: WO2025088418A1
Electrochemical device (1), preferably of the electrolyser type for hydrogen production, characterised by comprising: - at least one support frame (2), with a substantially laminar development, which is provided with at least one seat (3) for an electrochemical module (10), said support frame (2) comprising a first face (12') and a second face (12") which are opposite to each other, at least one electrochemical module (10) which is mounted in said at least one seat (3) and which comprises a separation membrane interposed between two electrodes, respectively between an anode and a cathode, at least one bipolar plate (20) for applying/transferring electrical energy to the electrodes of said at least one electrochemical module (10), said bipolar plate (20) comprising a first surface (21') and a second surface (21") which are opposite to each other, said bipolar plate (20) being superimposed on said support frame (2) and being configured so that the first surface (21') of said bipolar plate (20) rests, at least in part, on a first face (12') of said support frame (2).
Resumen de: WO2025088185A1
The invention relates to a method of operating a solid oxide electrolysis cell (SOEC) stack for producing hydrogen, and a system for carrying out the method, said SOEC stack comprising at least one solid oxide electrolysis cell (SOEC), said at least one SOEC comprising an electrolyte layer interposed between a fuel-side and an oxy-side, the method comprising transient operation, in which the transient operation comprises: - providing a feed gas comprising ammonia; - supplying at least a portion of said feed gas comprising ammonia to a guard bed reactor, said guard bed reactor comprising a catalyst active in the cracking of ammonia to nitrogen and hydrogen; and withdrawing from said guard bed reactor a forming gas comprising nitrogen and hydrogen; - supplying at least a portion of the intermediate gas comprising nitrogen and hydrogen to the fuel-side of the at least one of the solid oxide electrolysis cells (SOECs) of the SOEC stack; and withdrawing from said at least one of the SOECs of the SOEC stack, a first fuel-side exit gas.
Resumen de: AU2023343512A1
The present invention relates to the electrochemical production of hydrogen and lithium hydroxide from Li+-containing water using a LiSICon membrane. The problem addressed by the present invention is that of specifying a process which is operable economically even on an industrial scale. The process shall especially exhibit a high energy efficiency and achieve a long service life of the membrane even when the employed feed contains impurities harmful to LiSICon materials. A particular aspect of the process is that the cell simultaneously separates off the lithium via the membrane and effects electrolysis of water. An essential aspect of the process is that the electrochemical process is performed in a basic environment, more precisely at pH 9 to 13. The pH is adjusted by addition of a basic compound to the feed.
Resumen de: AU2023343511A1
The problem addressed by the present invention is that of specifying a process for producing lithium hydroxide which is very energy efficient. The process shall especially operate without consumption of thermal energy. The process shall be able to handle, as raw material, Li-containing waters generated during digestion of spent lithium-ion batteries. The LiOH produced by the process shall have a high purity sufficient for direct manufacture of new LIB. The process shall achieve a high throughput and have small footprint in order that it can be combined with existing processes for workup of used LIB/for production of new LIB to form a closed, continuous production loop. The process according to the invention is an electrolytic membrane process operating with a LiSICon membrane. It is a special aspect of the process that the electrolysis is operated up to the precipitation limit of the lithium hydroxide.
Resumen de: WO2025087866A1
The invention relates to a method of operating a solid oxide electrolysis cell (SOEC) stack for producing hydrogen, and a system for carrying out the method, said SOEC stack comprising at least one solid oxide electrolysis cell (SOEC), said at least one SOEC comprising an electrolyte layer interposed between a fuel-side and an oxy-side, the method comprising transient operation, in which the transient operation comprises: - operating the SOEC stack under open-circuit voltage (OCV); - providing a feed gas comprising ammonia; - supplying at least a portion of said feed gas comprising ammonia to a guard bed reactor, said guard bed reactor comprising a catalyst active in the cracking of ammonia to nitrogen and hydrogen; and withdrawing from said guard bed reactor a forming gas comprising nitrogen and hydrogen; - supplying at least a portion of the forming gas comprising nitrogen and hydrogen to the fuel-side of the at least one of the solid oxide electrolysis cells (SOECs) of the SOEC stack; and withdrawing from said at least one of the SOECs of the SOEC stack, a first fuel-side exit gas.
Resumen de: WO2025087865A1
The present invention relates to a guard bed reactor for silicon removal, a solid oxide electrode system for producing hydrogen comprising a guard bed reactor for silicon removal, a method of operating the system to produce hydrogen and a use of the guard bed reactor for silicon removal for depleting a stream of steam from volatile silica species.
Resumen de: WO2025087819A1
The invention relates to a catalyst comprising a nickel(II) complex comprising a bis(thiosemicarbazone) ligand derived from 2,2'-thenil, the nickel(II) complex having the general formula Chem 6 wherein R1 and R2 each independently represent a phenyl group optionally having one or more identical or different substituents R3, R3 is selected from a halogen, a hydroxy group, a C1-C4 alkyl group, a C1-C4 alkoxy group, a C1-C4 thioalkyl group, a C1-C4 dialkylamino group, a cyano group, a CF3 group and an O-CF3 group.
Resumen de: WO2025087614A1
Process (2) for the production of an enhanced fuel gas (4) containing at least hydrogen gas from a fuel stream, in particular from an ammonia fuel stream (6). Said process comprises the following steps: - providing the fuel stream (6) (S100); - providing a condensable medium (8), preferably water steam (8), to a cracker unit (10); - at least one step of performing an endothermic cracking reaction of the fuel stream (6) in the cracker unit comprising at least one catalyst suitable for cracking said fuel stream (6), so as to produce an at least partially cracked fuel stream as said enhanced fuel gas (4) (S300); and - condensing at least partially said condensable medium (8) to provide said heat for the endothermic cracking reaction of the fuel stream (6).
Resumen de: CN119183617A
The present invention relates to an electrochemical cell assembly (10) comprising a first end plate assembly (12), a stack (14) of battery repeating units (18), and a second end plate assembly (16). The stack is held in a compressed state between the first end plate assembly and the second end plate assembly. The first end plate assembly and/or the second end plate assembly each comprises an end plate (32) and an insulating plate (34) located between the end plate and the stack, in which at least one through-hole (36) is provided in the insulating plate, and in which a sealing insert (40) is provided in the at least one through-hole of the insulating plate, which sealing insert defines a fluid channel (42) in the direction of the stack. The invention also relates to an end plate assembly and a method of manufacturing an electrochemical cell assembly.
Resumen de: US2025129491A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane, a gas diffusion layer, and a catalyst layer. The gas diffusion layer is positioned on one side with respect to the electrolyte membrane. The gas diffusion layer is a porous layer. The catalyst layer is positioned between the electrolyte membrane and the gas diffusion layer. The catalyst layer is made of a catalyst material. A penetration part formed in the gas diffusion layer by the penetration of the catalyst material having a thickness of 1 μm or less.
Resumen de: JP2025069496A
【課題】反りを簡易に低減できる電気化学セル、セルスタック、ホットモジュール及び水素製造装置を提供する。【解決手段】電気化学セルは、順に燃料極、固体電解質、空気極を含み、燃料極は、順に基板層および機能層を含む固体酸化物形であって、基板層の内部に配置された拘束層を備え、拘束層は、空気極が重なる部分に位置する線状部を複数含む第1部と、空気極が重ならない部分に位置する枠状の第2部と、を含み、線状部の両端は第2部につながり、第1部および第2部の気孔率は、基板層の気孔率よりも小さい。【選択図】図2
Resumen de: WO2025087496A1
The invention relates to the combination of a dry cell and a flooded (wet) cell in a single cell, wherein stainless steel or metal strips (10) used in electrochemical analysis are arranged horizontally and circular openings are made in a geometrically balanced manner such that electricity is evenly distributed within the cell, allowing hydroxy gas to escape from the openings instead of getting caught between the stainless steel or metal strips (10). The stainless steel or metal strips (10) are connected directly to a thermal acrylic cylinder (3) without connectors or tubes, preventing the hydroxy gas, and even the electrolyte solution, from being carried to the stainless steel strips, as the thermal acrylic cylinder (3) is positioned on top of the stainless steel or metal strips (10). An effective result of this distinctive new design is that the device is smaller, enabling installation in small vehicles. In addition, the distinctive design makes the device easy to install and maintain, since the base of the device is only 7 x 7 cm, which facilitates installation in motors, vehicles and generators that use petroleum hydrocarbons as fuel, in addition to significantly reducing the production cost of this type of device.
Resumen de: WO2025090834A1
Disclosed herein are systems and methods for tandem hydrogen (H2) production and carbon dioxide (CO2) capture. For example, described herein are methods comprising tandem H2 production and CO2 capture and conversion to a carbonate mineral. In some examples, the method is an electrochemical method. In some examples, the method comprises dissolving CO2 in water and applying an electrochemical potential sufficient to drive the H2 evolution reaction, thereby producing H2 and CO3 2-. In some examples, the methods further comprise contacting the CO3 2- with a cation to thereby form an insoluble carbonate compound.
Resumen de: WO2025091024A1
A hydrogen generation system suitable for outdoor use is described. The system vents to the atmosphere to help to prevent accumulation of hazardous gas buildup within the system while also protecting hydrogen generation components from extreme weather conditions. The system includes walls that the allow ventilation while inhibiting moisture and wind from entering an interior of the system.
Resumen de: WO2025089500A1
The present invention relates to a catalytic activity promoter to be dissolved in an alkaline electrolyte solution of a water electrolysis apparatus so as to promote the catalytic activity of an oxygen-generating electrode. The catalytic activity promoter comprises 2,2,6,6-tetramethylpiperidine-1-oxyl, which is oxidized in a dissolved state in the oxygen evolution reaction of the water electrolysis apparatus, and then meets an oxygen evolution reaction intermediate so as to be spontaneously reduced, and oxidizes the oxygen evolution reaction intermediate.
Resumen de: WO2025089434A2
The present invention relates to an apparatus and method for producing, storing, and transferring hydrogen. According to the present invention, in order to address the problems of conventional systems and methods for producing, storing, and transferring marine green hydrogen, which are configured with a fixed structure in a small-scale offshore wind power generator on a coast or in a shallow sea area with a shallow depth of water, and thus, have low efficiency due to the difficulty in mass production of hydrogen, and a large storage space is occupied when the produced hydrogen is converted into a compressed gas form, and when the produced hydrogen is converted into ammonia, additional energy is required to extract the hydrogen again and there is a risk of environmental pollution and casualty in the event of an outflow accident, provided is a marine platform for producing, storing, and transferring marine green hydrogen, which is configured such that marine green hydrogen is produced through a floating marine structure configured to produce marine green hydrogen using electricity produced using renewable energy from the ocean, and simultaneously, the produced marine green hydrogen is stored, transferred, and offloaded through a single offshore platform (FPSO), thereby being possible to easily construct a large-scale production facility capable of producing, storing, and transferring marine green hydrogen without greenhouse gas emission on the basis of eco-friendly energy.
Resumen de: WO2025089546A1
An aspect of the present invention provides a system for producing sodium hypochlorite and hydrogen gas, comprising: a desalination unit for desalinating seawater to generate a fresh water stream and a concentrated water stream; a crystallization unit for crystallizing the concentrated water stream to generate a solid raw material containing sodium chloride; an electrolysis unit for electrolyzing reactants, derived from the solid raw material and water, to generate sodium hypochlorite and by-product gas; and a gas purification unit for purifying the by-product gas to generate hydrogen gas.
Resumen de: WO2025088755A1
An ammonia decomposition apparatus according to one aspect is provided with: a preheating flow path through which a reaction gas flows in a first direction; a first reaction flow path which is connected to the preheating flow path and through which the reaction gas that has passed through the preheating flow path flows in a second direction opposite to the first direction; a second reaction flow path which is connected to the first reaction flow path and through which the reaction gas that has passed through the first reaction flow path flows in the first direction; a first heating gas flow path which heats the reaction gas in the first reaction flow path and the second reaction flow path by a high-temperature gas; and a second heating gas flow path which is connected to the first heating gas flow path and which heats the reaction gas in the preheating flow path and the first reaction flow path by the high-temperature gas that has passed through the first heating gas flow path. In the first reaction flow path and the second reaction flow path, an ammonia decomposition catalyst is disposed. The first heating gas flow path, the first reaction flow path, the second heating gas flow path, and the preheating flow path are arranged concentrically or elliptic-concentrically around the axis of the second reaction flow path in this order from the side closer to the second reaction flow path.
Resumen de: US2025136442A1
A plant for producing hydrogen from scission of methane molecules with production of carbon dust includes a reactor having an inner chamber delimited by a holding wall. The reactor includes an inlet opening for feeding methane (CH4), an outlet opening for allowing hydrogen (H2) in gaseous form to flow out. A discharge opening is for discharging carbon dust (C) from the inner chamber through a sealing rotary valve. A refractory lining, and an electromagnetic induction heater are for heating the inner chamber of the reactor.
Resumen de: US2025136457A1
Apparatus, system, and method for geothermally driven ammonia production. Hydrogen is generated using energy obtained from the underground magma reservoir and nitrogen is captured from air using the energy obtained from the underground magma reservoir. At least a portion of the generated hydrogen is combined with at least a portion of the generated nitrogen and heated at least to a reaction temperature using the energy obtained from the underground magma reservoir. The heated hydrogen contacts the heated nitrogen for a residence time to form the ammonia.
Resumen de: US2025135397A1
Hydrogen gas purifier electrochemical cells, systems for purifying hydrogen gas, and methods for purifying hydrogen gas are provided. The cells, systems, and methods employ double membrane electrode (DMEA) electrochemical cells that enhance purification while avoiding the complexity and cost of conventional cells. The purity of the hydrogen gas produced by the cells, systems, and methods can be enhanced by removing at least some intermediate gas impurities from the cells. The purity of the hydrogen gas produced by the cells, systems, and methods can also be enhanced be introducing hydrogen gas to the cells to replenish any lost hydrogen. Water electrolyzing electrochemical cells and methods of electrolyzing water to produce hydrogen gas are also disclosed.
Resumen de: AU2023343512A1
The present invention relates to the electrochemical production of hydrogen and lithium hydroxide from Li+-containing water using a LiSICon membrane. The problem addressed by the present invention is that of specifying a process which is operable economically even on an industrial scale. The process shall especially exhibit a high energy efficiency and achieve a long service life of the membrane even when the employed feed contains impurities harmful to LiSICon materials. A particular aspect of the process is that the cell simultaneously separates off the lithium via the membrane and effects electrolysis of water. An essential aspect of the process is that the electrochemical process is performed in a basic environment, more precisely at pH 9 to 13. The pH is adjusted by addition of a basic compound to the feed.
Resumen de: US2025135397A1
Hydrogen gas purifier electrochemical cells, systems for purifying hydrogen gas, and methods for purifying hydrogen gas are provided. The cells, systems, and methods employ double membrane electrode (DMEA) electrochemical cells that enhance purification while avoiding the complexity and cost of conventional cells. The purity of the hydrogen gas produced by the cells, systems, and methods can be enhanced by removing at least some intermediate gas impurities from the cells. The purity of the hydrogen gas produced by the cells, systems, and methods can also be enhanced be introducing hydrogen gas to the cells to replenish any lost hydrogen. Water electrolyzing electrochemical cells and methods of electrolyzing water to produce hydrogen gas are also disclosed.
Resumen de: WO2025087088A1
Disclosed in the present application are a catalyst, and a preparation method therefor and the use thereof. By using a chromium-manganese co-doped ruthenium-based catalyst, in cooperation with a coordination dispersion effect of a chelating agent structure, the catalyst provided in the present application effectively inhibits sintering agglomeration of chromium, manganese and ruthenium components, and the prepared catalyst has better uniformity. Chromium and manganese regulate and control a d electron center of a ruthenium active site at the same time and serve as a high-corrosion resistance protective layer, such that when an OER reaction is carried out under a strong-acidity electrolyte system, the catalyst can effectively maintain high-activity characteristics thereof, long-cycle stable operation is achieved, and the use cycle can reach 2000 hours. The catalyst serving as a high-performance acidic oxygen evolution reaction electrocatalyst can be used for stably and efficiently carrying out an oxygen evolution reaction (OER) in an acidic electrolyte environment, and can be used as an anode material for water electrolysis hydrogen production in a proton conduction polymer electrolysis hydrogen production electrolytic tank, thereby solving the problems of few types, low performance and a short service life of existing acidic oxygen evolution catalysts.
Resumen de: US2025137153A1
A hydrogen generation and carbon dioxide storage system has increased processing capacity of carbon dioxide. The system includes a metal-carbon dioxide battery comprising an anode, a cathode, and an ion exchange membrane positioned between the anode and the cathode, a first supply unit configured to provide a first electrolyte to the anode, a second supply unit configured to provide a second electrolyte comprising hydrogen ions and an aqueous solution of alkali bicarbonate to the cathode, a separation unit, an electrolyte circulation unit located at a rear end of the separation unit, a dissolution unit located at a rear end of the electrolyte circulation unit, and a carbon dioxide purification unit.
Resumen de: EP4545192A2
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: EP4545687A1
An object of the present invention is to provide an electrolyte membrane having an excellent joining property between an electrolyte membrane and a catalyst layer. The present invention mainly relates to an electrolyte membrane including a layer (A) containing a polymer electrolyte, and a layer (B) on at least one of the faces of the layer (A), wherein porosity (X1) in an interface region of the layer (B), on the layer (A) side, is higher than porosity (X2) in another interface region of the layer (B), on the opposite side to the layer (A).
Resumen de: EP4545479A1
Provided are a carbon nanotube molded body including carbon nanotubes, and a method of producing the same, wherein the carbon nanotube molded body has a specific surface area of 700 m<sup>2</sup>/g or more, the carbon nanotube molded body has a pore distribution from 3 to 15 nm, the carbon nanotube molded body has a tensile strength of 45 MPa or more, and the carbon nanotube molded body has a Young's modulus of 1600 MPa or more. Also provided are an electrochemical water-splitting electrode comprising the carbon nanotube molded body and platinum supported on the carbon nanotube molded body, a method of producing the same, and an electrochemical water-splitting apparatus comprising the electrochemical water-splitting electrode.
Resumen de: EP4546471A1
A catalyst electrode according to an embodiment of the present disclosure includes a metal layer; and a catalyst layer formed on the metal layer, wherein the catalyst layer includes iridium and palladium.
Resumen de: AU2023288544A1
Disclosed herein are low voltage electrolyzers and methods and systems of using those low voltage electrolyzers. Specifically, the electrolyzers can include a pH buffer in the catholyte and/or anolyte of the electrolyzer and generating a gas at the cathode or anode that is consumed at the other of the cathode or anode to reduce the open-circuit potential.
Resumen de: EP4545690A1
An electrolysis device of the present disclosure includes an electrolytic cell, an electrolyte supply unit, and an ion concentration adjustment unit. The electrolytic cell includes an anode chamber, a cathode chamber, and an ion exchange membrane disposed between the anode chamber and the cathode chamber. The electrolyte supply unit includes at least one tank accommodating an electrolyte, circulates a portion of the electrolyte as a first electrolyte between the at least one tank and the anode chamber, and circulates another portion of the electrolyte as a second electrolyte between the at least one tank and the cathode chamber. The ion concentration adjustment unit supplies an adjustment solution for adjusting a hydrogen ion concentration to the electrolyte supply unit.
Resumen de: EP4545476A1
Process (2) for the production of an enhanced fuel gas (4) containing at least hydrogen gas from a fuel stream, in particular from an ammonia fuel stream (6). Said process comprises the following steps:- providing the fuel stream (6) (S100);- providing a condensable medium (8), preferably water steam (8), to a cracker unit (10);- at least one step of performing an endothermic cracking reaction of the fuel stream (6) in the cracker unit comprising at least one catalyst suitable for cracking said fuelstream (6), so as to produce an at least partially cracked fuel stream as said enhanced fuel gas (4) (S300); and- condensing at least partially said condensable medium (8) to provide said heat for the endothermic cracking reaction of the fuel stream (6).
Resumen de: US2024106008A1
An energy apparatus comprising at least one functional unit including a first cell comprising a first cell electrode and at least one first cell opening for a first cell aqueous liquid and for a first cell gas. The first cell electrode comprises an iron-based electrode; a second cell comprising a second cell electrode and at least one second cell opening for a second cell aqueous liquid and for a second cell gas. The second cell electrode comprises at least one metal comprising 60-99.9 at. % nickel, and 0.1-35 at. % iron and a separator. The first cell and the second cell share the separator which is configured to block transport of at least one of O2 and H2 from one cell to another while having permeability for at least one of hydroxide ions (OH−) monovalent sodium (Na+), monovalent lithium (Li+) and monovalent potassium (K+).
Resumen de: KR20250058602A
본 발명의 일 실시예에 따른 암모니아 분해 장치는, 암모니아가 공급되는 암모니아 공급부, 암모니아가 이동하면서 분해되는 분해 공간, 분해된 암모니아 분해가스가 배출되는 분해가스 배출부, 연료전지의 애노드 배가스가 공급되는 제1 배가스 공급부, 연료전지의 캐소드 배가스가 공급되는 제2 배가스 공급부, 상기 애노드 배가스와 상기 캐소드 배가스가 연소되는 연소 공간, 및 상기 연소 공간에서 연소된 배가스를 이동시키는 배가스 유로를 포함하고, 상기 분해 공간은 상기 연소 공간과 상기 배가스 유로 사이에 위치할 수 있다.
Resumen de: WO2025089546A1
An aspect of the present invention provides a system for producing sodium hypochlorite and hydrogen gas, comprising: a desalination unit for desalinating seawater to generate a fresh water stream and a concentrated water stream; a crystallization unit for crystallizing the concentrated water stream to generate a solid raw material containing sodium chloride; an electrolysis unit for electrolyzing reactants, derived from the solid raw material and water, to generate sodium hypochlorite and by-product gas; and a gas purification unit for purifying the by-product gas to generate hydrogen gas.
Resumen de: US2024139707A1
Biogenic activated carbon compositions disclosed herein comprise at least 55 wt % carbon, some of which may be present as graphene, and have high surface areas, such as Iodine Numbers of greater than 2000. Some embodiments provide biogenic activated carbon that is responsive to a magnetic field. A continuous process for producing biogenic activated carbon comprises countercurrently contacting, by mechanical means, a feedstock with a vapor stream comprising an activation agent including water and/or carbon dioxide; removing vapor from the reaction zone; recycling at least some of the separated vapor stream, or a thermally treated form thereof, to an inlet of the reaction zone(s) and/or to the feedstock; and recovering solids from the reaction zone(s) as biogenic activated carbon. Methods of using the biogenic activated carbon are disclosed.
Resumen de: US2025129001A1
In a process for producing methanol, a synthesis gas that has been recovered from biomass is fed to a methanol synthesis apparatus. In a main operating mode in which sufficient electrical power is available for electrolytic hydrogen recovery, correspondingly electrolytically recovered hydrogen is fed to the methanol synthesis apparatus. In a secondary operating mode in which insufficient electrical power is available for electrolytic production of hydrogen, a tail gas that arises from a biogas recovered from a biomass on removal of the synthesis gas is fed to a generator in order to provide electrical power for apparatuses involved in the process.
Resumen de: EP4545689A1
The present invention relates to a method for operating a Power-To-Hydrogen system (10) comprising at least one electricity source (1), at least one electrolyzer (2), a first hydrogen storage device (3) with permanent availability and a hydrogen transfer station (4). The hydrogen transfer station (4) is adapted and configured to be coupled temporarily to one or multiple second hydrogen storage devices (5,51,52) with time-dependent availability for a transfer of hydrogen to the one or multiple second hydrogen storage devices (5,51,52). A hydrogen production rate (P(t)) of the electrolyzer (2) is controlled based on a forecasted total available hydrogen storage capacity, wherein the forecasted total available hydrogen storage capacity comprises a storage capacity (X) of the first hydrogen storage device (3) and a time-dependent storage capacity of the second hydrogen storage device (5,51,52) provided by a hydrogen storage capacity model (C(t)).The method according to invention allows for an optimized hydrogen production planning and thus improves both profitability and sustainability of the Power-To-Hydrogen system.
Resumen de: CN119497764A
The present invention relates to a method for operating a high temperature solid oxide electrolysis system suitable for converting a fuel stream into a product stream and a system for implementing the method. The method includes drying the moist purge gas and using the waste purge gas as a regeneration gas in the drying unit.
Resumen de: CN119900047A
本发明属于电解水催化技术领域,具体涉及一种卤素修饰的双金属磷化物及其制备方法和应用。卤素修饰的双金属磷化物,包括镍基底和镍基底上生长的卤素修饰的双金属磷化物,掺杂有卤素,所述的卤素为氯或溴,含有金属钴和镍的磷化物,存在金属钴和锰以及磷与氧的成键。制备方法:将镍基底材料预处理后作为基底,使用钴源物质、锰源物质,在NH4X,X为Cl或Br,和(NH2)2CO的存在下进行水热反应于基底上沉积形成卤素修饰的钴锰前驱物;使用NaH2PO2经高温磷化法制备得到卤素修饰的双金属磷化物。本发明提供的卤素修饰的双金属磷化物具有优异的HER和OER催化活性。
Resumen de: CN119900053A
本发明公开了用于电解水制氢装置的控制系统和方法,所述系统用于稳定SOEC背压的背压稳定单元、数据采集单元、预测单元和控制单元;背压稳定单元与SOEC电堆阴极出口连接,包括设于阴极换热及冷却单元上游的背压传感器、设于阴极换热及冷却单元下游的第一调压阀和变频调速引风机;数据采集单元用于获取用于电解水制氢装置的控制系统的多种运行参数的运行数据;预测单元用于以预设运行数据的当前值为输入,根据预测模型生成包括预设时间段后背压预测值的预测结果;控制单元用于根据预测结果生成调压阀和\或变频调速引风机的调节指令。本发明可以进行预防性的先馈控制,有效的避免了SOEC电堆阴极背压的超标波动,进而也就有效的提高了SOEC背压的稳定性。
Resumen de: CN119897111A
本发明涉及氨分解催化剂制备领域,公开了负载型镍基催化剂及其制备方法和应用以及氨分解制氢的方法。一种负载型镍基催化剂,所述催化剂含有钛酸钡载体以及负载于钛酸钡载体的镍元素;以催化剂的总重量为基准,以氧化镍计,镍的含量为2‑15重量%;其中,所述催化剂的平均粒径为1‑10微米。该催化剂具有较高的活性,应用于氨分解制氢中,在低温下以及较大的空速下具有较高的氨分解转化率。
Resumen de: AU2023359368A1
Electrolyser (1) for production of hydrogen gas and comprising a stack of bipolar electrodes (9) sandwiching ion-transporting membranes (2) between each two of the bipolar electrodes (9). Each bipolar electrode comprises two metal plates (9A, 9B) welded together back-to-back forming a coolant compartment in between and having a respective anode surface and an opposite cathode surface, each of which is abutting one of the membranes. The plates (9A, 9B) are embossed with a major vertical channel (10A, 10B) and minor channels (11A, 11B) in a herringbone pattern for transport of oxygen and hydrogen gases. The embossed herringbone pattern is provided on both sides of the metal plates (9A, 9B) so as to also provide coolant channels (11B) in a herringbone pattern inside the coolant compartment.
Resumen de: CN119900043A
本发明涉及电解水制氢技术领域,具体涉及一种基于云母‑金属氧化物复合纳米材料及其制备方法与应用。复合纳米材料以云母粉末为载体,负载有氧化镍纳米颗粒。将云母粉末作为氧化镍纳米颗粒的载体,不仅可以解决氧化镍纳米颗粒因团聚而降低催化效果的问题,同时因其具有良好的耐磨性,可以提升复合纳米材料整体的催化寿命。
Resumen de: CN119900042A
本发明公开了一种大电流高稳定析氢铂基催化剂及其制备方法和电解水制氢方法。本发明析氢铂基催化剂的制备方法,包括如下步骤:S1、将二甲基咪唑、硫源、锌源和钴源在水中进行沉淀反应,得到钴锌双金属有机骨架材料;S2、将钴锌双金属有机骨架材料在惰性气体保护下进行热解,以在碳化的同时使锌蒸发留下空位,得到钴纳米颗粒负载的氮硫共掺杂碳载体;S3、将钴纳米颗粒负载的氮硫共掺杂碳载体与铂盐在还原剂的作用下进行化学还原反应,以在载体上负载铂纳米颗粒,得到析氢铂基催化剂。本发明中硫元素可提高基底材料比表面积及铂、钴元素分散性,从而实现活性位点的大大提高;催化剂具有优异的析氢活性和稳定性,可有效提高贵金属铂的利用率。
Resumen de: CN119898859A
本发明涉及一种电解组件及富氢水杯,该电解组件包括第一密封主体,第一密封主体上开设有第一腔体,第一腔体的内壁上设置有定位槽;电解主体卡接在定位槽中,电解主体包括自上至下依次设置的负极片、质子交换膜和正极片,负极片和正极片上均至少设置有一个第一通孔,第一通孔和第一腔体相连通。本发明还公开了一种富氢水杯。本发明具有良好的密封性,可以有效提升电解组件的电解效率,提高使用效果。
Resumen de: CN119897143A
本发明属于光催化剂技术领域,具体公开了一种掺磷氮化碳复合CdS@CdIn2S4复合光催化剂及其制备方法和应用,将尿素通过热聚合法重结晶制备超薄氮化碳,再将P元素掺入氮化碳(PCN)中去调节氮化碳的能带结构,再将PCN与CdS@CdIn2S4(CSCIS)复合,形成PCN/CdS@CdIn2S4三元异质材料(PCNCSCIS),二维纳米片状的CdS@CdIn2S4与超薄PCN复合后,形成了大量的纳米级接触界面,构建了丰富的异质结构。这种结构不仅增强了光的散射和折射几率,显著提升了光利用率,还通过形成双Z型异质结机制,有效促进了光生载流子的分离与传输,从而提高了光催化性能,产氢效率高达7614μmol·g‑1·h‑1。
Resumen de: CN119898169A
本发明涉及电解雾化技术领域,公开了一种氢氧分离且雾化效果较好的车载式氢雾设备,其包括用于承载水体的杯体(100)、固定组件(300)、电解组件(301)、雾化组件及盖体(200),其中,第一通道(300b)与第一开口(200a)连通,氢气经第一通道(300b)及第一开口(200a)输出,第二通道(300c)与第二开口(200b)连通,气雾经第二通道(300c)及第二开口(200b)输出。
Resumen de: WO2025087088A1
Disclosed in the present application are a catalyst, and a preparation method therefor and the use thereof. By using a chromium-manganese co-doped ruthenium-based catalyst, in cooperation with a coordination dispersion effect of a chelating agent structure, the catalyst provided in the present application effectively inhibits sintering agglomeration of chromium, manganese and ruthenium components, and the prepared catalyst has better uniformity. Chromium and manganese regulate and control a d electron center of a ruthenium active site at the same time and serve as a high-corrosion resistance protective layer, such that when an OER reaction is carried out under a strong-acidity electrolyte system, the catalyst can effectively maintain high-activity characteristics thereof, long-cycle stable operation is achieved, and the use cycle can reach 2000 hours. The catalyst serving as a high-performance acidic oxygen evolution reaction electrocatalyst can be used for stably and efficiently carrying out an oxygen evolution reaction (OER) in an acidic electrolyte environment, and can be used as an anode material for water electrolysis hydrogen production in a proton conduction polymer electrolysis hydrogen production electrolytic tank, thereby solving the problems of few types, low performance and a short service life of existing acidic oxygen evolution catalysts.
Resumen de: CN119902434A
本发明公开一种兼顾新能源消纳的多类型电制氢优化控制方法,涉及控制策略技术领域。本发明根据不同电解技术的动态响应速度差异,将其分别匹配不同波动特征的新能源发电负荷,从而实现差别化利用,提高了工作效率,优化协同运行。对多类型电制氢系统的容量配置进行了优化,以增强制氢装置的运行灵活性,使其与新能源发电的波动特性相适应。改善新能源发电与电解制氢过程之间的动态耦合效果,为高效可再生能源制氢技术的发展提供新的思路和实践依据,助力实现更为可持续的能源利用模式。
Resumen de: CN119897105A
本发明涉及氨分解催化剂制备领域,公开了一种含铁催化剂及其制备方法和应用以及氨分解制氢的方法。一种含铁催化剂,所述催化剂包含钛酸镁载体以及负载于钛酸镁载体上的铁元素;其中,以催化剂的总重量为基准,以铁元素计,铁的含量为5‑20重量%。该催化剂具有较高的活性,应用于氨分解制氢中,在低温下以及较高的反应空速下具有更高的氨分解转化率。
Resumen de: CN119897123A
本发明属于光催化材料技术领域,具体涉及一种Cu掺杂MnMoO4光催化剂及其制备方法和应用。制备方法是将五水硫酸铜研磨入MnMoO4的前驱体中,通过改变铜源的摩尔比得到不同摩尔比例的MnMoO4‑x%Cu复合材料,其可以应用于光催化分解水析氢领域。相较于现有的光催化剂,本发明Cu掺杂MnMoO4作为催化剂可控性良好,有利于进一步提升载流子的分离效率,应用于光催化分解水有较高的产氢量和较好的稳定性。本发明绿色环保、方法简单,操作方便,材料制备成本低廉,符合目前所倡导的绿色环保理念,具有广阔的应用市场前景。
Resumen de: KR20250057219A
본 발명은 해상에서 전기와 수소 등을 선박에 공급하는 부유식 발전 및 충전 설비에 관한 것이다. 또한, 본 발명은 해상에서 태양광 및 풍력 에너지를 포함하는 신재생 에너지를 이용하여 전기를 생산하는 발전부를 포함하는 부유식 발전 및 충전 설비로서, 발전부에 의해 충전되는 이차전지들을 구비하는 충전부와, 전기를 필요로 하는 선박의 접안 시 전력 공급 라인을 연결하여 선박의 이차전지를 충전하거나 선박의 방전된 이차전지를 상기 충전부의 충전된 이차전지로 교체하여 전기를 공급하는 전기 공급부를 구비하므로, 전기를 사용하여 운항하는 선박이 육지에 정박할 필요없이 목적지까지 운항하는 경로 상에서 전기 공급이 가능하도록 운항 경로를 최적화하고 선박의 운항 시간을 단축시킬 수 있다.
Resumen de: US2024072339A1
A method and a system for integrating renewable power with a natural gas hydrogen production plant are provided. An exemplary method include generating electricity and a reformed hydrogen stream in a solid oxide fuel cell (SOFC) stack, and providing the electricity to an electrolyzer to generate an electrolysis hydrogen stream. A second stream of electricity is generated in a renewable energy facility, when available, and providing the second stream of electricity to the electrolyzer to increase the generation of the electrolysis hydrogen stream.
Resumen de: KR20250057686A
본 발명에 따른 촉매의 제조 방법은, 금속 전구체, 및 전자화물을 준비하는 단계, 상기 금속 전구체에 상기 전자화물을 제공하고 습식환원 방법으로 음전하로 대전된 금속 입자를 제조하는 단계, 및 상기 금속 입자를 카본 입자와 혼합하여, 음전하로 대전된 상기 금속 입자, 및 상기 카본 입자를 포함하는 상기 촉매를 제조하는 단계를 포함하고, 상기 금속 입자는, 상기 금속 전구체의 금속의 고유의 일함수보다 낮은 일함수를 갖는 것을 포함할 수 있다.
Resumen de: AU2023343656A1
Electrolysis cell for chlor-alkali or alkaline water electrolysis comprising two cell elements (2, 3) each defining an electrode chamber (4, 5) by providing a back wall (6) and sidewalls (7) of the electrode chambers (4, 5), an electrode (8, 9) accommodated in each of the electrode chambers (4, 5), a sheet-like separator (10) extending in a height direction (H) and a width direction of the electrolysis cell (1), the separator (10) being interposed in a joint (11) be- tween the two cell elements (2, 3) and providing a separating wall (12) between the electrode chambers (4, 5), and a plurality of support members (13) supporting at least one (8) of the electrodes (8, 9) on the respective back wall (6), wherein the support members (13) each comprise two support portions standing upright on the back wall (6) and extending in the height direction (H) of the electrolysis cell (1), and two foot portions attached to the respec- tive support portion in an angled manner for a planar contact with the back wall (6), wherein the support portions of the support members (13) are connected to each other by an arched portion (18) being arched outwardly towards the supported electrode (8) and providing a re- silient bearing surface (19) for the supported electrode (8), wherein the bearing surface (19) is enlarged upon inwards-directed deflections of the arched portion (18).
Resumen de: WO2024048586A1
A membrane electrode assembly 6 for a water electrolysis tank comprises: a polyelectrolyte membrane 1 including a first primary surface 1A and a second primary surface 1B; a first electrode catalyst layer 2 provided to the first primary surface 1A of the polyelectrolyte membrane 1; a second electrode catalyst layer 3 provided to the second primary surface 1B of the polyelectrolyte membrane 1; an outer peripheral film 4 that has an annular shape and is disposed so as to surround the outer peripheral surface of the polyelectrolyte membrane 1; and a first adhesive film 5A including a base material layer 51 and an adhesive layer 52. The first primary surface 1A of the polyelectrolyte membrane 1 includes a first annular non-covered section 1AN not covered by the first electrode catalyst layer 2 along the outer periphery of the first primary surface, and the adhesive layer 52 of the first adhesive film 5A is adhered to the first annular non-covered section 1AN of the polyelectrolyte membrane 1 and is adhered to a primary surface 4A of the outer peripheral film 4 on the same side as the first primary surface 1A of the polyelectrolyte membrane 1.
Resumen de: KR20250057352A
본 발명의 일 실시예는 제1 금속을 포함하는 전극 기재, 제2 금속 내지 제4 금속을 포함하는 이중층 수산화물 구조체, 및 인화물 질소를 포함하는 수전해용 촉매를 제공한다.
Resumen de: CN119900040A
本发明公开了一种集成式气液分离式双极板、电解槽及制氢方法,双极板包括极框和极框内的隔板,极框底部设置有碱液流道孔、顶部设置有第一气体流道孔和第二气体流道孔,隔板顶部与极框连接处设置有气液分离盒,气液分离盒内设置有分割板,分割板将气液分离盒分割为前侧进气腔和后侧分离腔且上部设置有网孔,前侧进气腔底部设置有进气孔,后侧分离腔顶部设置有出气孔,出气孔与对应的第一气体流道孔或第二气体流道孔之间的极框上设置有通气槽,极框两侧表面均设置有回流槽,回流槽顶部与后侧分离腔底部一侧以及与极框内侧贯通连接。电解槽运用上述的双极板并提供一种制氢方法,有效提高气体纯度,并且可以有效降低碱液循环量,提高制备效率。
Resumen de: CN119906161A
本申请提供一种制氢电源系统及其控制方法,包括:交流变压装置,配置为将交流电网输入的第一交流电压进行变压后分配输出第二交流电压;调压支路,配置为将第二交流电压转换调整得到第二直流电压;恒压支路,配置为将第二交流电压转换得到第一直流电压;投切装置,配置为将调压支路的输出端与恒压支路的输出端串联形成总输出电压输出给电解槽;储能装置,配置为接入总输出电压并与电解槽并联;其中,投切装置还配置为根据电解槽的工作电压调整接入的调压支路和/或恒压支路的数量。通过上述方案,本申请的制氢电源系统能根据电解槽的负载情况,投入相应数量的恒压支路和调压支路,提高了制氢电源的运行效率。
Resumen de: CN119898831A
本申请公开了一种低结晶度金红石相钌锰氧化物催化剂及其制备方法和应用,属于电催化技术领域。所述的低结晶度金红石相钌锰氧化物催化剂为纳米颗粒结构,其结构为低结晶度金红石相结构,其制备方法如下:将制备的或者市售的四氧化三锰粉末与钌前驱体溶液混合,通过搅拌或超声使二者充分发生反应;再经过过滤洗涤干燥处理,得到前驱体粉末;对所述的前驱体粉末进行煅烧处理,然后冷却至室温后得到所述低结晶度金红石相钌锰氧化物催化剂。本申请提供的方法操作简单,条件温和,生产成本低,所述的低结晶度金红石相钌锰氧化物催化剂在电催化水氧化方面具有突出的活性和稳定性,在质子交换膜电解水制氢领域具有良好的应用前景。
Resumen de: KR20250056777A
본 발명은 수전해용 촉매 및 이의 제조방법에 관한 것으로서, 산소발생반응(Oxygen Evolution Reaction, OER)의 활성이 증대된 수전해용 촉매 및 이의 제조방법에 관한 것이다.
Resumen de: CN119877029A
本发明提供一种低载量RuPdPt三元贵金属电催化剂的制备方法,将泡沫镍放入盐酸溶液中蚀刻后再放入含氯化铁、氯化铜和氯化钠的混合溶液中浸泡3‑12小时后得到NixFeyCuzOOH基底;将钌盐、铂盐、钯盐混合后研磨,加水调配成混合溶液后加入丁二酮肟二钠盐八水合物的醇溶液,超声分散后形成贵金属混合溶液;将NixFeyCuzOOH基底浸泡于贵金属混合溶液中,搅拌并加热条件下浸渍1‑6小时,得到的产物经水洗、干燥后得到RuPdPt‑NixFeyCuzOOH复合催化剂。本发明中贵金属Ru、Pd、Pt与基底NixFeyCuzOOH纳米片通过M1‑M2‑O键进行结合,有效地锚定了贵金属Ru、Pd、Pt单原子‑团簇位点,极大地提升了催化剂在大电流密度的稳定性。
Resumen de: CN119877014A
本发明提供了一种适用于电解水析氧的铁镍‑MOF/NF复合材料及其制备方法,调整铁镍比例制备电催化性能最佳的复合材料;制备过程是以采用简单的一步水热法合成了装载在泡沫镍上的FeNi‑MOF/NF材料,以FeCl2·4H2O、NiCl2·6H2O和对苯二甲酸为原料,加入NH4F、CO(NH2)2溶解在DMF/乙醇/水的混合溶液中,连续连续搅拌30分钟后,将溶液倒入50mL聚四氟乙烯衬里的高压釜中,并将干燥的泡沫镍以一定角度倾斜于壁放入高压釜中;然后,将高压釜密封并在烘箱中在140℃下保持12小时,并在烘箱中冷却至室温。本发明的制备方法简单,易于操作,环保。本发明制备得到的电极材料具有较好的电催化性能,是理想的析氧电极材料。
Resumen de: CN119891768A
本发明属于一种电力电子电能变换技术,具体涉及一种适用于中压直流母线的多隔离输出制氢变换器,包括中压侧平波电抗器、N个功率单元模块及三个电解槽负载;中压侧平波电抗器与中压母线正极相连,N个功率模块单元输入侧串联、输出侧并联;每个功率模块单元均有三个独立输出,三个独立输出均分别与三个电解槽负载相连。采用半桥子模块串联结构匹配中压直流母线,将后级隔离型降压变换器级联在半桥子模块后级,解决了中压侧直流母线高压,低压侧输出大电流问题,通过调整单元数量可灵活匹配中压侧母线电压。
Resumen de: CN116043250A
The invention provides an electrolytic bath which comprises a cathode end plate, a cathode insulating layer, an electrolytic unit, an anode insulating layer and an anode end plate which are sequentially arranged, the electrolytic bath is provided with a first ventilation channel, a second ventilation channel, a first liquid passing channel and a second liquid passing channel, and the cross section of each channel is triangular; in the direction from the cathode end plate to the anode end plate, each small electrolysis chamber comprises a cathode plate, a cathode sealing ring, a cathode gas diffusion layer, a diaphragm, an anode gas diffusion layer and an anode plate which are sequentially arranged, each cathode plate comprises a cathode surface, each anode plate comprises an anode surface, and the cathode plates and the anode plates at the series connection parts between the small electrolysis chambers form a bipolar plate; a cathode reaction cavity is formed between the cathode surface and the cathode gas diffusion layer, an anode reaction cavity is formed between the anode surface and the anode gas diffusion layer, the first ventilation channel and the first liquid channel are communicated with the cathode reaction cavity, and the second ventilation channel and the second liquid channel are communicated with the anode reaction cavity; and flow guide channels are arranged in the cathode reaction cavity and the anode reaction cavity.
Resumen de: CN119876827A
本发明提供了一种用于输氢管道的涂层自修复方法及其应用。本发明提供的所述方法针对输氢管道的焊接区域(包括焊缝及焊接热影响区)外表面从内到外依次制备铝涂层、氧化铝涂层,构成自修复阻氢涂层;然后在输氢管道实际输氢过程中,向其中输送掺氧氢气,完成自修复过程。本发明提供的方法仅针对输氢管线中对氢脆最为敏感的焊接区域外表面构建自修复阻氢涂层,结合掺氧氢气的输入,便可以大幅提升整个输氢管线系统的使用寿命,大大降低了需要构建自修复阻氢涂层的面积,降低了输氢管线系统的氢脆预防成本。
Resumen de: CN119876981A
本发明公开了一种水解制氢设备,涉及氢气制造技术领域,包括:电解组件,其设置有电解液输入端、电解液输出端、氢气输出端以及氧气输出端,电解液输入端连接有电解液回收器,电解液回收器另一端连接有气液分离罐,气液分离罐还设置有电解液输入口以及氢气输出口,气液分离罐的电解液输入口连接有电解组件的电解液输出端;气液分离罐的氢气输出口与电解组件的氢气输出端均连接在冷却洗涤器上,冷却洗涤器另一端连接有脱氧器,脱氧器固定在支撑架上,且脱氧器另一端连接有干燥器,干燥器另一端连接有压缩机,压缩机另一端设置有氢气储存架,氢气储存架上有多个氢气瓶;氧气处理装置,连接在电解组件的氧气输出端上;本装置可以进一步提高制氢效率。
Resumen de: CN119877017A
本发明涉及电催化材料技术领域,尤其涉及一种高稳定性NiS/NiMoO4电催化材料的制备方法及其应用,包括:步骤1、分别用75mL蒸馏水溶解0.01M(NH4)6Mo7O24·4H2O和Ni(NO3)2·6H2O,将整个溶液体系磁力搅拌30分钟以形成均匀溶液;随后,将上述均匀溶液转移至50mL聚四氟乙烯衬里的高压釜中,并将处理过的泡沫镍浸入其中;然后将高压釜在150℃下密封6h,用去离子水和乙醇洗涤数次至中性,真空干燥,得NiMoO4/NF;步骤2、将硫粉置于泡沫镍上游,置于管式炉中,在氮气气氛下硫化后,将泡沫镍洗涤,在真空烘箱中干燥过夜,即得到NiS/NiMoO4电催化材料。本发明利用水热法和管式炉硫化法制备了高稳定NiS/NiMoO4电催化材料,具有优异的HER、OER和稳定性,在工业上具有良好的应用前景。
Resumen de: CN119877030A
本发明涉及一种碱性水电解制氢用隔膜及其制备方法,碱性水电解制氢用隔膜包括纤维基材层以及位于纤维基材层两侧的涂料层;纤维基材层上设置多个贯通的孔状连接点,纤维基材层两侧的涂料层通过孔状连接点连接成一体;制备时先通过无纺布工艺制得无纺布结构基材,对其进行冲孔加工,再加入高分子聚合物、致孔剂和亲水性无机颗粒,或者进一步地还加入树脂强韧剂得到涂料溶液,然后将涂料溶液同时涂布于纤维基材层上的两侧,最后入水进行相转化,固化后清洗后得到碱性水电解制氢用隔膜。本发明的制备方法简单,制得的产品具有使用耐久性特点,涂层不易脱落,使用时适合电解槽在高压力工况下运行。
Resumen de: CN119876989A
本发明公开了一种大型模块化制氢电解槽,该大型模块化制氢电解槽电极组件,电极组件包括基板,所述基板上设置有电极A和电极B,电极A与电极B相互独立供电,所述电极A与电极B交替通电,所述交替频率为30Hz~120Hz;当电极组件工作时,所述电极A与电极B总有一个处于通电状态。本发明提供的一种大型模块化制氢电解槽,通过电极A与电极B之间高频交替通电,能够减少电极极化现象发生,从而提高电解液的电解效率。
Resumen de: CN119877000A
本发明涉及电催化析氢技术领域,公开了一种富硫空位非晶态硫化镍析氢电极的制备方法。本发明提供的一种富硫空位非晶态硫化镍析氢电极的制备方法以硫脲、硫化镍、盐酸、硼氢化钠为原料,通过一步电沉积工艺、硼氢化钠水溶液浸泡,在泡沫镍载体表面生长富硫空位的非晶态硫化镍,得到所述富硫空位非晶态硫化镍析氢电极。本发明提供的一种富硫空位非晶态硫化镍析氢电极的制备方法过程环保、便捷、高效,制备得到的富硫空位非晶态硫化镍析氢电极在大电流密度下具有较好析氢性能,电荷转移快、电子结构可调、电化学过程能垒低,催化性能甚至超过了某些贵金属催化剂。
Resumen de: CN119869587A
本发明公开了一种负载固废金属的硫化氮化碳光催化剂及其制备方法和应用,制备方法采取以下步骤:将电镀污泥粉末加入酸溶液中,得到浸出液;取三聚氰胺加入浸出液中,得到含有金属元素的硫化三聚氰胺;将硫化三聚氰胺在H2/Ar氛围条件下煅烧,得到淡黄色粉末;最后,在二甲基甲酰胺溶液中球磨淡黄色粉末,得到负载固废金属原子的硫化氮化碳光催化剂。本发明通过将固体废弃物中回收提取的金属转化为光催化剂的活性组分,不仅可以实现光解水制氢性能的提升,还实现了电镀污泥固废资源的二次利用,节约了成本,制备工艺简单,值得推广应用。
Resumen de: CN119877031A
本发明涉及电解水制氢技术领域,具体涉及一种电解水用改性隔膜及其制备方法和应用。电解水用改性隔膜由改性隔膜浆料制备而成;改性隔膜浆料包括隔膜浆料和酸性化合物;隔膜浆料包括聚砜、氧化锆纳米颗粒和有机溶剂;酸性化合物包括有机酸或无机酸中的一种或多种。酸性化合物的用量为隔膜浆料总质量的0.1‑10%。本发明的电解水用改性隔膜通过向包含有氧化锆纳米颗粒的隔膜浆料中添加酸性化合物,修饰纳米氧化锆颗粒表面,对隔膜进行改性,大幅度降低了隔膜的面电阻,使其导离子性能得到显著提高,通过添加酸性化合物,提高了隔膜的亲水性,接触角显著降低,增强了电解质的润湿能力和离子传导效率,进而能提升电解水制氢的整体效率。
Resumen de: CN119877004A
本发明公开了析氢催化剂及其制备方法,属于可再生能源领域。析氢催化剂的制备方法包括:将氯铂酸溶解后,向体系中加入丙三醇,搅拌至溶解后得到混合液A;将硼氢化钠溶解于碱性溶液中,搅拌至溶解后得到混合液B;在搅拌状态下,将混合液B缓慢滴加到混合液A中,升温至预设温度反应,并且在反应后将黑色沉淀物经过离心机洗涤,并置于烘箱内烘干处理;将干燥后的粉末放置于真空干燥箱内进行热处理。通过该方法可以方便且高质量地制备析氢催化剂。
Resumen de: CN119877009A
本公开涉及一种用于电解水的复合催化剂及其制备方法、水电解阴极催化剂、水电解装置和电解水制氢气的方法。该复合催化剂包括所述复合催化剂的XRD谱图中存在面心立方结构的PtNi合金衍射峰及α相Ni(OH)2的衍射峰。本公开的复合催化剂显著降低催化剂中铂含量,提高催化剂的质量比活性,同时降低催化剂的析氢过电位,还可以简化制备工艺。
Resumen de: CN119877025A
本发明提供了一种镍基电催化剂及其制备方法和应用,涉及碱水电解技术领域。具体而言,所述镍基电催化剂包括由内至外的镍基底、硫化层、磺化层和封端层;其中,所述磺化层包括磺酸基团,所述封端层包括苯胺基、吡咯基或噻吩基中的至少一种。本发明通过依次将镍基底金属原料进行预硫化、硫化、磺化和封端,得到了一种表面固定有磺化基团并由聚合物封端的增强型镍基电催化材料;本发明的镍基电催化剂能够实现在保证提高电解碱水催化效率的同时具有极高的稳定性,且成本低廉、制备方法简单易行;当应用于碱水裂解制氢工艺中时,可显著降低槽电压,解决高能耗问题,具有良好的应用前景。
Resumen de: CN119877002A
本发明公开一种过渡金属元素掺杂的二氧化铅电解水催化剂及其制备方法与应用,其中,过渡金属元素掺杂的二氧化铅电解水催化剂元素组成为铅、氧和过渡金属元素,其中过渡金属元素为锰、铁、钴、镍的一种或几种。本发明通过阳极氧化沉积法合成了过渡金属元素掺杂的二氧化铅电极,其中二氧化铅作为基体材料,具备较佳的导电性,且在酸性溶液中具备较佳的稳定性;掺杂的过渡金属元素作为析氧反应的活性元素,提高了催化剂在酸性溶液中析氧反应的催化活性;本发明实现了酸性析氧催化剂的较高的稳定性和活性,降低了质子交换膜阳极材料的制造成本;制造工艺简单易行,具有规模化生产的潜力。综上,本发明具有较高的经济效益和应用价值。
Resumen de: CN119879304A
本发明公开了一种集成供暖降温加湿制氧制氢的多功能装置,涉及环保设备的技术领域。包括降温单元、包括横向管道和竖向管道、所述横向管道和竖向管道设置有多组、设置于所述竖向管道上端的移动盖板、以及设置于所述竖向管道内的加装组件;电解水单元,包括反应室、所述反应室通过连接管与横向管道连接、设置于所述反应室内的检测组件。该装置在夏季使用时,不需要通过电热水器加热水,直接使用常温的水流经暖气片,暖气片上每个可移动盖板处于打开状态,套筒每个网状隔板与网状隔板之间可以放置冰块或者干冰,水流经过时产生反应,起到室内降温作用,通过电解水的工作原理达到加湿和制氧制氢的效果。
Resumen de: CN119877026A
本公开涉及一种纳米复合电催化剂及制备方法与应用,所述纳米复合电催化剂包括催化剂和包覆所述催化剂的含氟烷基磺酸盐;所述催化剂包括活性金属和负载所述活性金属的导电载体。本公开的方法操作简单、易于控制、条件温和。本公开的纳米复合电催化剂可以缓解催化界面的气泡传质阻碍问题,进一步提高在电解水中的能量转化效率和稳定性。
Resumen de: AU2023343656A1
Electrolysis cell for chlor-alkali or alkaline water electrolysis comprising two cell elements (2, 3) each defining an electrode chamber (4, 5) by providing a back wall (6) and sidewalls (7) of the electrode chambers (4, 5), an electrode (8, 9) accommodated in each of the electrode chambers (4, 5), a sheet-like separator (10) extending in a height direction (H) and a width direction of the electrolysis cell (1), the separator (10) being interposed in a joint (11) be- tween the two cell elements (2, 3) and providing a separating wall (12) between the electrode chambers (4, 5), and a plurality of support members (13) supporting at least one (8) of the electrodes (8, 9) on the respective back wall (6), wherein the support members (13) each comprise two support portions standing upright on the back wall (6) and extending in the height direction (H) of the electrolysis cell (1), and two foot portions attached to the respec- tive support portion in an angled manner for a planar contact with the back wall (6), wherein the support portions of the support members (13) are connected to each other by an arched portion (18) being arched outwardly towards the supported electrode (8) and providing a re- silient bearing surface (19) for the supported electrode (8), wherein the bearing surface (19) is enlarged upon inwards-directed deflections of the arched portion (18).
Resumen de: CN119876983A
本发明涉及一种水电解膜电极制备中提高浆料供料稳定性的装置及方法,其中浆料容器设于磁力搅拌器上且通过第一管路与连接三通连接,第一管路上设有第一电磁阀,进样器系统包括进样筒和推杆,其中推杆可抽插地插装于进样筒中,进样筒的输出端通过第二管路与连接三通连接,第二管路上设有第二电磁阀,套管组件两端均设有连接组件,且套管组件输入端的连接组件通过第三管路与连接三通连接、输出端的连接组件与出料管路连接,出料管路上设有第三电磁阀和料泵,套管组件包括温度调节套管和浆料管路,且第三管路、浆料管路、出料管路依次连通,温度调节套管上设有套管三通与冷水机连接。本发明能够保证水电解膜电极制备过程中的浆料供料稳定。
Resumen de: CN119869623A
本发明公开了一种分解水制氢的ZnIn2S4/Cu‑Cu3P光催化复合材料及其制备方法和应用,涉及光催化材料技术领域。所述方法包括制备ZnIn2S4粉末;将ZnIn2S4粉末和铜源粉末混合均匀,得到混合粉末;将混合粉末和磷源粉末置于加热容器中的两个区域,并在氢气和惰性气体的混合气氛中进行煅烧,即得ZnIn2S4/Cu‑Cu3P光催化复合材料。本发明通过调节催化剂之间的相互作用,制备了具备有效载流子分离能力的ZnIn2S4/Cu‑Cu3P肖特基异质结光催化剂,实现了高效的析氢性能。
Resumen de: CN119877012A
本发明涉及一种CoP‑Vp纳米立方体复合材料及其制备方法和应用,包括CoP和纳米立方体,CoP为纳米颗粒分布在纳米立方体内部及表面,形成的复合材料表面更加粗糙且增加多孔结构,进而增加复合材料的比表面积,极大地暴露析氢活性位点,为电荷的快速传输提供了丰富的路径,有利于氢离子吸附在由CoP‑Vp纳米立方体复合材料制备而成的电催化材料表面上,为氢离子提供扩散空间;且CoP的晶体中具有磷空位Vp,通过磷空位Vp调整CoP的电子结构提升复合材料的导电性,更进一步地,磷空位Vp的存在降低了反应的活化能,有效加速催化反应的动力学,同时也可以作为活性吸附位点,提升CoP‑Vp纳米立方体复合材料的催化活性和耐久性。
Resumen de: US2025129492A1
A spring plate assembly. The assembly includes spring plates with each of the spring plates having a perimeter section extending in a first plane, at least one bridge section extending from a first portion of the perimeter section to a second portion of the perimeter section, and spring elements that extend from the at least one bridge section. A first pair of adjacent spring plates are configured to engage a corresponding one of the perimeter sections when stacked in a first configuration and the first pair of adjacent spring plates are configured to engage a corresponding one of the plurality of spring elements when stacked in a second configuration.
Resumen de: CN119885908A
本发明涉及一种基于机器学习技术辅助电解槽流道优化设计方法,属于电解水制氢技术领域,该方法包括以下步骤:S1.基于碱性电解水制氢电解槽内的气液混合流动对电化学性能的影响,选取流道流动场模型,构建流道优化仿真基础模型;S2.采用回归方法筛选流道几何参数关键变量;S3.利用关键变量并通过遗传算法优化流动场模型,获得优化后的关键变量的参数。该方法以电解槽内部气液两相流动行为作为电解槽流道性能关键指标,使最终获得的流道设计方案最优化,以流动均匀性系数为依据对关键变量的组合进行迭代更新,减少流动死区或局部区域的过高流速,促进氢气和氧气排出效率。
Resumen de: CN119877005A
本发明公开了一种纳米二氧化钛光阳极的两步快速电热制备方法及其应用,属于新能源材料领域,制备步骤如下:将钛金属片剪切成长方形,依次用丙酮、乙醇、蒸馏水超声清洗,干燥,放置在电热装置中,在50到100伏的电压下通电20‑30秒,即完成第一步电热处理;自然冷却;继续放置在电热装置中,在50到100伏的电压下再次通电20‑30秒,即完成第二步电热处理,制得所述纳米二氧化钛光阳极。本发明使用两步电热的方式直接快速的在钛金属片上生长纳米二氧化钛光阳极,具有便捷高效的特点,可以大幅度缩短二氧化钛光阳极的制备时间、可避免过多使用化学试剂。
Resumen de: CN119880031A
本申请公开了一种适用于混联制氢系统的传感系统及电解槽原位诊断方法,其中,传感系统包括:光源,用于发出光;解调器;传导光纤,与所述光源连接,传导所述光源发出的光;其中,所述传导光纤包括传导段与检测段,所述检测段有多个;所述传导段也设有多个,连接在多个检测段之间;所述检测段内设有检测光栅,沿所述传导光纤传导的光,部分被所述检测光栅反射;所述解调器也与所述传导光纤连接。通过设置的传感系统进行多点位、多参量进行检测,简化整体结构,降低仪器成本;此外,本申请实施例提供的传感系统通过光纤进行信号传输,不易受到外部干扰而造成失真或是数据丢失的问题,在偏远山区、海岛等无人值守制氢场景中,提高系统的安全性。
Resumen de: FR3154331A1
L’invention concerne un catalyseur comprenant un complexe de nickel(II) comprenant un ligand bis(thiosemicabazone) dérivé du 2,2’-thénil, ledit complexe de nickel(II) répondant à la formule générale Chem 6 suivante : Chem 6dans laquelle,R1 et R2 représentent chacun indépendamment un groupe phényle ayant optionnellement un ou plusieurs substituants R3 identiques ou différents, R3 est sélectionné parmi un halogène, un groupe hydroxy, groupe alkyle en C1-C4, un groupe alkoxy en C1-C4, un groupe thioalkyl en C1-C4, un groupe dialkylamino en C1-C4, un groupe cyano, un groupe CF3 et un groupe O-CF3.
Resumen de: KR20250056063A
본 발명은 방향족 술폰산기를 가지는 바이페닐 기반의 고분자 및 전해질 막과 이를 이용한 수전해 시스템에 관한 것으로, 보다 구체적으로 기존의 염기성 촉매하에서의 축합중합을 통한 양이온 교환 소재 개발이 아닌 강산 조건하에서의 친전자성 치환반응을 이용하여 화학적으로 약한 결합 (ex, 에테르 결합)이 고분자 주쇄에 없도록 구조 설계를 진행하며, 다양한 이온교환 작용기가 고분자의 측쇄 말단에만 도입이 가능한 가지형 구조의 고분자 전구체를 합성하여 미세상분리 구조가 촉진된 고분자 전해질 막과 이를 이용한 수전해 시스템에 관한 것이다.
Resumen de: KR20250055650A
본 발명은 수전해 스택에 관한 것으로서, 더욱 상세하게는, 제조가 용이한 수전해 스택에 관한 것이다. 본 발명의 일 실시예는, 양극과 음극을 제공하는 바이폴라플레이트(100)와; 상기 바이폴라플레이트(100)의 양측에 설치되며 유체의 흐름을 유도하는 한 쌍의 유체흐름층(200, 300)과; 상기 한 쌍의 유체흐름층(200, 300)의 외측에 설치되는 한 쌍의 막전극접합체(MEA)(400, 500)을 포함하는 수전해 스택에 있어서, 상기 바이폴라플레이트(100)는, 상하부에 유체흐름을 위한 매니폴더(111)가 형성되며 양면이 전극으로 작용되기 위한 평판(110)과; 상기 평판(110)의 양측에 설치되며 내측에 공간이 형성되도록 간격을 확보하기 위한 한 쌍의 스페이서(120, 130)를 포함하여 구성되는 수전해 스택을 제공한다.
Resumen de: US2025125387A1
A filter apparatus for an electrochemical device that improves durability and stability includes a supply line configured to supply a target fluid to an electrochemical device, a first filter part provided in the supply line, a second filter part positioned at a downstream side of the first filter part, a first bypass line having a first end positioned at an upstream side of the first filter part, and a second end positioned between the first filter part and the second filter part, a second bypass line having a first end positioned at a downstream side of the second filter part, and a second end positioned at the upstream side of the first filter part, and a third bypass line having a first end positioned between the first filter part and the second filter part, and a second end positioned at the downstream side of the second filter part.
Resumen de: KR20250055696A
본 발명은 인산코발트 (CoPi)가 증착된 황화카드뮴 (CdS) 및 인화니켈 (Ni2P)이 증착된 황화주석 (SnS2)을 포함하는 하이브리드 광촉매 및 이의 제조 방법에 관한 것이다.
Resumen de: KR20250055655A
본 발명은 수소흡착율 및 산화·환원 반응전환효율이 우수한 전이금속 기반의 비귀금속계 고효율, 고내구성 수전해 촉매 및 상기 수전해 촉매의 제조방법에 관한 것이다.
Resumen de: CN119869367A
一种多功能的氨分解制氢系统,属于清洁能源技术领域。由电磁感应冷启动子系统、热催化分解氨子系统和动力子系统组成。在冷启动阶段,电磁感应冷启动子系统通过利用磁感应加热技术对导电及铁磁性催化剂进行非接触式加热,在极短时间内(约5秒)驱动氨分解反应。在正常使用阶段,热催化分解氨子系统利用高效整体式催化剂在较低温度下(<500℃)促进氨分解,为发动机提供稳定而充足的氢气供应。动力子系统及其与氢燃料电池发电和回收发动机尾气余热集成的方法,提高了能源利用效率,从而解决了电加热器温度响应速度慢、能量利用率低下以及氨分解转化率不高等问题,系统各部分之间的协同工作为清洁能源汽车的发展提供了强有力的支持。
Resumen de: CN119877013A
本发明基于碱性环境析氢反应的Ni0.85Se/NiMoOx异质结催化剂制备方法,包括:S1、在泡沫镍基底上通过水热反应生产NiMoO4纳米棒;S2、引入镍钼金属氧化物,通过在NiMoO4纳米棒上负载Ni(OH)2纳米片形成NiMoO‑NH;S3、通过硒化还原和离子交换合成Ni0.85Se/NiMoOx异质结催化剂。本发明所得到的Ni0.85Se/NiMoOx异质结催化剂具有纳米片包覆纳米棒多级结构、丰富的活性位点、充分的物质传递,同时晶态Ni0.85Se与非晶态的NiMoOx组合调节了催化剂表界面的电子结构,优化了反应中间体的吸脱附,加速HER动力学。
Resumen de: CN119876968A
本发明属于一种制氢方法,针对传统的电解水制氢方案谐波电流大,网侧谐波污染严重,以及无法实现大功率制氢的技术问题,提供一种电解水制氢装置及控制方法,包括N个并联的三相电流源型整流单元,有效解决了网侧谐波电流大的问题,功率因数高,传输效率好,可以满足大功率制氢的需求。另外,通过控制组件,能够实现并联三相电流源型整流单元的恒流控制,以及单个三相电流源型整流单元的功率因数控制,可实现大规模交流微网制氢,具有高电能质量、高稳定性、高功率等级的特点。
Resumen de: CN119873905A
本发明公开了一种钡基B位高熵钙钛矿型氧化物及其制备方法,钡基B位高熵钙钛矿型氧化分子式表示为ABO3,A位为Ba元素,B位为Ti、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr元素中的至少5种,A位元素摩尔含量为50%,B位元素摩尔含量范围为5%‑20%;通过对构型熵的优化,制备了一种新型的钡基B位高熵钙钛矿OER催化剂,大幅提高了钙钛矿的OER活性和稳定性。在碱性电解槽和阴离子交换膜电解槽等装置中,高OER活性的催化剂可有效降低电解水的过电位,大幅降低电解槽的制氧和制氢成本。
Resumen de: CN119877007A
本发明属于电催化技术领域,具体涉及一种Ni3Ga0.8Pt0.2/CC催化剂及其制备方法和应用,包括碳布及负载在碳布上的Ni3Ga0.8Pt0.2催化剂。本发明通过浸渍法实现了三金属位点在碳布上的负载,最后通过10%氢氮混合气还原获得Ni3Ga0.8Pt0.2/CC催化剂,经实验,Ni3Ga0.8Pt0.2/CC催化剂能够高效地电解模拟海水,在碱性环境下具备高HER催化活性。
Resumen de: CN119870491A
本发明公开了一种核壳结构的氢氧化镍/镍纳米线的制备方法及其应用,所述制备方法包括以下步骤:将镍源、碱源、分散剂、还原剂和溶剂混合,在磁场作用下进行加热反应,得到镍纳米线;再将所述镍纳米线分散在改性剂中进行表面改性反应,使所述镍纳米线的至少部分表面生成氢氧化镍,得到所述核壳结构的氢氧化镍/镍纳米线;所述改性剂包括水、氨水溶液或镍源水溶液中的至少一种。本发明首先制备得到镍纳米线,然后通过将镍纳米线分散在改性剂中,发生表面改性反应,形成氢氧化镍/镍纳米线异质结构,有效改善镍纳米线容易团聚的问题,同时增加镍纳米线的分散度和比表面积,增加活性位点的暴露数量,从而具有优异的电催化析氧和析氢性能。
Resumen de: CN119877034A
本发明属于可再生能源制氢技术领域,具体涉及一种ALK‑PEM电解槽制氢系统功率分配方法和系统,包括:获取ALK电解槽和PEM电解槽的运行特性,构建ALK‑PEM电解槽联合制氢系统;基于所构建的ALK‑PEM电解槽联合制氢系统的电解槽启停特性,考虑PEM电解槽的秒级启停特性,采用电解槽阵列双层轮值运行方式确定制氢系统电解槽的运行方式;根据所确定的电解槽运行方式,以混合电解槽制氢系统净收益最大为目标,构建计及电解槽启停的最优功率分配模型;求解所构建的最优功率分配模型,完成ALK‑PEM电解槽制氢系统的功率分配。
Resumen de: CN119873886A
本申请属于电解水制氢用隔膜技术领域,具体涉及一种改性氧化锆及其制备方法和应用。本申请所述改性氧化锆包括氧化锆、添加剂和水;所述添加剂包括十二烷基磺酸钠、1‑己烷磺酸钠、己酸钠、辛酸钠、正庚胺和N、N‑二甲基己胺中的一种或多种。本申请的有益效果包括:本申请所述改性氧化锆比非改性氧化锆亲水性更强,制备成的复合膜具有更低的面电阻,更高的泡点和机械性能。
Resumen de: CN119265595A
The invention belongs to the technical field of hydrogen production electrolytic cells, and particularly discloses an electrode catalyst for a hydrogen production electrolytic cell and a preparation method thereof, an electrode and an electrolytic cell, the electrode catalyst comprises first metal nanoparticles, the size of the first metal nanoparticles is smaller than or equal to 10 nm, the first metal nanoparticles form a first metal nanoparticle aggregation structure, and the first metal nanoparticles form a second metal nanoparticle aggregation structure; the size of the first nano-particle agglomerated structure is less than or equal to 65 nm; the second metal nanoparticles are distributed among the first metal nanoparticles and at least partially cover at least one part of the first metal nanoparticles, and the size of the second metal nanoparticles is smaller than or equal to 10 nm. The size of the electrode catalyst nano-particles can be controlled, agglomeration is limited, the crystallinity is reduced, and defect active sites are enriched.
Resumen de: AU2023343511A1
The problem addressed by the present invention is that of specifying a process for producing lithium hydroxide which is very energy efficient. The process shall especially operate without consumption of thermal energy. The process shall be able to handle, as raw material, Li-containing waters generated during digestion of spent lithium-ion batteries. The LiOH produced by the process shall have a high purity sufficient for direct manufacture of new LIB. The process shall achieve a high throughput and have small footprint in order that it can be combined with existing processes for workup of used LIB/for production of new LIB to form a closed, continuous production loop. The process according to the invention is an electrolytic membrane process operating with a LiSICon membrane. It is a special aspect of the process that the electrolysis is operated up to the precipitation limit of the lithium hydroxide.
Resumen de: CN119889946A
本发明公开了一种碳布上原位生长的钴掺杂镍钼双金属磷化物及其制备方法和应用,属于柔性超级电容器电极材料制备领域,所述方法通过水热法在碳布上生长钴掺杂钼酸镍水合物,得到钴掺杂钼酸镍水合物/碳布复合材料,之后将钴掺杂钼酸镍水合物/碳布复合材料在无氧环境下退火处理,得到钴掺杂镍钼双金属氧化物/碳布复合材料;将钴掺杂镍钼双金属氧化物/碳布复合材料和红磷按100:(50‑400)的质量比在650‑750℃无氧气氛下保温处理,得到碳布上原位生长的钴掺杂镍钼双金属磷化物,可以实现较高的比容量,改善了镍钼双金属磷化物的循环稳定性和倍率性能。
Resumen de: CN119877032A
本发明公开了一种方形碱性水电解槽膜垫一体结构及其生产工艺,包括方形橡胶垫片和PPS复合隔膜,所述方形橡胶垫片包覆设置在PPS复合隔膜周边上并硫化成型为一体结构,硫化时,采用胶条配合模具一体硫化,当膜垫一体结构中无不锈钢丝时,模具按照橡胶收缩率要求放大2%,先进行整体制备,最后将膜垫一体结构置于蒸汽通道中对PPS复合隔膜收缩,当膜垫一体结构中有不锈钢丝时,橡胶收缩率减小到0.2%,模具按0.2%的收缩率放大,先对PPS复合隔膜进行预收缩,然后进行整体制备。本发明能够有效保持密封功能,同时便于方形电解槽的安装和拆卸,保证了气体的纯度,提高了方形电解槽的整体性能,制备效率高,品质好。
Resumen de: CN119876979A
本发明公开了一种无膜电解水分步制氢系统,包括电化学反应模块、电解液循环模块,电化学反应模块包括阳极室、绝缘隔膜、阴极室和外接直流电源;电解液循环模块包括氢气分离池、再生循环池和缓冲池;氢气分离池用于接收从阳极室流出反应结束的阳极电极液和阴极室流出的反应结束的阴极电极液,并汇流形成循环电解质溶液,实现氢气产物的分离;再生循环池用于催化氢气分离池中的循环电解质溶液再生并释放氧气;缓冲池用于将再生循环池中的溶液充分混合后再循环进入电化学反应模块。本发明能够实现氢气和氧气在无膜条件下实现时空上的分步制备,并能够在室温下实现过程的高效生产和连续操作。
Resumen de: CN119869560A
本发明属于化工领域,特别涉及一种纳米片花簇状Ni‑Fe‑O‑S/NF催化剂及其制备方法。本发明是一种通过ZIF‑67/NF衍生策略制备的纳米片花簇状Ni‑Fe‑O‑S/NF电极材料,即,本发明的Ni‑Fe‑O‑S/NF是通过刻蚀ZIF‑67同时直接原位生长在导电泡沫镍基底;该高活性双功能电催化剂主要涉及Ni、Fe、S、O过渡金属。本发明的Ni‑Fe‑O‑S/NF催化剂在应用到1.0M KOH电解水时,展示出良好的双功能催化活性。
Resumen de: CN119874082A
本发明公开了一种多功能集装箱式酸性氧化电位水生成器,包含用于制备酸性氧化电位水的电位水制备系统、用于调节温度的温控系统、用于火灾探测与报警的消防报警系统、用于防盗报警的防盗报警系统、用于装载电位水制备系统、温控系统、消防报警系统及防盗报警系统的集装箱、用于现场控制上述系统运行的现场控制中心以及用于远程上述系统运行的远程控制中心,所述电位水制备系统、温控系统、消防报警系统及防盗报警系统均与所述现场控制中心电连接,所述现场控制中心与所述远程控制中心无线连接。本发明的优点是:兼顾自动调节温度、自动探测火灾与自动灭火、防盗等多种功能,使用起来更安全、可靠;运行一次,可制备出足够用量的酸性氧化电位水。
Resumen de: CN119869499A
本发明涉及一种硫掺杂的ZnTiO3/g‑C3N4异质结光催化剂的制备方法和应用,属于光催化材料技术领域。本发明采用溶胶‑凝胶法制备ZnTiO3,采用煅烧法制备g‑C3N4,然后将ZnTiO3和g‑C3N4与富硫前驱体搅拌均匀,水热获得硫掺杂的ZnTiO3/g‑C3N4异质结光催化剂,其可以应用于光催化析氢领域。相较于现有的光催化剂,本发明硫掺杂的ZnTiO3/g‑C3N4异质结光催化剂可控性良好,稳定性强,具有良好的光吸收特性,有利于防止光生电子和空穴复合,进一步提升载流子的分离效率。本发明绿色环保、方法简单,操作方便,材料制备成本低廉,符合目前所倡导的绿色环保理念,具有广阔的应用市场前景。
Resumen de: CN119877027A
本发明涉及电催化剂技术领域,特别是涉及一种镍铁基MOFs异质结构催化剂的合成方法,通过合成稳定的Ni MOFs材料,并在此基础上引入Fe元素来构筑异质结构,从而解决MOFs材料在电催化分解水领域中的稳定性和导电性问题,并进一步提升其催化活性。本发明还提供一种镍铁基MOFs异质结构催化剂、其合成方法及其应用,通过合成稳定的Ni MOFs材料,并在此基础上引入Fe元素来构筑异质结构,从而解决MOFs材料在电催化分解水领域中的稳定性和导电性问题,并进一步提升其催化活性。
Resumen de: CN119876990A
本发明提供了一种用于PEM电解水的梯度有序化膜电极构筑与集成方法,梯度有序化膜电极中,催化层厚度随区域水气比下降而升高,保障膜电极工况条件下电流密度的高度一致,与梯度电极相匹配的流场靠近出水口(低水/气比区域)厚度变薄,流场收缩,局域压力上升,利于低含量的水渗透,强化传质,提高了转化效率和位点可及性,大幅提升了膜电极性能。
Resumen de: CN119876977A
本发明属于绿色氢能源生产技术领域,具体涉及无泡界面优化电解槽系统。电解槽包括:槽体,槽体上设置有氢气通道、氧气通道、进液孔和出液孔,氢气通道和氧气通道位于槽体的上部,槽体内设置有隔膜,隔膜两侧和槽体之间分别设置有阳极室和阴极室,阳极室与氧气通道连通,阴极室与氢气通道连通;阳极室和阴极室内分别设置有阳极板和阴极板;隔膜与电极贴合,隔膜的中部覆盖电极且隔膜的外周超出电极外周;隔膜超出电极外周的部分伸入进液通道且其上设置有微孔,微孔的孔径为1~5μm。本发明电解槽突破了传统碱性电解槽的性能界限,跃升至93%以上的高效区间,有效缓解了传统电解过程中存在的效率限制,降低了氢气生产的成本负担。
Resumen de: CN119877035A
本发明涉及电解水设备领域,具体涉及一种电解槽系统监测控制方法、电解槽系统。在成本、体积不增加太多的基础上,通过设置多个传感器及控制单元,分别对于电解槽氢气及氧气管道的增压风险、工况进行实时监测并控制,且为了提升系统的可靠性,均设置了两种控制方法。氢气管道通过压力监测传感器及机械式泄压阀,结合程序进行控制;氧气管道通过流量传感器、电磁阀及温度传感器,结合程序进行控制。通过该种电解槽压力监测及控制方法,使电解槽的工况适应性得到了较大的提升,同时更极大地提升了电解槽使用过程中的参数可控性、使用安全性。
Resumen de: CN119877001A
本发明公开了一种铁钴镍铬氧化物催化剂的制备方法、装置和应用。该铁钴镍铬氧化物材料的制备方法包括如下步骤:在一定电流密度条件下通过电沉积,制备铁钴镍层状氢氧化物中间体,进一步通过硝酸铬溶液钝化以及高温处理,即得所述铁钴镍铬氧化物催化材料。铁钴镍铬氧化物材料可分别作为阳极催化剂和阴极催化剂应用于电催化过程,阳极析氧和阴极析氢反应的法拉第效率均能达到并维持在90%以上,本发明构建的装置能够在600个小时内保持稳定的槽电压,以及阴极析氢和阳极氧化的高效作用,可用于阳极氧化去除水中有机污染物、阴极海水制氢等多个领域,具有较为广泛的应用前景。
Resumen de: CN119877016A
本发明提供了一种基于四丁基氯化膦/丙三醇低共熔溶剂制备的磷掺杂的金属镍催化剂及其制备方法与应用。该磷掺杂的金属镍催化剂的制备方法,包括步骤:将四丁基氯化膦和丙三醇于55‑120℃下混合反应,得到低共熔溶剂;将硝酸镍加入低共熔溶剂中,超声混合均匀后,进行加热处理;经冷却、洗涤、干燥,得到基于四丁基氯化膦/丙三醇低共熔溶剂制备的磷掺杂的金属镍催化剂。本发明的催化剂的制备方法简单,掺杂过程可控,成本低,所得催化剂的催化性能优异。
Resumen de: CN119877024A
本发明公开了一种负载型纳米铱催化剂、其制备方法和应用,属于化工技术领域。本发明的制备方法包括将丙醇、水和锡酸四丁酯混合,得到第一溶液;向第一溶液中加入铱源,得到第二溶液;将第二溶液在空气中静置后干燥,得到烘干产物;将烘干产物置于马弗炉中煅烧,得到负载型纳米铱催化剂。本发明还公开了采用上述制备方法制成的负载型纳米铱催化剂及其在电解水制氢阳极催化剂中的应用。本发明制备的负载型纳米铱催化剂具有低贵金属载量、较高活性及化学稳定性,可以用于电解水制氢领域;采用溶胶凝胶法制备,通过调控反应物摩尔比,可以有效提升铱利用率,使催化剂在具有较高反应活性的同时减少铱使用量。
Resumen de: DE102023128707A1
Elektrochemievorrichtung (10), insbesondere Elektrolysevorrichtung, mit einem Zellstapel (11) aus mehreren Zellstapelelementen (12), insbesondere aus mehreren Elektrolysezellen, mit einer Endplatten (14, 15) aufweisenden Kraftbeaufschlagungseinheit (13), wobei der Zellstapel (11) aus den Zellstapelelementen (12) zwischen den Endplatten (14, 15) angeordnet und verpresst ist, wobei ein Raum (21) zwischen den Endplatten (14, 15), in welchem der Zellstapel (11) aus mehreren Zellstapelelementen (12) angeordnet ist, nach außen gegenüber der Umgebung der Elektrochemievorrichtung (10) über ein Hüllelement (22) abgedichtet ist.
Resumen de: KR20250054885A
본 발명은 산소 발생 반응과 수소 발생 반응에 대해 모두 우수한 활성을 가지는 물 분해 촉매에 관한 것으로, 상기 촉매는 기판 상에 형성된 산화아연 입자 및 상기 산화아연 입자의 표면에 형성된 기능성 코팅층을 포함하고, 상기 기능성 코팅층은 산화철을 포함한다.
Resumen de: WO2025083095A1
The invention relates to Device for electrochemical reversible dihydrogen storage (1), said device comprising: a sealed chamber (2) intended to receive an electrolytic media (3) and gaseous dihydrogen (4), connection means (5) suitable for connecting the seal chamber to a gas circuit (6) and at least one first electrode (7), and at least one second electrode (8), arranged within the sealed chamber. The at least one second electrode is suitable to oxidize dissolved gaseous dihydrogen, in the electrolytic media, and form protons and to reduce protons and form gaseous dihydrogen according to formula 1: H 2 → 2H + + 2e -, formula 1. The at least one first electrode comprises at least one redox couple My/Mx, insoluble in the electrolytic media, said at least one redox couple being arranged to exhibit at least two oxidation states and being suitable to be reduced from an oxidized state My to a reduced state Mx, and conversely, according to formula 2: M y + pe- → M x, formula 2, wherein x and y are oxidation number. An absolute potential difference | ΔE | between a redox potential of the couple H+/H2, for a predetermined electrolytic media and a predetermined pressure range of gaseous dihydrogen, and a redox potential of the at least one couple My/Mx is lower than or equal to 0.6 V.
Resumen de: WO2025082916A1
The invention relates to a unit (200) for producing hydrogen that comprises: - a stack (102) of solid oxide cells, - an air circuit (110), and a fuel circuit (120) passing through the stack (102); characterised in that the unit (200) is equipped with a stopping system comprising: - an inlet (202) and an outlet (204) for neutral gas, for circulating a predetermined neutral gas in the stack; - an inlet (206) and an outlet (208) for safety gas, for circulating a safety gas in the stack (102); and - a control module (210) for switching the stack (102) from the production configuration to the stopped configuration. The invention also relates to a method for controlling such a unit.
Resumen de: AU2023352489A1
A water electrolysis apparatus (100) includes: an electrolytic cell (20) for electrolyzing water; a circulation pump (27) that is installed in a water circulation line (23) for supplying water from an oxygen gas-liquid separator (22) to the electrolytic cell (20); an inverter (50) that supplies power to the circulation pump (27); and a control unit (60) that controls the inverter (50) to change the circulating water flow rate of the water circulation line (23).
Resumen de: AU2025202458A1
A device (1) for performing electrolysis of water is disclosed. The device comprising: a semiconductor structure (10) comprising a surface (11) and an electron guiding layer (12) below said surface (11), the electron guiding layer (12) of the semiconductor structure (10) being configured to guide electron movement in a plane parallel to the surface (11), the electron guiding layer (12) of the semiconductor structure (10) comprising an InGaN quantum well (14) or a heterojunction (18), the heterojunction (18) being a junction between AIN material and GaN material or between AIGaN material and GaN material; at least one metal cathode (20) arranged on the surface (11) of the semiconductor structure (10); and at least one photoanode (30) arranged on the surface (11) of the semiconductor structure (10), wherein the at least one photoanode (30) comprises a plurality of quantum dots (32) of InxGa(1-x)N material, wherein 0.4 x 1. Also a system comprising such device is disclosed. Figure for publication: Fig. 1 30 20 30 20 40 )-12, 16 Fig.1 Fig.2
Resumen de: AU2023391802A1
The present invention pertains to an ammonia decomposing catalyst and a method for producing same. More specifically, the present invention pertains to: an ammonia decomposing catalyst containing an MgAl
Resumen de: AU2023342258A1
The problem addressed by the present invention is that of specifying a process for electrochemical production of LiOH from Li
Resumen de: WO2025082675A1
The invention relates to a hydrogen-production plant comprising at least a first production line, comprising at least a first electrolysis device with a plurality of first electrolysis modules and comprising a first compressor device with a plurality of first compressor modules, and comprising a controller, comprising at least a schedule-creating module and a control module, wherein the schedule-creating module is designed for creating an activation schedule at least for the first electrolysis modules and for the first compressor modules on the basis of respective performance characteristics of the respective first electrolysis modules, respective performance characteristics of the respective first compressor modules and at least one predetermined optimization criterion, and wherein the control module is designed for activating the first compressor modules and the first electrolysis modules on the basis of the activation schedule created.
Resumen de: AU2023359368A1
Electrolyser (1) for production of hydrogen gas and comprising a stack of bipolar electrodes (9) sandwiching ion-transporting membranes (2) between each two of the bipolar electrodes (9). Each bipolar electrode comprises two metal plates (9A, 9B) welded together back-to-back forming a coolant compartment in between and having a respective anode surface and an opposite cathode surface, each of which is abutting one of the membranes. The plates (9A, 9B) are embossed with a major vertical channel (10A, 10B) and minor channels (11A, 11B) in a herringbone pattern for transport of oxygen and hydrogen gases. The embossed herringbone pattern is provided on both sides of the metal plates (9A, 9B) so as to also provide coolant channels (11B) in a herringbone pattern inside the coolant compartment.
Resumen de: US2025129762A1
A system and method by which energy from ocean waves is converted into hydrogen, and that hydrogen is used to manifest electrical and mechanical energies by an energy consuming device. A portion of the generated electrical power is communicated to water electrolyzers which produce oxygen and hydrogen from water as gases. At least a portion of the generated hydrogen gas is transferred to a transportation ship via a hose-carrying, remotely operated (or otherwise unmanned) vehicle, and subsequently transferred to an energy-consuming module or infrastructur, where a portion of the hydrogen is consumed in order to manifest a generation of electrical energy, a mechanical motion, and/or a chemical reaction.
Resumen de: US2025129300A1
A gas-oil separation plant (GOSP) system includes a crude inlet line extending to a separation vessel where a sour gas stream may be separated from an inlet fluid stream. The GOSP system provides an H2S membrane system where the sour gas stream may be directed for separation of H2S and an electrolyzer where H2 may be separated from the H2S. The GOSP system also includes a combustion gas turbine where an exhaust containing CO2 is produced and a CO2 membrane system where the CO2 may be separated from the exhaust. The H2 and CO2 may be combined and reacted in a Sabatier reactor to produce CH4 and H2O. The CH4 may be used to fuel the combustion gas turbine and the H2O may be directed to a steam head for use in other processes. Additionally, a sweetened gas stream having the H2S removed may be exported by the GOSP system.
Resumen de: US2025129492A1
A spring plate assembly. The assembly includes spring plates with each of the spring plates having a perimeter section extending in a first plane, at least one bridge section extending from a first portion of the perimeter section to a second portion of the perimeter section, and spring elements that extend from the at least one bridge section. A first pair of adjacent spring plates are configured to engage a corresponding one of the perimeter sections when stacked in a first configuration and the first pair of adjacent spring plates are configured to engage a corresponding one of the plurality of spring elements when stacked in a second configuration.
Resumen de: US2025128205A1
According to various embodiments, a carbon capture system includes: a renewable power source; an electrolysis chamber that generates chlorine (CI), hydrogen (H), and an aqueous sodium hydroxide (NaOH) solution from a sodium chloride (NaCl) solution using electrical energy from the renewable power source; a mixing chamber that generates an aqueous sodium bicarbonate (NaHCO3) solution by mixing CO2-containing air and the aqueous NaOH solution; and a CO2 extraction chamber that generates CO2 by combining the aqueous NaHCO3 solution with hydrogen chloride (HCl).
Resumen de: AU2023260588A1
A separator for alkaline electrolysis (1) comprising a porous support (10), a first porous layer (20b) provided on one side of the porous support and a second porous layer (30b) provided on the other side of the porous support, wherein the first and the second porous layer are partially impregnated into the porous support and each have an overlay thickness d1 and d2 respectively, said overlay thickness being defined as the part of each porous layer which is not impregnated into the porous support, characterized in that a) d1 is smaller than the overlay thickness of the second porous layer (d2), and b) d1 is at least 20 µm.
Resumen de: US2025125380A1
A catalyst electrode including a metal layer and a catalyst layer formed on the metal layer is provided. The catalyst layer includes silver and iridium. A membrane electrode assembly and a method for manufacturing a catalyst electrode are also provided.
Resumen de: US2025125381A1
A catalyst electrode including a metal layer and a catalyst layer formed on the metal layer is provided. The catalyst layer includes iridium and palladium. A membrane electrode assembly and a method for manufacturing a catalyst electrode are also provided.
Resumen de: WO2025079381A1
A purpose of the present invention is to provide an ammonia decomposition catalyst device with which a conversion of ammonia (NH3) can be improved. An ammonia decomposition catalyst device 100 for producing hydrogen (H2) through decomposition of ammonia (NH3) has a gas-flow upstream-side region 100a and a gas-flow downstream-side region 100b, in which a base density of the gas-flow downstream-side region 100b is a higher than that of the gas-flow upstream-side region 100a.
Resumen de: US2025128834A1
A water collecting device includes an ice-wall forming part configured to heat the ground to form an ice wall with ice that includes moisture in the ground, and a water collecting part configured to recover a first gas within a region surrounded by the ice wall and collect water from the recovered first gas.
Resumen de: US2025129493A1
A hydrogen generation system comprising a wind turbine rotor coupled to a generator, wherein the generator is electrically coupled to a DC-link by way of a primary power converter, the DC-link having a power dissipation element. The system also comprises a hydrogen electrolysis system coupled to the DC-link; an auxiliary power converter coupled to the DC-link; and one or more auxiliary loads. A control system controls the voltage on the DC-link to remain with a predetermined range. In one aspect, the system provides power to at least the auxiliary loads, in such a way as to manage the generation of hydrogen by the electrolyser whilst decoupling the performance of the electrolyser from varying wind conditions.
Resumen de: US2025129491A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane, a gas diffusion layer, and a catalyst layer. The gas diffusion layer is positioned on one side with respect to the electrolyte membrane. The gas diffusion layer is a porous layer. The catalyst layer is positioned between the electrolyte membrane and the gas diffusion layer. The catalyst layer is made of a catalyst material. A penetration part formed in the gas diffusion layer by the penetration of the catalyst material having a thickness of 1 μm or less.
Resumen de: US2025129001A1
In a process for producing methanol, a synthesis gas that has been recovered from biomass is fed to a methanol synthesis apparatus. In a main operating mode in which sufficient electrical power is available for electrolytic hydrogen recovery, correspondingly electrolytically recovered hydrogen is fed to the methanol synthesis apparatus. In a secondary operating mode in which insufficient electrical power is available for electrolytic production of hydrogen, a tail gas that arises from a biogas recovered from a biomass on removal of the synthesis gas is fed to a generator in order to provide electrical power for apparatuses involved in the process.
Resumen de: US2025131137A1
An offshore wind power-based water electrolysis system includes an offshore wind turbine generator installed offshore to produce electricity using offshore wind energy, a water electrolysis facility installed offshore to produce hydrogen by electrolysis of water using the electricity, a hydrogen maritime transport apparatus to transport the hydrogen produced through the water electrolysis facility to onshore, a hydrogen above-ground storage facility installed on ground to store the transported hydrogen and dispense the hydrogen to ground transport apparatuses, and a system maintenance and management apparatus to calculate and notify a remaining useful life of blades in the offshore wind turbine generator by performing debonding damage simulation, fatigue crack growth simulation and remaining useful life simulation of the blades in a sequential order, and determine and notify stability through finite element analysis for each hydrogen tank in the hydrogen maritime transport apparatus and the hydrogen above-ground storage facility.
Resumen de: WO2025084937A1
A method of producing a gas via electrolysis of water, the method comprising: performing electrolysis of water within one or more electrolysis cells (52) to produce a mixture comprising a liquid and one of hydrogen and oxygen; and separating, within a separator (53), the mixture into a gas and a liquid, wherein the separator operates at a higher pressure than the pressure at which the one or more electrolysis cells operate.
Resumen de: US2025132137A1
A scrubber includes a plasma treatment system, a hydrogen supply system, and a wet treatment system. The plasma treatment system performs a plasma treatment in which a process gas and a hydrogen gas are reacted using plasma. The hydrogen supply system supplies the hydrogen gas to the plasma treatment system. The wet treatment system performs a wet treatment in which a by-product generated by the plasma treatment is wet-treated.
Resumen de: WO2025084128A1
A hydrogen production method according to the present disclosure involves bringing a catalyst and an ammonia-containing gas into contact with each other to decompose the ammonia, wherein: the catalyst includes ruthenium, at least one element selected from the group consisting of barium and cesium, and a carbon carrier; the catalyst has pores having an average pore size of 3.5-15 nm; and the cylinder linear velocity of the gas when bringing the catalyst and the gas into contact with each other is at least 1.0 cm/s at 0°C in standard atmosphere.
Resumen de: WO2025084129A1
A hydrogen production method according to the present disclosure involves bringing a catalyst and an ammonia-containing gas into contact with each other to decompose the ammonia, wherein the catalyst includes ruthenium, at least one element selected from the group consisting of barium and cesium, a carbon carrier, and sulfur, and the sulfur content is 0.002-0.1 mass%.
Resumen de: WO2025084802A1
The present invention relates to a hollow fiber membrane for a fuel cell membrane humidifier, a method for manufacturing same, and a fuel cell membrane humidifier comprising same, the hollow fiber membrane comprising: a porous polymer; and a phenolic antioxidant dispersed in the porous polymer. Accordingly, degradation and decomposition of the hollow fiber membrane can be prevented.
Resumen de: WO2025081550A1
The present invention relates to the field of photoelectrochemical water splitting for hydrogen production. Disclosed is a silver bismuth sulfide (AgBiS2)-based composite photocathode used for photoelectrochemical water splitting for hydrogen production and a preparation method therefor. The composite photocathode structurally comprises a molybdenum-plated conductive substrate located at the bottom, an AgBiS2 light absorption layer located above the conductive substrate, a CdS buffer layer located above the light absorption layer, a TiO2 protective layer located above the buffer layer, and a Pt hydrogen evolution cocatalyst layer located above the protective layer. The preparation method therefor comprises the following steps: using a spray pyrolysis method to spray on a molybdenum-plated substrate an AgBiS2 layer; then, using a chemical bath deposition method to deposit on the AgBiS2 layer a CdS layer; then, using an atomic layer deposition method to deposit on the CdS layer a TiO2 layer; and finally, using a photo-assisted electrodeposition method to deposit on the TiO2 layer a layer of Pt nanoparticles. The AgBiS2-based photocathode disclosed in the present invention can implement at certain bias voltages efficient and stable photoelectrochemical water splitting for hydrogen production, and the preparation method therefor is simple and low-cost.
Resumen de: WO2025081215A1
A sustainable water fuelled process and apparatus where a Unipolar electrolysis of water is described and the hydrogen and oxygen are stored before feeding a hydrogen fuel cell which is capable of providing sufficient electricity to provide power to a drive a vehicle, power a generator etc, after supplying electricity to the Unipolar electrolyser and the storage of the hydrogen and oxygen.
Resumen de: KR20250055035A
본 발명은 황화아연코발트와 이황화몰리브덴이 이종 접합된 수전해 촉매 및 이의 제조방법에 대한 것이다.
Resumen de: KR20250054853A
본 발명은 프로톤 전도성 세라믹 전기화학 전지용 코발트 프리 공기극용 소재 및 이를 포함하는 프로토닉 세라믹 전기화학전지에 관한 것으로, 보다 상세하게는 공기극의 열팽창계수 및 그에 따른 열적 사이클링 안정성을 향상시킬 수 있는 페로브스카이트 구조를 갖는 프로톤 전도성 세라믹 전기화학 전지용 코발트 프리 공기극용 소재 및 이를 포함하는 프로토닉 세라믹 전기화학전지에 관한 것이다. 본 발명의 프로톤 전도성 세라믹 전기화학 전지용 코발트 프리 공기극용 소재의 제조방법은 Pr, Ni 및 Fe 를 포함하는 금속 산화물 전구체를 용해하여 전구체 용액을 수득하는 전구체 용액 수득단계;와 상기 전구체 용액을 가열하여 고형물을 수득하는 가열단계;와 상기 고형물을 분쇄하여 분말상으로 제조하는 분쇄단계를 포함한다.
Resumen de: KR20250054852A
본 발명은 적층형 페로브스카이트 공기극 소재 및 이를 포함하는 프로토닉 세라믹 수전해전지에 관한 것으로, 보다 상세하게는 공기극의 분극저항을 감소시킬 수 있는 페로브스카이트 구조를 갖는 적층형 페로브스카이트 공기극 소재 및 이를 포함하는 프로토닉 세라믹 수전해전지에 관한 것이다.
Resumen de: KR20250054851A
본 발명은 프로토닉 세라믹 전기화학 전지의 공기극용 소재 및 이를 포함하는 프로토닉 세라믹 전기화학 전지에 관한 것으로, 보다 상세하게는 공기극의 전기화학적 성능을 향상시킬 수 있는 페로브스카이트 구조를 갖는 프로토닉 세라믹 전기화학 전지의 공기극용 소재 및 이를 포함하는 프로토닉 세라믹 전기화학 전지에 관한 것이다. 본 발명에 따른 프로토닉 세라믹 전기화학 전지의 공기극용 소재의 제조방법은 Ba, Co, Fe, Sn 및 Y 를 포함하는 금속 산화물 전구체를 용해하여 전구체 용액을 수득하는 전구체 용액 수득단계;와 상기 전구체 용액을 가열하여 고형물을 수득하는 가열단계;와 상기 고형물을 분쇄하여 분말상으로 제조하는 분쇄단계;를 포함한다.
Resumen de: WO2025084802A1
The present invention relates to a hollow fiber membrane for a fuel cell membrane humidifier, a method for manufacturing same, and a fuel cell membrane humidifier comprising same, the hollow fiber membrane comprising: a porous polymer; and a phenolic antioxidant dispersed in the porous polymer. Accordingly, degradation and decomposition of the hollow fiber membrane can be prevented.
Resumen de: KR20250055034A
본 발명은 니켈코발트셀레나이드와 몰리브덴셀레나이드를 포함하는 나노스피어 구조의 하이브리드 구조체 및 이의 수전해 촉매 용도에 대한 것이다.
Resumen de: DE102023136033A1
Eine Federplattenbaugruppe ist vorgesehen. Die Baugruppe umfasst Federplatten, wobei jede der Federplatten einen Umfangsabschnitt aufweist, der sich in einer ersten Ebene erstreckt, mindestens einen Brückenabschnitt, der sich von einem ersten Teil des Umfangsabschnitts zu einem zweiten Teil des Umfangsabschnitts erstreckt, und Federelemente, die sich von dem mindestens einen Brückenabschnitt erstrecken. Ein erstes Paar benachbarter Federplatten ist so konfiguriert, dass es in einen entsprechenden der Umfangsabschnitte eingreift, wenn es in einer ersten Konfiguration gestapelt ist, und das erste Paar benachbarter Federplatten ist so konfiguriert, dass es in ein entsprechendes der Vielzahl von Federelementen eingreift, wenn es in einer zweiten Konfiguration gestapelt ist.
Resumen de: EP4541451A1
This dehumidification apparatus is for dehumidifying a hydrogen gas that is produced by a hydrogen production device, the dehumidification apparatus comprising: a dehumidifier that includes an adsorption tower, inside of which there is provided an adsorbent that is capable of adsorbing moisture contained in the hydrogen gas; an inlet line for introducing the hydrogen gas from the hydrogen production device into the dehumidifier; an inlet valve that is provided to the inlet line; an outlet line for discharging the hydrogen gas that is dehumidified by the dehumidifier out from the dehumidifier; an outlet valve that is provided to the outlet line; and a control device that is configured to adjust the opening degree of the inlet valve and the opening degree of the outlet valve on the basis of the pressure within the adsorption tower during activation of the dehumidification apparatus.
Resumen de: EP4541945A1
The invention relates to Device for electrochemical reversible dihydrogen storage (1), said device comprising: a sealed chamber (2) intended to receive an electrolytic media (3) and gaseous dihydrogen (4), connection means (5) suitable for connecting the seal chamber to a gas circuit (6) and at least one first electrode (7), and at least one second electrode (8), arranged within the sealed chamber. The at least one second electrode is suitable to oxidize dissolved gaseous dihydrogen, in the electrolytic media, and form protons and to reduce protons and form gaseous dihydrogen according to formula 1: H2 ↔ 2H<+> + 2e<->, formula 1. The at least one first electrode comprises at least one redox couple M
Resumen de: GB2634846A
A hydrogen production facility 10 is described. The hydrogen production facility includes one or more electrolyser stacks 12 to electrolyze water. A hydrogen-aqueous solution mixture 12a and an oxygen-aqueous solution mixture 12b are generated, where the one or more electrolyser stacks comprise a plurality of membranes. The facility also includes a hydrogen separator to produce a flow of hydrogen from the hydrogen-aqueous solution mixture and an oxygen separator to produce a flow of oxygen from the oxygen-aqueous solution mixture. The hydrogen separator 2 comprises a hydrogen gas-liquid separation device and a hydrogen coalescing device 16. The oxygen separator 4 comprises an oxygen gas-liquid separation device and an oxygen coalescing device 18. The hydrogen separator 2 and the oxygen separator 4 can be coupled using a pressure balancing line 24 to prevent or reduce a pressure differential across the plurality of membranes.
Resumen de: EP4542815A2
An HVDC system comprising an AC/DC converter sub-system electrically connected to a renewable energy equipment and a VSC sub-system is provided. A method comprises operating the renewable energy equipment to function as a voltage source to energize an HVDC link between the AC/DC converter sub-system and the VSC sub-system; operating the VSC sub-system as a voltage source to energize at least one electrical load electrically connected thereto; if it is determined that the power production rate of the renewable energy equipment is not within a designated parameter, operating the equipment to follow the VSC sub-system such that controlling the AC electric power output influences the power production rate. If it is within the designated parameter, operating the VSC sub-system to follow the renewable energy equipment such that the VSC sub-system adjusts the properties of its AC electric output to match the properties of the electric power generated by the renewable energy equipment.
Resumen de: EP4541943A1
An electrode for electrolysis, including:a conductive substrate; anda catalyst layer disposed on a surface of the conductive substrate,in which at least one of the following conditions (I) and (II) is satisfied:(I) the catalyst layer contains a ruthenium element and an iridium element, and a crystallite size is 50 Å or more and 100 Å or less, the crystallite size being calculated from a peak observed in a 2θ range of 27° or more and 28.5° or less in an XRD spectrum, the XRD spectrum being obtained by subjecting the catalyst layer to X-ray diffraction measurement and(II) the catalyst layer contains (i) a ruthenium element, (ii) an iridium element, and (iii) at least one kind of metal element M selected from the group consisting of W, Zn, Mn, Cu, Co, V, Ga, Ta, Ni, Fe, Mo, Nb and Zr, in the catalyst layer, a molar ratio of the ruthenium element to the iridium element, in terms of ruthenium element/iridium element, is 1.4 or more, and a molar ratio of the metal element M to the ruthenium element, in terms of metal element M/ruthenium element, is 0.06 or more and 3.5 or less.
Resumen de: WO2023242385A1
The invention relates to a method for producing hydrogen with adjustment of the power of a compressor according to the rate of production of an electrolyser, said method comprising the following steps: - a) electrolysing using an electrolyser producing hydrogen at a flow rate of between 0.5 and 5 standard m3/h at an outlet pressure of between 1 and 50 bar; - b) compressing the hydrogen using an electrochemical compressor. The method also comprises a step of correcting the power supply current of the electrochemical compressor with respect to a target pressure value.
Resumen de: AU2023293861A1
The invention relates to an electrolysis system (21) comprising: at least one electrolysis cell (01); and a cathode-side water circuit (07) having a hydrogen separator (05); and an anode-side water circuit (06) having an oxygen separator (04); and an equalisation connection (22) which leads, coming from a cathode-side water connection (15), to the anode-side water circuit (06) via a pump (13) and an ion exchanger (12) via a node point (23) and an operating line (24); and an idle line (25) which (25) branches off upstream of the control line (24) and leads to the cathode-side gas connection (17).
Resumen de: CN119233941A
A process for cracking ammonia to form hydrogen is described, the process comprising the steps of: (i) passing the ammonia through one or more catalyst-containing tubes in a furnace to crack the ammonia and form hydrogen wherein the one or more tubes are heated by combustion of a fuel gas mixture to form a flue gas containing nitrogen oxides, the invention relates to a method for producing ammonium nitrate from flue gas, comprising the steps of (i) cooling the flue gas to a temperature below 170 DEG C, where yH2O is mole% of steam in the flue gas, P * H2O is the equilibrium vapor pressure of water in an aqueous ammonium nitrate solution, and p is the minimum operating pressure of the flue gas, and (ii) cooling the flue gas to a temperature below 170 DEG C. # imgabs0 #
Resumen de: EP4541941A1
To provide a technique allowing reduction in the amount of usage of a catalyst material while alleviating performance degradation of a gas diffusion layer. A cell as an electrode structure comprises an electrolyte membrane (41), a gas diffusion layer (43), and a catalyst layer (45). The gas diffusion layer (43) is positioned on one side of the electrolyte membrane (41). The gas diffusion layer (43) is a porous layer. The catalyst layer (45) is positioned between the electrolyte membrane (41) and the gas diffusion layer (43). The catalyst layer (45) is formed from a catalyst material. A penetration part (433) formed in the gas diffusion layer (43) by the penetration the catalyst material having a thickness of 1 µm or less.
Resumen de: WO2024033060A1
The invention relates to an electrolysis system (100), comprising at least two electrolysis installations (1A, 1B), a power supply source (3) having a direct voltage output (7), and a central supply line (5), wherein the central supply line (5) is connected to the direct voltage output (7) of the power supply source (3) such that, at a first direct voltage (31), a direct current can be fed into the central supply line (5). The electrolysis installations (1A, 1B) are connected electrically in parallel to the central supply line (5), wherein, for the direct voltage supply from the public power grid (25) to a network connection point (35), a central voltage source converter (13), in particular a modular multilevel inverter (13), is connected which converts an input-side alternating voltage into the output-side first direct voltage (31) at the direct voltage output (7). Each electrolysis installation (1A, 1B) is in each case connected via a DC/DC converter (11A, 11B), which converts the first direct voltage (31) into a second direct voltage (33, 33A, 33B), parallel to the direct voltage output (7) of the voltage source converter (13) in such a way that the second direct voltage (33, 33A, 33B) across the electrolysis installation (1A, 1B) drops, wherein each of the DC/DC converters (11A, 11B) can be controlled and/or regulated for adapting a level of its second direct voltage (101, 102).
Resumen de: MX2024009525A
The present disclosure provides methods and apparatuses of producing hydrogen. The methods comprise: (a) contacting a plastic with a catalyst and a gas feed; and (b) applying a microwave at a first temperature. The apparatuses comprise: a reactor for mixing plastic with a catalyst to form a mixture; an inlet for introducing a gas feed; a microwave generator; an optional temperature sensor; and an outlet configured to exhaust the product hydrogen formed in the reactor.
Resumen de: EP4545192A2
A system (1) for generating hydrogen gas comprises a reaction vessel (101) containing an aqueous solution (102) and a cathode (105) and an anode (107) each positioned at least partly in the reaction vessel (101). The system (1) comprises first and second ultrasonic transducers (215-220) which emit ultrasonic waves in the direction of the cathode (105) and the anode (107) respectively. Each ultrasonic transducer (215-220) is driven by a respective transducer driver (202) to optimise the operation of the system (1) for generating hydrogen gas by sonoelectrolysis.
Resumen de: KR20250054245A
본 발명에 따른 촉매코팅된 티타늄 전극판이 구비된 해수 이용 수소발생 시스템은, 해수가 유입되는 해수 유입관이 연결된 해수 저장탱크와, 상기 해수 저장탱크에 연결된 제1 해수공급관에 의하여 해수가 충진되는 복수의 HHO 수집 저장조와, 상기 HHO 수집 저장조에 침지되고 음극판, 절연제 및 양극판이 다수가 배치된 HHO 가스 발생부와, 상기 HHO 수집 저장조와 연통되어서 HHO 수집 저장조의 상부에 모여 있는 HHO 가스가 이송되는 HHO 가스 이송관과, 상기 HHO 가스가 이송되어 HHO 가스에서 수소와 산소를 완전하게 분리시키는 수소산소분리부와, 상기 수소산소분리부에서 산소가스와 분리되어 독립된 가스상태로 분리된 수소가스를 이송시키는 수소가스이송관과, 수소가스가 저장되는 수소가스저장기를 포함하여, 넓은 면적에서 전자빔이 물분자를 가격할 수가 있게 되어 HHO 가스가 다량으로 발생되어 HHO 가스의 생산효율이 월등하게 높아지면서도 특히 바닷물의 부식에 의한 장기간의 사용이 가능하도록 사용되는 전극판이 티타늄으로 제조되고 상기 티타늄 전극판의 표면에 촉매로 활용되는 백금, 일리디움, 그래핀, 카본 나노 튜브로된 코팅면이 코팅되어 해수에도 부식의 진행이 더디게 진행되어 장기간의 사용이 가능하다.
Resumen de: US2025125380A1
A catalyst electrode including a metal layer and a catalyst layer formed on the metal layer is provided. The catalyst layer includes silver and iridium. A membrane electrode assembly and a method for manufacturing a catalyst electrode are also provided.
Resumen de: US2025125381A1
A catalyst electrode including a metal layer and a catalyst layer formed on the metal layer is provided. The catalyst layer includes iridium and palladium. A membrane electrode assembly and a method for manufacturing a catalyst electrode are also provided.
Resumen de: WO2023245201A2
A process of dissociating ammonia into a dissociated hydrogen/nitrogen stream in catalyst tubes within a radiant tube furnace and an adiabatic or isothermal unit containing catalyst, along with downstream purification process units to purify the dissociated hydrogen/nitrogen stream into high purity hydrogen product.
Resumen de: GB2634787A
A method and associated apparatus 50 for the production of gas via electrolysis of water. The method comprises: performing electrolysis of water within one or more electrolysis cells (figure 1,2), to produce a mixture comprising a liquid and at least one of hydrogen and oxygen. The gas(es) and liquid are separated, where the separator 53 operates at a higher pressure than the pressure at which the one or more electrolysis cells operate. An additional pressurising step 55 can be performed on the gaseous mixture before separation. The gas output from the separator may be supplied to a compressor. A energy harvesting device may be provided as a part of a depressuring system 56.
Resumen de: EP4541944A1
A proton exchange membrane (10) for water electrolysis comprising a proton exchange substrate (12) coated on one side with a titanium oxide film (14), the titanium oxide film having a thickness (t<sub>14</sub>) equal to or smaller than 100 nm. A method for making a proton exchange membrane for water electrolysis.
Resumen de: GB2634845A
A hydrogen production facility 10 and associated method of use is disclosed, comprising a plurality of electrolyser stacks 12. The stacks 12 are for electrolyzing water, generating a hydrogen-aqueous solution mixture. A hydrogen separator 2 arrangement is described for producing a flow of hydrogen from the hydrogen-aqueous solution mixture. The hydrogen separator 2 arrangement comprises a plurality of first stage hydrogen collector separators 20,22, where the first stage hydrogen collector separators are fluidly coupled to a respective sub-set of the plurality of electrolyser stacks. The plurality of first stage hydrogen collector separators 20,22 are also fluidly coupled to a downstream hydrogen buffer vessel 28. The hydrogen separator 2 arrangement may comprise one or more hydrogen coalescing devices 16. A pressure balancing line 24 can also be provided between oxygen 22 and hydrogen separators 20 - it may also extend between hydrogen 28 and oxygen buffer 30 vessels.
Resumen de: CN119859810A
本发明涉及一种基于化学链循环的无膜电解水制氢电解槽及运行方法,所述电解槽包括分别与外部电源相连的第一端板、第二端板,两端板间设有至少一个双极板,两个端板和双极板之间、以及相邻两个双极板之间分别形成有电解小室;每个电解小室内设有功能组件,功能组件包括依次贴合的双功能电极、多孔隔板和载氧体电极,双功能电极与载氧体电极搭配使用时能够在不同工况下进行催化析氢、催化析氧,适应可再生能源的功率波动和间歇性,具备离网制氢的应用潜力。所述运行方法包括通过温度场和电场的协同供能,在不同工况下实现氢气与氧气的分步或连续生产。
Resumen de: WO2024041751A1
The invention relates to a method and a device for producing a cracked gas (7) comprising hydrogen and nitrogen from an ammonia-rich input (1) that is more than 50% ammonia by volume, wherein ammonia present in the ammonia-rich input (1) is cracked in a cracker furnace (C) with catalytic assistance at a cracking pressure above 5 bar and a cracking temperature of at least 500°C in order to obtain the cracked gas (7) comprising hydrogen and nitrogen. The invention is characterised in that the ammonia-rich input (1) undergoes catalytically assisted pre-cracking (V), during which some of the ammonia present in the input (1) is separated into hydrogen and nitrogen and an input (5) comprising ammonia for the cracker furnace (C) is obtained.
Resumen de: CN119859824A
本公开涉及一种电解制氢系统、电解制氢启动方法、存储介质及电子设备,电解制氢系统包括:控制器、电解槽、电解液存储罐、分离器以及至少一个阀门,其中,电解液存储罐的容积小于分离器的容积,控制器,与阀门连接,用于获取电解槽出口的电解液的目标温度,根据目标温度,确定至少一个阀门的开度,以使电解槽与电解液存储罐形成第一制氢循环回路,通过至少一个阀门的开度,将电解槽与电解液存储罐形成第一制氢循环回路,由于电解液存储罐的容积小于分离器的容积,这样能够使电解槽与电解液通过第一制氢循环回路快速地加热到预设温度,有效地提高了电解制氢系统的制氢效率,并降低了电解制氢系统的冷启动时间。
Resumen de: PL450203A1
Przedmiotem zgłoszenia jest sposób sprężania wodoru do wysokich ciśnień przy zastosowaniu CO2 w stanie nadkrytycznym, charakteryzujący się tym, że strumień gazu bogaty w wodór (3) miesza się w komorze mieszania (II) z strumieniem CO2 w jego punkcie krytycznym w temperaturze 36°C i pod ciśnieniem 72 bar, po czym otrzymany strumień mieszaniny wodoru i CO2 (5) poddaje się sprężaniu do uzyskania wymaganego wysokiego ciśnienia, a następnie sprężoną mieszaninę wodoru i CO2 strumieniem (6) kieruje się do elektrolizera węglanowego (IV), w którym pod wpływem przepuszczonego prądu elektrycznego (2) rozdziela się sprężoną mieszaninę (6) na strumień sprężonego wodoru (7) i strumień CO2 (4).
Resumen de: PL446449A1
Przedmiotem zgłoszenia jest system do wytwarzania wodoru, zwłaszcza na potrzeby gospodarstw domowych, składający się z urządzenia wytwórczego zawierającego szczelny zbiornik z elektrolitem, połączone z nim co najmniej dwa segmenty generatorów (1) do elektrolizy, połączone ze sobą równolegle i zasilane prądem za pomocą źródła prądu połączonego z jednym generatorem (2), gdzie każdy segment generatorów (1) składa się z dwóch zewnętrznych bocznych ścian (3) i co najmniej dwóch generatorów (2) ze wspólną wewnętrzną ścianą (4), zbudowanych z co najmniej pięciu płyt (8), odizolowanych od siebie uszczelkami (9), wyposażonych w przelotowe otwory (5) wykonane w jednej linii z wlotem (6) oraz z wylotem (7), a dwie skrajne płyty (8) każdego generatora (2) stanowią elektrody wyposażone w otwory do podłączenia zasilania prądem oraz z urządzenia zabezpieczającego zawierającego filtr dekompresyjny mokry (23) z bezpiecznikiem (27) połączony z jednej strony z filtrem osuszającym (21), a z długiej strony z mniejszym od niego filtrem dekompresyjnym suchym (25) z bezpiecznikiem (27) wypełnionym wełną tłumieniową, połączonym przez zawór zwrotny ciśnieniowy (34) z filtrem mokrym (35) wypełnionym alkoholem propylowym, połączonym z czujnikiem ciśnieniowym (17) oraz bezpiecznikiem gazowym kierunkowym (36), połączonym z zaworem końcowym (37), zabezpieczonym filtrem tłumiącym (38) z wełną miedzianą.
Resumen de: JP2025065810A
【課題】 燃料極に供給するガスの加熱に要する熱エネルギーを低減することができる水素製造装置を提供すること。【解決手段】 水素製造装置(1)は、Niを含む燃料極(51)と、固体電解質層(53)と、空気極(52)とを備え、燃料極に水素及び水蒸気が供給され、燃料極に供給された水蒸気を電気分解することにより燃料極にて水素を生成するとともに空気極にて酸素を生成し、燃料極から水素を含む燃料極排出ガスを排出し、空気極から酸素を含む空気極排出ガスを排出する電気化学セル(50)と、燃料極排出ガスに含まれる水素の一部を前記燃料極に還流する還流部(60)と、を備える。【選択図】 図1
Resumen de: CN119325656A
An electrical or electrosynthetic cell is disclosed, the architecture of which allows them to be easily stacked into a cell stack. These cells include polymer cell frames, functional materials (e.g., inter-electrode membranes, electrodes, metal bipolar plates, etc.) incorporated therein. For example, an electrical or electrosynthetic cell includes a polymeric cell frame, a first electrode and a second electrode, and an inter-electrode membrane positioned between the first electrode and the second electrode. The squeeze member is positioned adjacent to the first electrode. The squeeze member may be a metal bipolar plate squeeze member and/or a metal porous transport layer squeeze member. In one example, a polymer cell frame is sealed to a metal bipolar plate by a polymer-to-metal bond. In another example, at least one polymeric structural positioning member positions the metal bipolar plate against the polymeric cell frame. A cell stack comprising a plurality of cells is disclosed.
Resumen de: WO2025079526A1
This method for producing an electrode material that is to be used in an electrode of a water electrolysis device has an alkali treatment step for treating a specific NiAl-based alloy with an alkaline material in order to leach aluminum from the specific NiAl-based alloy, thereby obtaining Raney nickel. The specific NiAl-based alloy is an alloy that is represented by the composition formula Al4Ni(3-(x+y))FeyCox (where x and y are values satisfying 0.3≤x≤1.5 and 0≤y≤0.35).
Resumen de: CN119858897A
一种氨分解制氢方法及系统,方法是使用石墨烯作为微波吸收介质,在微波的辐照下,石墨烯吸收微波在10秒内快速升温至1000℃,为氨分解提供热能;石墨烯中近乎自由移动的π电子在微波场的作用下快速远动,与氨气分子发生碰撞激活氨气分子,产生放电等离子体;在热催化与等离子体催化的协同作用下实现氨分解;系统包括氨气瓶,氨气瓶通过气体质量流量计和石英反应器进口连通,石英反应器内放置有石墨烯,石英反应器放置在微波合成萃取仪中,石英反应器出口和洗气瓶进口连通,洗气瓶出口和气体收集装置进口连通;本发明在极短的时间内产生氢气,显著缩短了整个氨分解系统的启动时间;系统结构简单、操作方便,降低成本且更加节能环保。
Resumen de: CN119859812A
本发明公开了一种制氢装置,包括:电解结构和夹紧机构,夹紧机构包括正极压板、负极压板、正极板、负极板及调节组件,正极压板和负极压板相对,正极板和负极板对应垫设于正极压板和负极压板相对的两侧,电解结构夹设于正极板和负极板之间,调节组件连接于正极压板和负极压板之间,正极压板背对负极压板的一侧开设有进水接口、回水接口以及出氢接口;电解结构包括电解单元和外密封组件,外密封组件包括支撑圈和弹性密封圈,支撑圈套设于电解单元外,弹性密封圈套设于电解单元的外周,弹性密封圈的厚度既大于支撑圈的厚度,也大于电解单元的厚度。本发明可以确保具有较佳的密封性。
Resumen de: CN119859816A
本发明属于电解水制氢领域,具体公开了一种三金属位点协同调控的碱性电解水电极及其制备方法和应用。制备方法包括以下步骤:木质素磺酸盐氧化;氧化后木质素磺酸盐与金属盐混合,金属包括Ru、Ce、Sm,与基底载体一起进行水热反应,得到电极前驱体;煅烧电极前驱体,得到三金属位点协同调控的碱性电解水电极。与现有技术相比,本发明具有以下有益效果:基底与表面高活性组分结合更加紧密,避免了催化剂使用过程中的脱落现象。Sm、Ce掺杂对电极中活性Ru位点具有一定的电子调控和应变调控作用,从而提升电极的催化活性和反应稳定性。
Resumen de: CN119859811A
本发明涉及电解水制氢技术领域,公开了一种碱性制氢系统、控制方法、介质和产品,系统包括:电源模块、电解槽和辅助系统;电源模块分别与电解槽和辅助系统电连接;辅助系统包括控制子系统、气液分离子系统、水碱补充子系统;水碱补充子系统和电解槽管路连接,气液分离子系统与电解槽管路连接,控制子系统分别与气液分离子系统、水碱补充子系统和电解槽信号连接;电解槽中的隔膜采用有机‑无机复合隔膜。本发明通过有机‑无机复合隔膜阻隔氢气横向穿透到阳极侧,决定风光功率能够突破电解槽额定功率20%的限制,不会造成电解槽停机,使电解槽能够满足风光功率任意波动。
Resumen de: CN119864835A
本发明提供一种波动能源制氢系统的配置方法及电子设备,其中,波动能源制氢系统的配置方法包括:获取与波动能源制氢系统中至少一个设备单元相对应的设备工作参数集,并基于设备工作参数集构建各个设备单元所分别对应的容量配置模型;根据各个容量配置模型确定决策变量,根据与波动能源制氢系统制备单位量的氢气所对应的制备成本最低且制备碳排放量最小确定目标函数,根据供电功率条件和供氢速率条件确定约束条件;求解波动能源氢储系统模型中各个决策变量的最优解,以相应地确定各个设备单元的容量配置结果。由此,通过多目标圆圈搜索确定各个设备单元的容量配置的最优解集,实现利用波动能源稳定制氢,同时兼顾系统的经济效益和碳减排。
Resumen de: WO2024047362A2
A membrane electrode assembly (MEA) for producing hydrogen in a water electrolyser is provided. The MEA comprises a polymer electrolyte membrane (REM), a cathode comprising a cathode catalyst on a first side of the REM, an anode comprising an anode catalyst on a second side of the REM, and a platinum-ruthenium (Pt-Ru) catalyst located on the second side of the REM for electrochemically converting hydrogen gas into hydrogen cations in use. The Pt-Ru catalyst is in electrical contact with the anode and ionic contact with the REM.
Resumen de: CN119859817A
本公开涉及一种钛氧化合物纳米线负载铱的催化剂及其制备方法和应用,所述催化剂包括钛氧化合物纳米线载体和负载于所述钛氧化合物纳米线载体上的单质铱。该催化剂以钛氧化合物纳米线作为载体,在其上负载单质铱制备出的催化剂作为阳极催化剂能够获得更高的质量比活性和更低的析氧过电位;使用其制备的膜电极具有贵金属催化剂载量低、电解水分解电压低的特点。
Resumen de: KR20250052581A
본 발명의 일 실시예는 이리듐 또는 이리듐 산화물 기반의 나노파이버에 전이원소 및 양이온 전형원소로 구성된 군에서 1종 이상이 도핑된 이리듐 나노파이버 촉매로 수전해, 연료전지, 일체형 재생 연료전지와 같은 수소 전기화학 디바이스에 들어가는 전극을 제조하여 디바이스들의 성능과 내구성을 극대화할 수 있는 이리듐 또는 이리듐 산화물 기반의 나노파이버 촉매와 이를 포함하는 전극을 제공하는 것이다.
Nº publicación: KR20250052527A 21/04/2025
Solicitante:
HD HYUNDAI OILBANK CO LTD [KR]
\uC5D0\uC774\uCE58\uB514\uD604\uB300\uC624\uC77C\uBC45\uD06C \uC8FC\uC2DD\uD68C\uC0AC
Resumen de: WO2025079900A1
The present invention provides a method for manufacturing a polymer electrolyte membrane for a water electrolysis or fuel cell, and a polymer electrolyte membrane manufactured thereby, the method allowing surface and internal quality of the polymer electrolyte membrane to be improved and drying efficiency to be enhanced.